Abstract:
We analyze experimentally and theoretically the effects of delayed optical cross-feedback in semiconductor ring lasers. We show that under appropriate conditions, feeding of only one directional mode back into the counter-propagating mode leads to square-wave oscillations. In this regime, the laser switches regularly between the two counter-propagating modes with a period close to twice the roundtrip time in the external feedback loop. We find that these oscillations are robust and appear for a wide range of parameters as long as a small asymmetry in the linear coupling between both modes is present. We show that by increasing the feedback strength or the injection current, the square-wave oscillations gradually disappear. Due to noise, mode-hopping between stable lasing in one directional mode and square wave oscillations is observed in this transition region