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Abstract

This survey treats the new simpler and more e�cient de�nition of fractional deriva-

tive which is called � conformable fractional derivative �. The new de�nition re�ects

a nature extension of normal derivative.

Also, the thesis discusses the general analytical exact solutions for some �rst and

second conformable fractional linear/nonlinear di�erential equations. These equa-

tions are: Conformable fractional Bernoulli, Riccatti, Abel and Euler di�erential

equations, some explanatory examples are presented to illustrate the proposed ap-

proach. In addition, the systems of conformable linear di�erential equations with

constant coe�cients are discussed and give full solution for homogeneous and non-

homogeneous systems.

The �nite di�erence method and it's error terms which can be applied to approxi-

mate the solution of the fractional di�erential equations based on conformable frac-

tional derivative de�nition.

Numerical examples are given to certify the applicability of our proposed method.

These numerical examples have proved good results when compared with exact so-

lutions or other known numerical methods.
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Chapter 1

Introduction

Fractional di�erential equations are very important in many �elds like Fluid

Mechanics, Biology, Physics, Optics, Electrochemistry of Corrosion, Engineering,

Viscoelasticity, Electrical Networks and Control Theory of Dynamic Systems.

Fractional Calculus deals with integrals and derivatives of real or even complex or-

der. It is a generalization of the classical calculus and therefore preserves some of

the basic properties.

The objective of the present thesis is to use conformable fractional derivative to

solve fractional di�erential equation.

Most fractional di�erential equations (FDEs) don't have exact solution, so approx-

imate and numerical techniques. Various numerical and approximate methods to

solve the FDEs have been discussed as Euler method, Taylor method of order 2,

Modi�ed method and Hence method.

This thesis is divided into three chapters.

Chapter one, which consists of four sections. This chapter gives the two familiar

operators of fractional calculus which are: Rieman-Liouville and Caputo operators.

It focuses on a new de�nition of � conformable fractional derivatives � and stud-

ies the rules of di�erentiation and integration. The new de�nition re�ects a nature

extension of normal derivative. And we discuses some properties and theory of con-

formable fractional derivatives. We give some application to fractional di�erential

equations.

Chapter two contains three sections, we present the general analytical exact so-
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lutions for �rst and second orders of conformable fractional linear/nonlinear di�er-

ential equations.

We discuss the form of the Wronskain for conformable fractional linear di�erential

equations with variable coe�cients. Further, we prove that there is an Able's for-

mula for fractional di�erential equations.

We introduce the general exact solutions of the conformable fractional nonlinear

Bernoulli, Riccatti, Abel and Euler di�erential equations and some special cases are

also discussed and solved.

Finally, we discuss systems of conformable fractional linear di�erential equations

with constant coe�cients. We give full solution for homogeneous and non-homogeneous

systems.

In chapter three we use the conformable fractional derivatives to derive some �nite

di�erence formulas and its error terms which are used to solve fractional di�erential

equations. We �rst derive conformable fractional Euler and Taylor methods based

on the fractional Taylor expansion.

Also we drive the conformable fractional Modi�ed and Heun's methods based on

Trapezoidal and Simpson's rules.

To provide the contribution of our work, some applications on �nite di�erence for-

mulas are given.

Finally, we compared two formulas the �rst formula of conformable fractional Euler

and Taylor method [1st (CFEM) and (CFTM)] and the second formula of con-

formable fractional Euler and Taylor method [2nd (CFEM) and (CFTM)] that de-

pend on the conformable fractional derivative with the conformable fractional Euler

and Taylor methods that we derived trying to be self-contained.

3



Chapter 2

Fractional calculus

2.1 Introduction

Fractional calculus is a branch of mathematical analysis that studies the several

di�erent possibilities of de�ning real number powers or complex number powers of

the di�erentiation operator D

Df(x) =
d

dx
f(x),

and of the integration operator J

Jf(x) =

∫ x

0

f(s)ds.

Fractional calculus developed since 17th century through the pioneering works of

Leibniz, Euler, Lagrange, Laplace, Abel, Liouvlle, Riemann and many others ([20],[22]).

First reported attempt to generalize derivatives to fractional order is contained in

the correspondence of Leibniz (1695) with l'hospital, wherein Leibniz has given in-

terpretation of the symbol d
ny
dxn

for n = 1
2
. Let us assume that f(x) is a monomial of

the form

f(x) = xk, k ∈ IN.

The �rst derivative is as usual

f ′(x) =
d

dx
f(x) = kxk−1. (2.1)

The formula for ordinary derivative,

dn

dxn
xk =

k!

(k − n)!
xk−n, k ≥ n, k ∈ IN. (2.2)
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For arbitrary order, it follows

dn

dxn
xk =

Γ(k + 1)

(k − n+ 1)
xk−n, k ∈ IN, (2.3)

where Γ(k + 1) = k!. For k = 1 and n = 1
2
, we obtain the half-derivative of the

function x as
d

1
2

dx
1
2

x =
Γ(1 + 1)

Γ(1− 1
2

+ 1)
x1− 1

2 =
Γ(2)

Γ(3
2
)
x

1
2 =

1
√
π

2

x
1
2 . (2.4)

We repeat the process to get

d
1
2

dx
1
2

2x
1
2

√
π

=
2√
π

Γ(1 + 1
2
)

Γ(1
2
− 1

2
+ 1)

x
1
2
− 1

2 =
2√
π

Γ(3
2
)

Γ(1)
x0 =

2
√
π

2√
π

= 1, (2.5)

(since Γ(3
2
) =

√
π

2
and Γ(1) = 1) which is indeed the expected result of

(
d

1
2

dx
1
2

d
1
2

dx
1
2

)x =
d

dx
x = 1.

Fourier (1822) de�ned fractional operators using integral representation of f(x),

namely

f(x) =
1

2π

∫ ∞
−∞

f(u)du

∫ ∞
−∞

cos(t(x− u))dt.

dnf(x)

dxn
=

1

2π

∫ ∞
−∞

f(u)du

∫ ∞
−∞

tn cos(t(x− u) +
1

2
nπ)dt.

He formally replaced n with α, where α is arbitrary numbers [23]. Abel was the

�rst to apply fractional order derivatives to solve an integral equation that arises

in tautochrone problem [18] (the problem of determining the shape of the curve

such that the time of descent of a frictionless point mass sliding down the curve in

the gravitational �eld is independent of the starting point). If the time of slide is a

known constant, then Abel's integral equation is of the form

k =

∫ x

0

(x− t)αf(t)dt, (2.6)

(with α = −1
2

as a special case) which were investigated. The integral in eq (2.6),

except for the multiplicative factor 1
Γ( 1

2
)
, is a particular case of a de�nite integral

de�ning fractional integration. In the integral equations such as eq (2.6), the function

f in the integrand has to be determined. Abel wrote the right-hand side of eq (2.6)
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as
√
π[d

−1
2 f(x)

dx
−1
2

] [24]. Then he operated on both sides of the equation with d
1
2

dx
1
2
to

obtain
d

1
2k

dx
1
2

=
√
πf(x),

because the fractional operators (with suitable conditions on f) have the property

d
1
2

dx
1
2

[
d
−1
2

dx
−1
2

f ] =
d0f

dx0
= f.

Thus when the fractional derivative of order 1
2
of the constant k in eq (2.6) is

computed, f(x) is determined. This is a remarkable achievement of Abel in the

fractional calculus. It is important to note that the fractional derivative of a constant

need not be equal to zero. Fourier's integral formula and Abel's elegant solution

attracted Liouville's attention.

For a general function f(x) and 0 < α < 1, the complete fractional derivative is

Dαf(x) =
1

Γ(1− α)

d

dx

∫ x

0

f(t)

(x− t)α
dt.

For arbitrary α [9], since the gamma function is unde�ned for arguments whose

real part is a negative integer and whose imaginary part is zero, it is necessary to

apply the fractional derivative after the integer derivative has been performed. For

example,

D
3
2f(x) = D

1
2D1f(x) = D

1
2
d

dx
f(x).

2.2 Fractional derivative

There exists a many of de�nitions of fractional derivative, which have di�erent

origins and are not necessarily equivalent. We will report a few of them and some

of their properties.

De�nition 2.1. The Riemann-Liouvill of fractional derivative de�nition is [18]:

Dα
a f(x) =

1

Γ(n− α)

dn

dtn

∫ t

a

f(x)

(t− x)α−(n−1)
dx, n− 1 ≤ α < n, t > a, n ∈ IN.

De�nition 2.2. The Caputo of fractional derivative de�nition is [18]:

Dα
a f(x) =

1

Γ(n− α)

∫ t

a

f (n)(x)

(t− x)α−(n−1)
dx, n− 1 ≤ α < n, t > a, n ∈ IN.
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The following are properties of Riemann-Liouvill and Caputo derivatives:

1. The Riemann derivative does not satisfy Dα
a (1) = 0 while Dα

a (1) = 0 for the

Caputo derivative, where α is not a natural number.

Proof. Let f(x) = 1, then the Riemann derivative is:

Dα
a f(x) = Dα

a (1)

=
1

Γ(n− α)

dn

dtn

∫ t

a

1

(t− x)α−(n−1)
dx

=
1

Γ(n− α)

dn

dtn

∫ t

a

−1

yα−(n−1)
dy, since y = (t− x)

=
1

Γ(n− α)

dn

dtn

[
−y−α+(n−1)+1

−α + (n− 1) + 1
|ta
]

=
1

Γ(n− α)

dn

dtn

[
−(t− x)−α+n

−α + n
|ta
]

=
1

Γ(n− α)

dn

dtn

[
(t− a)−α+n

−α + n

]
.

When n = 1, 0 < α < 1,

Dα
a (1) =

1

Γ(1− α)

d

dt

[
(t− a)−α+1

−α + 1

]
=

1

Γ(1− α)

[
(−α + 1)(t− a)−α

−α + 1

]
=

1

Γ(1− α)
(t− a)−α

6= 0.

Since 0 < α < 1, Γ(1− α) 6= 0 and t > a, (t− a)−α 6= 0.

When n = 2, 1 < α < 2,

Dα
a (1) =

1

Γ(1− α)

d

dt

[
1

Γ(1− α)
(t− a)−α

]
=

1

[Γ(1− α)]2
[
−α(t− a)−α−1

]
6= 0.

Since 1 < α < 2, Γ(1− α) 6= 0, α 6= 0 and t > a, (t− a)−α−1 6= 0.
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The Caputo derivative is:

Dα
a (1) =

1

Γ(n− α)

∫ t

a

(1)′

(t− x)α−(n−1)
dx

=
1

Γ(n− α)

∫ t

a

0

(t− x)α−(n−1)
dx

=
1

Γ(n− α)
C.

Where C is constant. If C = 0, then Dα
a (1) = 0.

2. Both de�nitions do not satisfy the following:

(a) Dα
a (fg) = fDα

a (g) + gDα
a (f).

(b) Dα
a (f/g) = gDαa (f)−fDαa (g)

g2
.

(c) Dα
a (f ◦ g) = fα(g(t))gα(t).

(d) DαDβf = Dα+βf.

3. The Caputo de�nition assumes that the function f is di�erentiable.

4. Both de�nitions satisfy Dα
a (f ± g) = Dα

a (f)±Dα
a (g).

Proof. Riemann derivative:

Dα
a (f ± g)(x) =

1

Γ(n− α)

dn

dtn

∫ t

a

(f ± g)(x)

(t− x)α−(n−1)
dx

=
1

Γ(n− α)

[
dn

dtn

∫ t

a

f(x)

(t− x)α−(n−1)
dx± dn

dtn

∫ t

a

g(x)

(t− x)α−(n−1)
dx

]
=

1

Γ(n− α)

dn

dtn

∫ t

a

f(x)

(t− x)α−(n−1)
dx± 1

Γ(n− α)

dn

dtn

∫ t

a

g(x)

(t− x)α−(n−1)
dx

= Dα
a f(x)±Dα

a g(x).
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Caputo derivative:

Dα
a (f ± g)(x) =

1

Γ(n− α)

∫ t

a

(f ± g)′(x)

(t− x)α−(n−1)
dx

=
1

Γ(n− α)

∫ t

a

f ′(x)± g′(x)

(t− x)α−(n−1)
dx

=
1

Γ(n− α)

[∫ t

a

f ′(x)

(t− x)α−(n−1)
dx±

∫ t

a

g′(x)

(t− x)α−(n−1)
dx

]
=

1

Γ(n− α)

∫ t

a

f ′(x)

(t− x)α−(n−1)
dx± 1

Γ(n− α)

∫ t

a

g′(x)

(t− x)α−(n−1)
dx

= Dα
a f(x)±Dα

a g(x).

However, the next de�nition over come the failure of satisfaction as mentioned.

De�nition 2.3. Given a function f : [0,∞)→ IR, then the conformable fractional

derivative of f of order α is de�ned by [16]

Tα(f)(t) = lim
ε→0

f(t+ εt1−α)− f(t)

ε
,

for all t > 0 and α ∈ (n, n + 1). If f is α-di�erentiable in some (0,a), a > 0, and

limt→0+ f
α(t) exists, the de�ne fα(0) = limt→0+ f

α(t).

Tα is denote the operator which is called the conformable fractional derivative of

order α.

Sometime, write f (α)(t) for Tα(f)(t), to denote the conformable fractional deriva-

tives of f of order α.

Note: If the conformable fractional derivative of f of order α exists, then we say

that f is α-di�erentiable.

Theorem 2.4. If a function f : [0,∞)→ IR is α-di�erentiable at t0 > 0, α ∈ (0, 1]

then f is continuous at t0 [20].

Proof. Let us consider the identity

f(t0 + εt1−α0 )− f(t0) =
f(t0 + εt1−α0 )− f(t0)

ε
ε.

Applying the limit ε→ 0 on both sides, we get

lim
ε→0

(f(t0 + εt1−α0 )− f(t0)) = lim
ε→0

f(t0 + εt1−α0 )− f(t0)

ε
lim
ε→0

ε = 0,
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which implies that limε→0 f(t0 + εt1−α0 ) = f(t0), let h = εt1−α0 , then

lim
h→0

f(t0 + h) = f(t0).

Hence f is continuous at t0.

Theorem 2.5. Let α ∈ (0, 1] and f, g be α-di�erentiable at a point t > 0, then [20]:

1. Tα(af + bg) = aTα(f) + bTα(g), for all a, b ∈ IR.

2. Tα(tp) = ptp−α, for all p ∈ IR.

3. Tα(λ) = 0, for all constant function f(t) = λ.

4. Tα(fg) = fTα(g) + gTα(f).

5. Tα(f/g) = gTα(f)−fTα(g)
g2

.

6. If in addition, f is di�erentiable then Tα(f)(t) = t1−α df
dt

(t).

Proof. 1. To prove it, we use the de�nition 2.3.

Tα(af + bg)(t) = lim
ε→0

af(t+ εt1−α) + bg(t+ εt1−α)− [af(t) + bg(t)]

ε

= lim
ε→0

af(t+ εt1−α)− af(t) + bg(t+ εt1−α)− bg(t)

ε

= lim
ε→0

af(t+ εt1−α)− af(t)

ε
+ lim

ε→0

bg(t+ εt1−α)− bg(t)

ε

= a lim
ε→0

f(t+ εt1−α)− f(t)

ε
+ b lim

ε→0

g(t+ εt1−α)− g(t)

ε

= aTα(f) + bTα(g).

2. Assume f(t) = tp, for all p ∈ IR into the de�nition of the conformable fractional

derivative

Tα(tp) = lim
ε→0

(t+ εt1−α)p − tp

ε
,

then use the Binomial theorem to expand out the �rst term.

(a+ b)n =
n∑
k=0

(
n

k

)
an−kbk = an +nan−1b+

n(n− 1)

2!
an−2b2 + ...+nabn−1 + bn.

10



And we get,

Tα(tp) = lim
ε→0

[tp + ptp−1εt1−α + p (p−1)
2!

tp−2(εt1−α)2 + ......+ pt(εt1−α)p−1 + (εt1−α)p − tp]
ε

= lim
ε→0

ptp−1εt1−α + p (p−1)
2!

tp−2(εt1−α)2 + .....+ pt(εt1−α)p−1 + (εt1−α)p

ε

= lim
ε→0

[ptp−1t1−α + p
(p− 1)

2!
tp−2ε(t1−α)2 + .....+ pt(ε)p−2(t1−α)p−1 + (ε)p−1(t1−α)p]

= ptp−1+1−α

= ptp−α.

3. Let f(t) = λ, λ is constant then

Tα(λ) = lim
ε→0

f(t+ εt1−α)− f(t)

ε

= lim
ε→0

λ− λ
ε

= 0.

4. By using de�nition 2.3, we get

Tα(fg)(t) = lim
ε→0

f(t+ εt1−α)g(t+ εt1−α)− f(t)g(t)

ε

= lim
ε→0

f(t+ εt1−α)g(t+ εt1−α) + f(t+ εt1−α)g(t)− f(t+ εt1−α)g(t)− f(t)g(t)

ε

= lim
ε→0

f(t+ εt1−α)[g(t+ εt1−α)− g(t)]

ε
+ lim

ε→0

g(t)[f(t+ εt1−α)− f(t)]

ε

= lim
ε→0

f(t+ εt1−α) lim
ε→0

g(t+ εt1−α)− g(t)

ε
+ lim

ε→0
g(t) lim

ε→0

f(t+ εt1−α)− f(t)

ε

= f(t)Tα(g)(t) + g(t)Tα(f)(t).

11



5. By using de�nition 2.3, we get

Tα(f/g)(t) = lim
ε→0

f(t+εt1−α)
g(t+εt1−α)

− f(t)
g(t)

ε

= lim
ε→0

1

ε

f(t+ εt1−α)g(t)− f(t)g(t+ εt1−α)

g(t+ εt1−α)g(t)

= lim
ε→0

1

ε

f(t+ εt1−α)g(t)− f(t)g(t) + f(t)g(t)− f(t)g(t+ εt1−α)

g(t+ εt1−α)g(t)

= lim
ε→0

1

g(t+ εt1−α)g(t)

(
f(t+ εt1−α)g(t)− f(t)g(t)

ε
+
f(t)g(t)− f(t)g(t+ εt1−α)

ε

)
= lim

ε→0

(
1

g(t+ εt1−α)g(t)

[
g(t)

f(t+ εt1−α)− f(t)

ε
− f(t)

g(t+ εt1−α)− g(t)

ε

])
=

1

g(t)g(t)
(g(t)Tα(f)(t)− f(t)Tα(g)(t))

=
g(t)Tα(f)(t)− f(t)Tα(g)(t)

g2(t)
.

6. Let h = εt1−α, then ε = tα−1h

Tα(f)(t) = lim
ε→0

f(t+ εt1−α)− f(t)

ε

= lim
h→0

f(t+ h)− f(t)

htα−1

= t1−α lim
h→0

f(t+ h)− f(t)

h

= t1−α
df

dt
(t).

Based on 6. we derive conformable fractional derivative of some special functions:

1. Tα(ect) = ct1−αect c ∈ IR.

2. Tα(sin(bt)) = bt1−α cos(bt) b ∈ IR.

3. Tα(cos(bt)) = −bt1−α sin(bt) b ∈ IR.

4. Tα( 1
α
tα) = 1.

12



Proof. 1. By using de�nition 2.3 and L'hopital's rule,

Tα(ect) = lim
ε→0

ect+cεt
1−α − ect

ε

= lim
ε→0

ect[ecεt
1−α − 1]

ε

= ect lim
ε→0

ecεt
1−α − 1

ε

= ect lim
ε→0

ct1−αecεt
1−α

1

= cectt1−α lim
ε→0

ecεt
1−α

= cectt1−αe0

= cectt1−α.

2. By using de�nition 2.3 we get,

Tα(sin(bt)) = lim
ε→0

sin(bt+ bεt1−α)− sin(bt)

ε

= lim
ε→0

sin(bt) cos(bεt1−α) + cos(bt) sin(bεt1−α)− sin(bt)

ε

= lim
ε→0

cos(bt) sin(bεt1−α)

ε
+ lim

ε→0

− sin(bt)(1− cos(bεt1−α))

ε

= cos(bt) lim
ε→0

sin(bεt1−α)

ε
− sin(bt) lim

ε→0

(1− cos(bεt1−α))

ε
.

Let h = bεt1−α, this implies ε = h
bt1−α

we get,

Tα(sin(bt)) = cos(bt) lim
h→0

sinh
h

bt1−α

− sin(bt) lim
h→0

(1− cosh)
h

bt1−α

= bt1−α cos(bt) lim
h→0

sinh

h
− bt1−α sin(bt) lim

h→0

1− cosh

h
.

Using limx→0
sinx
x

= 1, and use L'hopital's rule we get

Tα(sin(bt)) = bt1−α cos(bt)− bt1−α sin(bt) lim
h→0

sinh

1

= bt1−α cos(bt)− 0

= bt1−α cos(bt).
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3. By using de�nition 2.3 we get,

Tα(cos(bt)) = lim
ε→0

cos(bt+ bεt1−α)− cos(bt)

ε

= lim
ε→0

cos(bt) cos(bεt1−α)− sin(bt) sin(bεt1−α)− cos(bt)

ε

= − sin(bt) lim
ε→0

sin(bεt1−α)

ε
− cos(bt) lim

ε→0

(1− cos(bεt1−α))

ε
.

Let h = bεt1−α, this implies ε = h
bt1−α

we get,

Tα(cos(bt)) = −bt1−α sin(bt) lim
h→0

sinh

h
− bt1−α cos(bt) lim

h→0

1− cosh

h
.

Using limx→0
sinx
x

= 1, and use L'hopital's rule we get

Tα(cos(bt)) = −bt1−α sin(bt)− bt1−α cos(bt) lim
h→0

sinh

1

= −bt1−α sin(bt).

4. Using de�nition 2.3 and L'hopital's rule, we get

Tα(
1

α
tα) = lim

ε→0

1
α

(t+ εt1−α)α − 1
α
tα

ε

= lim
ε→0

1
α
α(t+ εt1−α)α−1t1−α − 0

1

= lim
ε→0

(t+ εt1−α)α−1t1−α

= tα−1t1−α

= 1.

However, below is a list of conformable fractional derivatives of certain functions:

1. Tα(e
1
α
tα) = e

1
α
tα .

2. Tα(sin( 1
α
tα)) = cos( 1

α
tα).

3. Tα(cos( 1
α
tα)) = − sin( 1

α
tα).

De�nition 2.6. Let α ∈ (n, n + 1], and f be an n-di�erentiable at t where t > 0,

then the conformable fractional derivative of f of order α is de�ned as:

Tα(f)(t) = lim
ε→0

f [α]−1(t− εt[α]−α)− f [α]−1(t)

ε
.

Where [α] is the smallest integer greater than or equal to α [16].
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Lemma 2.7. If f is (n + 1)-di�erentiable at t > 0, then as a consequence of the

de�nition one can have

Tα(f)(t) = t[α]−αf [α](t),

where α ∈ (n, n+ 1] [16].

Proof. f is (n+ 1)-di�erentiable at t > 0, then by de�nition 2.6

Tα(f)(t) = lim
ε→0

f [α](t− εt[α]−α)− f [α](t)

ε
.

Let h = εt[α]−α, this implies ε = h
t[α]−α

we get

Tα(f)(t) = t[α]−α lim
h→0

f [α](t− h)− f [α](t)

h

= t[α]−αf [α](t).

Theorem 2.8. (Roll's theorem for conformable fractional di�erentiable functions)

Let a > 0 and f : [a, b]→ IR be a function with the properties that:

1. f is continuous on [a,b].

2. f is α-di�erentiable on (a,b) for some α ∈ (0, 1).

3. f(a) = f(b).

Then there exist at least c ∈ (a, b), such that fα(c) = 0 [17].

Proof. We prove this using contradiction, since f is continuous on [a, b] and f(a) =

f(b), there is c ∈ (a, b), at least one, which is a point of local extreme.

On the other hand, as f is α-di�erentiable on (a,b) for some α ∈ (0, 1), we have

fα(c) = lim
ε→0+

f(c+ εc1−α)− f(c)

ε
= lim

ε→0−

f(c+ εc1−α)− f(c)

ε
.

But the two limits have opposite signs, the �rst limit is non-negative and the second

limit is non-positive which is contradiction. Hence fα(c) = 0.

If the two limits have same sign then as f(a) = f(b), we have that f is constant and

the result is trivially followed.
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Theorem 2.9. (Mean value theorem for conformable fractional di�erentiable func-

tions)

Let a > 0 and f : [a, b] → IR be a continuous function on [a, b] and α-di�erentiable

on (a, b) for some α ∈ (0, 1). Then there exist at least c ∈ (a, b), such that fα(c) =
f(b)−f(a)
1
α
bα− 1

α
aα

[17].

Proof. Consider the function

g(x) = f(x)− f(a)− f(b)− f(a)
1
α
bα − 1

α
aα

(
1

α
xα − 1

α
aα).

g(x) is continuous function on [a, b] and integrable on x ∈ (a, b).

g(a) = f(a)− f(a)− f(b)−f(a)
1
α
bα− 1

α
aα

( 1
α
aα − 1

α
aα) = 0.

g(b) = f(b)− f(a)− f(b)−f(a)
1
α
bα− 1

α
aα

( 1
α
bα − 1

α
aα) = 0.

This implies g(a) = g(b), then the function g satis�es the conditions of the fractional

Rolle's theorem. Hence there exists c ∈ (a, b), such that Tα(c) = gα(c) = 0.

gα(c) = fα(c)− f(b)− f(a)
1
α
bα − 1

α
aα

Tα(
1

α
xα).

Using the fact that Tα( 1
α
xα) = 1, we have

gα(c) = fα(c)− f(b)− f(a)
1
α
bα − 1

α
aα

= 0.

This implies fα(c) = f(b)−f(a)
1
α
bα− 1

α
aα
.

Proposition 2.10. Let a > 0 and f : [a, b] → IR be α-di�erentiable for some

α ∈ (0, 1) [16].

1. If fα is bounded on [a, b] where a > 0, then f is uniformly continuous on [a, b]

and hence f is bounded.

2. If fα is bounded on [a, b] and continuous at a, then f is uniformly continuous

on [a, b] and hence f is bounded.

Proof. We want to prove 1.

Given fα is bounded on [a, b], there is a positive constant k such that |fα| ≤ k at

every point of the interval (a, b).
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For any a < b in interval the conditions of the �rst mean value theorem are met on

the subinterval [a, b], so there is a point c ∈ (a, b) such that

fα(c) =
f(b)− f(a)
1
α
bα − 1

α
aα

.

f is bounded then |fα(c)| ≤ k, this implies∣∣∣∣f(b)− f(a)
1
α
bα − 1

α
aα

∣∣∣∣ ≤ k

|f(b)− f(a)| ≤ k

∣∣∣∣ 1αbα − 1

α
aα
∣∣∣∣ ,

for
∣∣ 1
α
bα − 1

α
aα
∣∣ < δ, let δ = ε

k
we will get that

|f(b)− f(a)| ≤ kδ =
ε

k

|f(b)− f(a)| ≤ ε,

then there exists δ > 0 such that if
∣∣ 1
α
bα − 1

α
aα
∣∣ < δ, then |f(b)− f(a)| ≤ ε.

Therefor f is uniformly continuous on [a, b] and hence f is bounded.

2.3 Fractional integral

De�nition 2.11. The Riemann-Liouvill of fractional integral of order α ≥ 0 for a

continuous function f on [a, b] which is de�ned by:

Jαa f(x) =
1

Γ(α)

∫ x

a

(x− t)α−1f(t)dt,

where Γ(α) =
∫∞

0
xα−1e−xdx is the gamma function [25].

Let α ∈ (0,∞), de�ne Jα(tp) = tp+α

p+α
for any p ∈ IR and α 6= −p.

If f(t) =
∑n

k=0 bkt
k, then we de�ne Jα(f) =

∑n
k=0 bkJα(tk) =

∑n
k=0 bk

tk+α

k+α
.

If f(t) =
∑n

k=0 bkt
k, where the series is uniformly convergent then we de�ne Jα(f) =∑∞

k=0 bk
tk+α

k+α
.

Further, if α = 1, then Jα is the usual integral.

For example, with α = 1
2
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1.

J 1
2
(sin t) = J 1

2

(
∞∑
n=0

(−1)n

(2n+ 1)!
t2n+1

)

=
∞∑
n=0

(−1)nt2n+1+ 1
2

(2n+ 1 + 1
2
)(2n+ 1)!

=
∞∑
n=0

(−1)nt2n+ 3
2

(2n+ 3
2
)(2n+ 1)!

.

2.

J 1
2
(cos t) = J 1

2

(
∞∑
n=0

(−1)n

(2n)!
t2n

)

=
∞∑
n=0

(−1)nt2n+ 1
2

(2n+ 1
2
)(2n)!

.

3.

J 1
2
(et) = J 1

2

(
∞∑
n=0

tn

n!

)

=
∞∑
n=0

tn+ 1
2

(n+ 1
2
)n!

.

Now we de�ne Iaα(f)(t) to denote to conformable α-fractional integral of a function

f starting from a ≥ 0.

De�nition 2.12. Iaα(f)(t) = Ia1 (tα−1f) =
∫ t
a
f(x)
x1−α

dx, where the integral is the usual

Riemann improper integral and α ∈ (0, 1) [18].

So, I
1
2
0 (
√
t cos t) =

∫ t
0

cosx

x
1
2−

1
2
dx =

∫ t
0

cosxdx = sin t.

and I
1
2
0 (cos 2

√
t) =

∫ t
0

cos 2
√
x

x1−
1
2
dx =

∫ t
0

cos 2
√
x

x
1
2

dx = sin 2
√
t.

Theorem 2.13. TαI
a
α(f)(t) = f(t), for t ≥ 0 where f is any contiuous function in

the domain of Iα [22].
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Proof. Since f is continuous, then Iaα(f)(t) is di�erentiable hence

TαI
a
α(f)(t) = t1−α

d

dt
(Iaα(f)(t)

= t1−α
d

dt

∫ t

a

f(x)

x1−αdx

= t1−α
f(t)

t1−α

= f(t).

Consider the conformable fractional linear di�erential equations of order α

Tαy + a(x)y = f(x). (2.7)

Theorem 2.14. The homogeneous solution of the conformable di�erential equation

(2.7) is given by

yc(x) = e−I
α
0 a(x),

where a(x) is any continuous function in the domain of Iα0 [26].

Proof. To prove Theorem 2.14 , we have just veri�ed that the equation (2.7) is

satis�ed by getting the function yc(x) = e−I
α
0 a(x). By replacing above candidate

solution into the conformable di�erential equation (2.7), and using 6., we get:

Tα(yc) + a(x)yc = x1−α d

dt

[
e−I

α
0 a(x)

]
+ a(x)e−I

α
0 a(x)

= x1−α d

dt
[−Iα0 a(x)] e−I

α
0 a(x) + a(x)e−I

α
0 a(x)

= −x1−α d

dt

[∫ t

0

a(x)

x1−α

]
e−I

α
0 a(x) + a(x)e−I

α
0 a(x)

= −x1−α a(x)

x1−α e
−Iα0 a(x) + a(x)e−I

α
0 a(x)

= 0.

Then we conclude that the homogeneous solution of the conformable di�erential

equation (2.7) is given by yc(x) = e−I
α
0 a(x).

Theorem 2.15. The particular solution of the conformable di�erential equation

(2.7) is given by

yp(x) = λe−I
α
0 a(x),
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where a(x) is any continuous function in the domain of Iα0 and the function λ is

obtained by the following condition [26].

λ(x) = Iα0 (f(x)eI
α
0 a(x)).

Proof. To prove this Theorem, we have just veri�ed that the equation (2.7) is sat-

is�ed by getting the function yp(x) = λe−I
α
0 a(x). Replacing above candidate solution

into the conformable di�erential equation (2.7), and using 6., we have that:

Tα(yp) + a(x)yp = Tα
[
λe−I

α
0 a(x)

]
+ a(x)λe−I

α
0 a(x)

= Tα(λ)e−I
α
0 a(x) + λTα(e−I

α
0 a(x)) + a(x)λe−I

α
0 a(x)

= (f(x)eI
α
0 a(x))e−I

α
0 a(x) + λ

[
−a(x)e−I

α
0 a(x)

]
+ a(x)λe−I

α
0 a(x)

= f(x).

Then we conclude that the homogeneous solution of the conformable di�erential

equation (2.7) is given by yp(x) = λe−I
α
0 a(x).

2.4 Examples

In this section we introduce basic examples of solving conformable fractional

di�erential equations.

Example 2.16. Find the general solution of the following equation

y( 1
2

) + 2y = 2x2 + 4x
3
2 , y(0) = 0.

Solution: Find the solution yc of the homogeneous equation y( 1
2

) + 2y = 0.

let yc = er
√
x, then

y
( 1
2

)
c + 2yc = 0

1

2
rx

1
2
− 1

2 er
√
x + 2er

√
x = 0

1

2
rer
√
x + 2er

√
x = 0

1

2
r + 2 = 0

=⇒ r = −4.

Hence, yc = e−4
√
x.
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Since the right side of the equation is equal 2x2 + 4x
3
2 , we assume a particular

solution of the non-homogeneous equation yp(x) = Ax2 +Bx+ C, then

y
( 1
2

)
p = 2Ax2− 1

2 +Bx1− 1
2 = 2Ax

3
2 +Bx

1
2 .

Substituting into the given fractional di�erential equation, we have

2Ax
3
2 +Bx

1
2 + Ax2 +Bx+ C = 2x2 + 4x

3
2 .

Ax2 + 2Ax
3
2 +Bx

1
2 +Bx+ C = 2x2 + 4x

3
2 .

Thus A = 2, B = 0 and C = 0.

A particular solution is therefor yp(x) = 2x2, and the general solution is: y(x) =

yc(x) + yp(x) = c1e
−4
√
x + 2x2, where c1 is constant.

Finally, the initial condition y(0) = 0 implies that

y(0) = c1e
0 + 0 = 0 =⇒ c1 = 0. Hence, y(x) = 2x2.

Example 2.17. Find the general solution of the following conformable fractional

equation

y(β) − y = 0, β ∈ (0, 1].

Solution: The equation is homogeneous. Let y = erx
β
, then

y(β) − y = 0

βrxβ−βerx
β − erxβ = 0

βrerx
β − erxβ = 0

βr − 1 = 0

=⇒ r = 1
β
.

So that the solution is given by y(x) = e
1
β
xβ .

Example 2.18. Find the general solution of the following conformable fractional

equation

y( 1
4

) +
√
xy = 2xe

−4
3
x
3
4 .

Solution: If a linear di�erential equation is written in the standard form

y(α) + a(x)y = f(x).

The integrating factor is de�ned by the formula u(x) = eIα(a(x)), we solve this equa-

tion by multiplying it by e
I 1
4

(
√
x)

= e

∫ x
0

√
t

t
1− 1

4 dt = e
∫ x
0 t
−1
4 dt = e

4
3
x
3
4 .
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Converts the left side into the α-derivative of the product e
4
3
x
3
4 y, then

e
4
3
x
3
4 y( 1

4
) + e

4
3
x
3
4
√
xy = 2e

4
3
x
3
4 xe

−4
3
x
3
4 = 2x.

T 1
4
(e

4
3
x
3
4 y) = 2x.

I 1
4
T 1

4
(e

4
3
x
3
4 y) = I 1

4
(2x)

e
4
3
x
3
4 y =

∫ x

0

2t

t1−
1
4

dt =

∫ x

0

2t
1
4dt =

8

5
t
5
4 |x0 =

8

5
x

5
4 + C

e
4
3
x
3
4 y =

8

5
x

5
4 + C

=⇒ y = 8
5
x

5
4 e
−4
3
x
3
4 + Ce

−4
3
x
3
4 , C is constant.

The general solution of the fractional di�erential equation is

y(x) = 8
5
x

5
4 e
−4
3
x
3
4 + Ce

−4
3
x
3
4 .

Example 2.19. y( 1
2

) = x
3
2 +y
√
x

x+y
.

Solution: Let y( 1
2

) =
√
x dy
dx
, then

√
x
dy

dx
=
x

3
2 + y

√
x

x+ y

dy

dx
=
x+ y

x+ y

dy

dx
=

1 + y
x

1 + y
x

. (2.8)

Let v = y
x
, then y = vx and dy

dx
= xv′ + v substitute in (2.8), we get

xv′ + v = 1+v
1+v

=⇒ x dv
dx

= 1 − v, this implies 1
x
dx = 1

1−vdv, integrate both sides we

get ln(x) + ln(c) = ln(1 − v) by taking exponential both sides cx = (1 − v) =⇒
y
x

= 1− cx.
The solution is y = x(1− cx).
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Chapter 3

Conformable fractional di�erential

equations

3.1 First order conformable fractional di�erential

equations

In this section we discuss the general solutions of the conformable fractional

linear and nonlinear di�erential equations of order α.

First we will discuss conformable fractional linear di�erential equations of order α

of the form

Tαy + a(x)y = f(x). (3.1)

By using the property Tαy = x1−αy′, eq (3.1) becomes

x1−αy′ + a(x)y = f(x).

y′ +
a(x)

x1−αy =
f(x)

x1−α . (3.2)

Where eq (3.2) is a �rst order linear ordinary di�erential equation with general

solution

y =
1

µα
[

∫
µα
f(x)

x1−αdx+ C], x 6= 0, (3.3)

where µα = e
∫ a(x)

x1−α
dx and C is arbitrary constant [28]. Now by using the de�nition

of conformable fractional integral and substitution in eq (3.3) we obtain

y =
1

µα
[Iα(µαf(x)) + C], (3.4)
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where µα = eIα(a(x)). The result (3.4) is the general solution of eq (3.1).

Now, we will discuss the general solutions of the conformable fractional nonlinear

Bernoulli, Riccatti and Abel di�erential equations.

• Conformable fractional nonlinear Bernoulli's di�erential equation:

The general formula of the conformable fractional nonlinear Bernoulli's di�erential

equation (CFNB) can be written as

Tαy + p(x)y = f(x)yn, α ∈ (0, 1], n ∈ IN. (3.5)

Where p(x), f(x) are α-di�erentiable functions and y is an unknown function to be

solved [13]. When n = 0 or 1 the equation is a linear, otherwise it is nonlinear.

By using the property Tαy = x1−αy′, eq (3.5) becomes

x1−αy′ + p(x)y = f(x)yn, α ∈ (0, 1].

⇒ y′ + xα−1p(x)y = xα−1f(x)yn, α ∈ (0, 1]. (3.6)

Where eq (3.6) is the Bernoulli equation [28], it can be reduced to a linear equation

for any other value of n by the change of dependent variable u = y1−n, the solution

as follows

y1−n =
1

µ(x)
[

∫
((1− n)xα−1f(x)µ(x))dx+ C]. (3.7)

Where C is an arbitrary constant and µ(x) = e
∫

(1−n)xα−1p(x)dx. Finally the general

solution is given by

y = (
1

µ(x)
[

∫
((1− n)xα−1f(x)µ(x))dx+ C])

1
1−n . (3.8)

In the special case [7], eq (3.5) takes the following formula

Tαy + p(x)T βy = f(x)yn, α, β ∈ (0, 1], n ∈ IN. (3.9)

To �nd the general solution of (3.9), we have three cases:

1. Case one: When β = 1, then eq (3.9) becomes

Tαy + p(x)y′ = f(x)yn, α ∈ (0, 1], n ∈ IN.

Using the property Tαy = x1−αy′, we get

x1−αy′ + p(x)y′ = f(x)yn, α ∈ (0, 1].
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⇒ y′ =
f(x)yn

xα−1 + p(x)
, α ∈ (0, 1]. (3.10)

By applying eq (3.7), then the solution of (3.10) as follows

y1−n =

∫
(1− n)

f(x)

xα−1 + p(x)
dx+ C. (3.11)

Where µ(x) = ec, c is constant. Then the general solution is given by

y = [

∫
(1− n)

f(x)

xα−1 + p(x)
dx+ C]

1
1−n . (3.12)

2. Case two: When β 6= 1 and α = β ∈ (0, 1] in eq (3.9), then we get

Tαy + p(x)Tαy = f(x)yn, α ∈ (0, 1].

⇒ Tαy =
f(x)

1 + p(x)
yn, p(x) 6= −1.

Use the property Tαy = x1−αy′, we get

y′ =
xα−1f(x)

1 + p(x)
yn. (3.13)

By applying eq (3.7), then the solution of (3.13) as follows

y1−n =

∫
(1− n)

xα−1f(x)

1 + p(x)
dx+ C, (3.14)

where µ(x) = ec, c is constant. Then the general solution of eq (3.9) is given

by

y = [

∫
(1− n)

xα−1f(x)

1 + p(x)
dx+ C]

1
1−n . (3.15)

3. Case three: When α 6= β in eq (3.9), then we get

Tαy + p(x)T βy = f(x)yn, α, β ∈ (0, 1], n ∈ IN.

Use the property Tαy = x1−αy′, we get

x1−αy′ + x1−βp(x)y′ = f(x)yn.

⇒ y′ =
f(x)yn

x1−α + x1−βp(x)
, p(x) 6= −x−α+β.
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By applying eq (3.7), then we get

y1−n =

∫
(1− n)

f(x)yn

x1−α + x1−βp(x)
dx+ C,

where µ(x) = ec, c is constant. Then the general solution of this case is given

by

y = [

∫
(1− n)

f(x)yn

x1−α + x1−βp(x)
dx+ C]

1
1−n . (3.16)

Example 3.1. Find the general solution of the following equation

T
1
2y +

√
xy = x

√
xy2.

Solution: We have p(x) =
√
x, f(x) = x

√
x, α = 1

2
, β = 1 and n = 2.

Then the general solution of this equation is

y = (
1

µ(x)
[

∫
((1− 2)x

1
2
−1x
√
xµ(x))dx+ C])

1
1−2 ,

where µ(x) = e
∫

(1−2)x
1
2−1x

1
2 dx = e−x, this implies

y = (ex[−
∫
x
−1
2 x
√
xe−xdx+C])−1 = [ex(xe−x−e−x+C)]−1 = (x−1+C)−1 =

1

x−K
.

Such that K = 1 + C, C and K are constant.

Example 3.2. Find the general solution of the fractional di�erential equation

T
1
2y +

√
xT

1
2y =

√
xy

1
4 .

Solution: We have p(x) =
√
x, f(x) =

√
x, α = β = 1

2
and n = 1

4
. Then the

general solution of this equation is

y = [
3

4

∫
1

1 +
√
x
dx+ C]

4
3 = [

3

4

∫
2
u− 1

u
du+ C]

4
3 .

Such that u = 1 +
√
x.

→ y = [
3

2
u− 3

2
ln(u) + C]

4
3 = [

3

2
(1 +

√
x)− 3

2
ln(1 +

√
x) + C]

4
3 .

Example 3.3. Find the general solution of the fractional di�erential equation

T
1
2y + x

−1
4 T

1
4y = x2y5.

26



Solution: We have p(x) = x
−1
4 , f(x) = x2, α = 1

2
, β = 1

4
and n = 5. Then the

general solution of this equation is

y = [−4

∫
x2

2x
−1
2

dx+ C]
−1
4 = [−2

∫
x

3
2dx+ C]

−1
4 = [

−4

5
x

5
2 + C]

−1
4 .

• Conformable fractional nonlinear Riccatti's di�erential equation:

The conformable fractional nonlinear Riccatti di�erential equation of order α (CFNR)

can be represented by

Tαy = f2(x)y2 + f1(x)y + f0(x), α ∈ (0, 1] x > 0. (3.17)

Where f0(x), f1(x) and f2(x) are α-di�erentiable functions ([13],[15]).

There exist three cases:

1. Case one: If f0(x) = 1, then eq (3.17) becomes to be (CFNB) and the general

solution of this case is given by

y = (µ(x)[

∫
−xα−1f2(x)

1

µ(x)
dx+ C])−1.

With n = 2, µ(x) = e
∫
xα−1f1(x)dx.

2. Case two: If f2(x) = a
xα+1 , f1(x) = b

xα
, f0(x) = c

xα−1 and a, b, c ∈ IR, then the

following homogeneous (CFNR)

Tαy =
a

xα+1
y2 +

b

xα
y +

c

xα−1
.

By apply the property Tαy = x1−αy′, we get

y′ = a(
y

x
)2 + b

y

x
+ c, (3.18)

eq (3.18) is homogenous �rst ordinary di�erential equation. To solving it let

u = y
x
, y′ = u′x+ u, then the eq (3.18) becomes

u+xu′ = au2+bu+c → x
du

dx
= au2+(b−1)u+c → 1

x
dx =

1

au2 + (b− 1)u+ c
du.

The general solution of this case is given by

ln(x) =

∫
1

au2 + (b− 1)u+ c
du.
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3. Case three: If a particular solution y1 is known, then general solution has the

form y = y1 + z.

Using the property Tαy = x1−αy′, then eq (3.17) becomes

y′ = xα−1f2(x)y2 + xα−1f1(x)y + xα−1f0(x). (3.19)

Since y′ = y′1 + z′, we have

y′1+z′ = xα−1f2(x)y2
1+2xα−1f2(x)y1z+xα−1f2(x)z2+xα−1f1(x)y1+xα−1f1(x)z+xα−1f0(x).

= [xα−1f2(x)y2
1+xα−1f1(x)y1+xα−1f0(x)]+[2xα−1f2(x)y1+xα−1f1(x)]z+xα−1f2(x)z2.

(3.20)

Now, from (3.19) and (3.20) we get

y′1 + z′ = y′1 + [2xα−1f2(x)y1 + xα−1f1(x)]z + xα−1f2(x)z2.

→ z′ − [2xα−1f2(x)y1 + xα−1f1(x)]z = xα−1f2(x)z2.

This equation is (CFNB) with n = 2, p(x) = −[2f2(x)y1 + f1(x)] and f(x) =

f2(x) then the solution is

z = (
1

µ(x)
[

∫
−xα−1f2(x)µ(x))dx+ C])−1, (3.21)

since that µ(x) = e
∫

[2xα−1f2(x)y1+xα−1f1(x)]dx. Since y = y1 + z, then the general

solution of eq (3.17) is given by

y = y1 + (
1

µ(x)
[

∫
−xα−1f2(x)µ(x))dx+ C])−1.

Example 3.4. Find the general solution of the (CFNR)

T
1
2y = −x

√
x+

1

2
√
x
y +
√
xy2.

Solution: Since y =
√
x is a particular solution

The left side(
√
x)( 1

2
) =
√
x(

1

2
√
x

) =
1

2
.

The right side− x
√
x+

1

2
√
x

√
x+
√
x(
√
x)2 = −x

√
x+

1

2
+ x
√
x =

1

2
,
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then the general solution has a form y′ = y′1 + z′.

z is the general solution of the following (CFNB)

z′ − (2
√
x+

1

2x
)z = z2.

By using eq (3.21), we get

z = (
1

µ(x)
[

∫
−x

−1
2 x

1
2µ(x))dx+ C])−1,

such that µ(x) =
√
xe

4
3
x
3
2 .

→ z = (
1√
x
e
−4
3
x
3
2 [−1

2
e

4
3
x
3
2 + C])−1 =

2
√
x

2e
−4
3
x
3
2C − 1

.

Therefore the general solution of equation is

y =
√
x+

2
√
x

2e
−4
3
x
3
2C − 1

.

Example 3.5. Find the general solution of the (CFNR)

T
1
3y = −4x

2
3 + x

−1
3 y + x

−4
3 y2.

Solution:

x
2
3y′ = −4x

2
3 + x

−1
3 y + x

−4
3 y2 → y′ = (

y

x
)2 +

y

x
− 4.

Let u = y
x
, then the equation becomes

u+xu′ = u2+u−4 → 1

x
dx =

1

u2 − 4
du → ln(x) =

1

2
[ln(u−2)−ln(u+2)] → x2 =

u− 2

u+ 2
.

→ y =
−2x− 2x3

x2 − 1
.

• Conformable fractional nonlinear Abel's di�erential equation:

1. The �rst kind of the conformable fractional nonlinear Abel's di�erential equa-

tion (CFNA) can be represented by

Tαy = f3(x)y3 + f2(x)y2 + f1(x)y + f0(x), α ∈ (0, 1], x > 0, (3.22)

where f3(x) 6= 0. If f3(x) = 0, then eq (3.22) becomes to be (CFNR). We will

discuss two special cases:
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(a) Case one: If f2(x) = f0(x) = 0, then eq (3.22) becomes to be (CFNB)

with n = 3 and it is easy to �nd the general solution of this case as we

discussed it previously.

(b) Case two: If f3(x) = ax3n−m+α−1, f2(x) = bx2n+α−1, f1(x) = (m−n)xα−2

and f0(x) = dx−n+α−3 where a, b, d ∈ IR and m,n ∈ IN , we have

Tαy = ax3n−m+α−1y3 + bx2n+α−1y2 + (m− n)xα−2y + dx−n+α−3. (3.23)

By using the property Tαy = x1−αy′ and substituting y = xm−nz, we get

the following separable ordinary di�erential equation

(xm−nz)′ = ax3n−m(xm−nz)3 +bx2n(xm−nz)2 +(m−n)x−1xm−nz+dx−n−2.

→ x−m−nz′ = az3 + bz2 + d.

The general solution of this case is given by

xn+m+1

n+m+ 1
=

∫
1

az3 + bz2 + d
dz.

2. The second kind of the (CFNA) is given by

[y + g(x)]Tαy = f2(x)y2 + f1(x)y + f0(x), α ∈ (0, 1], (3.24)

where g(x) 6= 0. We have two cases:

(a) Case one: If g(x) is a constant function, then eq (3.24) becomes to the

separable conformable fractional di�erential equation and it is easy to

�nd the general solution.

(b) Case two: If g(x) = kxn, f2(x) = axα−2, f1(x) = bxn+α−2 and f0(x) =

cx2n+α−2 where a, b, c, k ∈ IR and n ∈ IN , then we get the following

equation

(y + kxn)Tαy = axα−2y2 + bxn+α−2y + cx2n+α−2, α ∈ (0, 1]. (3.25)

By substituting z = x−ny in eq (3.25), we get

x1−α(zxn + kxn)′ = axα−2(zxn)2 + bxn+α−2zxn + cx2n+α−2.

(nxn−1z+xnz′)(z+k) = xn−1[az2+bz+c]→ x(z+k)z′ = (a−n)z2+(b−kn)z+c.
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By applying the property Tαy = x1−αy′, then the equation becomes

xz′ = az2 + (b+ n+ 1)z + c.

The general solution of this case is given by

ln(x) =
1

az2 + (b+ n+ 1)z + c
dz.

Example 3.6. Find the general solution of the fractional di�erential equation

T
1
2y = −

√
x+ 4x

2
2y − 3x

−3
2 y2 + x

−5
2 y3.

Solution: By using the property Tαy = x1−αy′, the equation becomes to the homoge-

nous ordinary di�erential equation

y′ = −1 + 4
y

x
− 3(

y

x
)2 + (

y

x
)3,

let z = y
x
→ zx = y → y′ = z + xz′, the equation becomes

xz′ = −1 + 3z − 3z2 + z3 = (z − 1)3.

→ ln(x) =

∫
1

(z − 1)3
dz.

The solution of equation is given by

2(ln(x) + c)(
y

x
− 1)2 + 1 = 0.

Example 3.7. Find the general solution of the fractional di�erential equation

(y + x2)T
1
2y = x

7
2 + x

3
2y + x

−1
2 y2.

Solution: By using the property Tαy = x1−αy′ and substitute y = zx2, we get

xz′(z + 1) = 1− z − z2 → xz′ = z2 + 4z + 1 → ln(x) =

∫
1

z2 + 4z + 1
dz.

The general solution of equation is given by

[ln(x

√
(
y

x
)2 +

y

x
− 1 + c)](2

y

x
+ 1) = 1, x > 0.
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3.2 Second order conformable fractional di�erential

equations

In this section we will discuss the second order of conformable fractional linear

and nonlinear di�erential equations.

First, consider the conformable fractional linear di�erential equation of order 2α

TαTαy + P (x)Tαy +Q(x)y = 0, 0 < α ≤ 1. (3.26)

De�nition 3.8. [2] Let y1 and y2 be the solutions of eq (3.26), then the conformable

fractional Wronskian of the solutions is de�ned by

Wα[y1, y2] =

∣∣∣∣∣ y1 y2

Tαy1 Tαy2

∣∣∣∣∣ .
Theorem 3.9. [12](Abel's Theorem)

If y1, y2 are solutions of (3.26), then

Wα[y1, y2] = e−Iα(P (x)).

Proof. Since y1 and y2 are solutions of (3.26), then

TαTαy1 + P (x)Tαy1 +Q(x)y1 = 0. (3.27)

And

TαTαy2 + P (x)Tαy2 +Q(x)y2 = 0. (3.28)

Multiply (3.27) by y2 and (3.28) by y1 and subtract them, we get

y2T
αTαy1 − y1T

αTαy2 + P (x)[y2T
αy1 − y1T

αy2] = 0. (3.29)

But,

Wα[y1, y2] = y1T
αy2 − y2T

αy1,

and

Tα(Wα[y1, y2]) = y1T
αTαy2 + Tαy1T

αy2 − y2T
αTαy1 − Tαy2T

αy1

= y1T
αTαy2 − y2T

αTαy1.

To become an eq (3.29)

−Tα(Wα[y1, y2])− P (x)Wα[y1, y2] = 0.
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⇒ Tα(Wα[y1, y2]) + P (x)Wα[y1, y2] = 0.

This implies,
Tα(Wα[y1, y2])

Wα[y1, y2]
= −P (x),

we take fractional integral for both sides, we get

Iα
Tα(Wα[y1, y2])

Wα[y1, y2]
= Iα(−P (x)).

⇒ Iα
W 1−α
α [y1, y2]W ′

α[y1, y2]

Wα[y1, y2]
= Iα(−P (x)).

⇒
∫ x

0

W 1−α
α [y1, y2]W ′

α[y1, y2]

Wα[y1, y2]W 1−α
α [y1, y2]

= Iα(−P (x)).

⇒ lnWα[y1, y2] = Iα(−P (x)).

Therefore,

Wα[y1, y2] = e−Iα(P (x)).

Now, let y1 be a solution of eq (3.26). To �nd a second solution y2 of eq (3.26),

use theorem 3.9.

We have Wα[y1, y2] = e−Iα(P (x)), then

y1T
αy2 − y2T

αy1 = e−Iα(P (x)).

⇒ Tαy2 − y2
Tαy1

y1

=
e−Iα(P (x))

y1

. (3.30)

Eq(3.30) is fractional linear equation with a(x) = −Tαy1
y1

and f(x) = e−Iα(P (x))

y1
, the

integrating factor is

µα = e
Iα(
−Tαy1
y1

)
= e

Iα(
−y1−α1 y′1

y1
)

= e

∫ −y1−α1 y′1
y1y

1−α
1 = e−

∫ y′1
y1 = e− ln y1 = y−1

1 .

The solution is

y2 =
1

µα
[Iα(µα

e−Iα(P (x))

y1

)].

⇒ y2 = y1[Iα(
e−Iα(P (x))

y2
1

)].

• Conformable fractional nonlinear Euler's di�erential equation:

The conformable fractional nonlinear Eular's di�erential equation (CFNE) of order

2α is given by

x2αT 2αy(x) + axαTαy(x) + by(x) = 0. (3.31)
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Where α ∈ (0, 1], x > 0 and a, b ∈ IR ([3],[7]). Clearly if α = 1, then eq (3.31)

reduces to the Euler's ordinary di�erential equation.

Let x = et, then t = ln(x) by using chain rule we get

dαy

dxα
=
dαy

dtα
dαt

dxα
=
dαy

dtα
(

1

xα
). (3.32)

The second derivative will be in the form

d2αy

dx2α
=
dαy

dxα
(

1

xα
) =

1

x2α

d2αy

dt2α
− α

x2α

dαy

dtα
. (3.33)

Substituting eq (3.32) and eq (3.33) into eq (3.31), we get

x2α[
1

x2α

d2αy

dt2α
− α

x2α

dαy

dtα
] + axα

dαy

dtα
(

1

xα
) + by(t) = 0.

→ d2αy

dt2α
+ (a− α)

dαy

dtα
+ by(t) = 0. (3.34)

To solving eq (3.34), let y = ert
α
where r is a parameter to be determined, then

the general solution of eq (3.31) depends on the type of roots for the corresponding

auxiliary equation of eq (3.34) [21].

There exist three cases to be determined the general solution of eq (3.31):

1. Case one: If the roots of the auxiliary equation (3.34) are real and di�erent,

let them be denoted by r1 and r2 where r1 6= r2, then the general solution of

eq (3.31) is given by

y(x) = c1e
r1(lnx)α + c2e

r2(lnx)α .

2. Case two: If the roots of the auxiliary equation (3.34) are repeated real numbers

r1 = r2 = r, then the general solution of eq (3.31) is given by

y(x) = c1e
r(lnx)α + c2(lnx)αe(lnx)α .

3. Case three: If the roots of the auxiliary equation (3.34) are conjugate complex

numbers, denoted by r1 = λ + iµ and r2 = λ − iµ, then the general solution

of eq (3.31) is given by

y(x) = eλ(lnx)α [c1 sin(µ(lnx)α) + c2 cos(µ(lnx)α)].
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Example 3.10. Find the general solution of the fractional di�erential equation

xT
1
2T

1
2y(x) +

1

2

√
xT

1
2y(x)− y(x) = 0.

Solution: By change of variables x = et leads to the equation

T
1
2T

1
2y(t)− y(t) = 0.

Let y = et
1
2 , then the equation becomes

1

4
r2et

1
2 − et

1
2 = 0, et

1
2 6= 0.

→ r2 − 4 = 0 → r1 = −2, r2 = 2.

The solution is

y(t) = c1e
−2(
√
t) + c2e

2(
√
t).

Then the following general solution as follows

y(t) = c1e
−2(
√

ln t) + c2e
2(
√

ln t).

Example 3.11. Find the general solution of the fractional di�erential equation

x
2
3T

1
3T

1
3y(x)− x

1
3T

1
3y(x) + 4y(x) = 0.

Solution: By change of variables x = et leads to the equation

T
1
3T

1
3y(t)− 4

3
T

1
3y(t) + 4y(t) = 0.

Let y = et
1
3 , this implies r1 = r2 = 2. Then the general solution is given by

y(x) = c1e
2(lnx)

1
3 + c2(lnx)

1
3 e2(lnx)

1
3 .

3.3 System of conformable fractional linear di�er-

ential equations

In this section we will discuss the nonhomogeneous system

Y α = PY +G. (3.35)
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Where

Y =


y1

y2

...

yn

 , G =


g1

g2

...

gn

 , P =


p11 p12 . . . p1n

p21 p22 . . . p2n

...
...

. . .
...

pn1 pn2 . . . pnn

 .

We denoted the solutions of the system (3.35).

Y (1) =


y11

y21

...

yn1

 , Y (2) =


y12

y22

...

yn2

 , · · ·Y (n) =


y1n

y2n

...

ynn

 .

System (3.35) has two solutions, the homogenous solution complementary denoted

by Yc, which the solution of (3.35) with G = 0 and the particular solution which is

any solution of (3.35) denoted by Yp ([4],[14],[30]).

To �nd the homogenous solution of the system

Y α = PY, (3.36)

let Y = ξer
tα

α and substituting in the equation (3.36) gives rξer
tα

α = Pξer
tα

α .

Canceling the nonzero scalar factor er
tα

α , we get

(P − rI)ξ = 0, (3.37)

where I is the identity matrix. Thus to solve the system of di�erential equation

(3.36), we must solve the system of algebraic equations (3.37). Determine the eigen-

values r and eigenvectors ξ of the coe�cient matrix P.

Therefore, the vector Y is given by equation Y = ξer
tα

α , is a solution of eq(3.36).

There are three cases of eigenvalues:

1. Case one: If all eigenvalues are distinct real values (r1 6= r2 6= ........ 6= rn),

hence the solutions Y (1) = ξ(1)er1
tα

α , Y (2) = ξ(2)er2
tα

α ,... and Y (n) = ξ(n)ern
tα

α

form a fundamental solution and the general solution is

Y (t) = c1Y
(1)(t) + c2Y

(2)(t) + .......+ cnY
(n)(t).

2. Case two: If some eigenvalues occur in complex conjugate pairs r1 = λ + iµ

and r2 = r1(the complex conjugate of r1) corresponding eigenvectors ξ(1) and
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ξ(2) = ξ(1).

The corresponding solutions Y (1) = ξ(1)er1
tα

α , Y (2) = ξ(1)er1
tα

α .

Let us write ξ(1) = a+ ib, where a and b are real then we have

Y (1) = (a+ib)e(λ+iµ) t
α

α = eλ
tα

α [a cos(µ
tα

α
)−b sin(µ

tα

α
)]+ieλ

tα

α [a sin(µ
tα

α
)+b cos(µ

tα

α
)],

if we write Y (1)(t) = u(t) + iv(t), then the vectors

u(t) = eλ
tα

α [a cos(µ t
α

α
) − b sin(µ t

α

α
)] and v(t) = ieλ

tα

α [a sin(µ t
α

α
) + b cos(µ t

α

α
)]

are real valued solutions.

Then the general solution is

Y = c1u(t) + c2v(t).

3. Case three: If some eigenvalues are repeated. In a special case, consider a 3×3

system (r1 = r2 = r3 = r), there are also three cases

(a) suppose �rst that the triple eigenvalue r has three linearly independent

eigenvectors ξ(1), ξ(2) and ξ(3). Then the solution is Y (1) = ξ(1)er1
tα

α , Y (2) =

ξ(2)er2
tα

α and Y (3) = ξ(3)er3
tα

α .

(b) The second case is only one corresponding eigenvectors, then the �rst

solution is Y (1) = ξer
tα

α where ξ satis�es (P − rI)ξ = 0.

A second solution is Y (2) = ξ t
α

α
er

tα

α + ηer
tα

α where η is determined from

(P − rI)η = ξ.

And the third solution is of the form Y (3) = ξ t
2α

2!α
er

tα

α + η t
α

α
er

tα

α + γer
tα

α ,

where γ is determined from (P − rI)γ = η.

(c) The �nal possibility is that there are two linearly independent eigenvec-

tors ξ(1) and ξ(2) corresponding to the eigenvalue r. Then two solutions

are Y (1) = ξ(1)er1
tα

α and Y (2) = ξ(2)er2
tα

α , a third solution is of the form

Y (3) = ξ t
α

α
er

tα

α + ηer
tα

α where ξ represents as a linear combination of the

eigenvectors ξ(1) and ξ(2)(ξ = c1ξ
(1) + c2ξ

(2)).

Example 3.12. Consider the system

Y (α) =

 3 2 2

1 4 1

−2 −4 −1

Y.
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Solution: Let Y = ξer
tα

α , then3− r 2 2

1 4− r 1

−2 −4 −1− r


 ξ1

ξ2

ξ3

 =

 0

0

0

 . (3.38)

Eq (3.38) have a nontrivial solution if and only if the determinant of coe�cients is

zero, thus ∣∣∣∣∣∣∣
3− r 2 2

1 4− r 1

−2 −4 −1− r

∣∣∣∣∣∣∣ = 0.

−r3 + 6r2 − 11r + 6 = 0 (3.39)

Solving eq (3.39), the eigenvalues are r1 = 1, r2 = 2 and r3 = 3. If r1 = 1 this

implies  2 2 2

1 3 1

−2 −4 −2


 ξ1

ξ2

ξ3

 =

 0

0

0

 .

Therefor, ξ3 = −ξ1 and ξ2 = 0. The eigenvector corresponding to r1 = 1 can be

taken as

ξ(1) =

 ξ1

ξ2

ξ3

 =

 1

0

−1

 ,

and the �rst solution is

Y (1) =

 1

0

−1

 e
tα

α .

If r2 = 2, then  1 2 2

1 2 1

−2 −4 −3


 ξ1

ξ2

ξ3

 =

 0

0

0

 .

Therefor, ξ1 = −2ξ2 and ξ3 = 0. The eigenvector corresponding to r2 = 2 is

ξ(2) =

 −2

1

0

 ,
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and the second solution is

Y (2) =

 −2

1

0

 e2 t
α

α .

If r3 = 3, then  0 2 2

1 1 1

−2 −4 −4


 ξ1

ξ2

ξ3

 =

 0

0

0

 .

Therefor, ξ3 = −ξ2 and ξ1 = 0. The eigenvector corresponding to r2 = 3 is

ξ(3) =

 0

1

−1

 ,

and the third solution is

Y (3) =

 0

1

−1

 e3 t
α

α .

The general solution is

Y = c1

 1

0

−1

 e
tα

α + c2

 −2

1

0

 e2 t
α

α + c3

 0

1

−1

 e3 t
α

α

Example 3.13. Consider the system

Y (α) =

(
0 −1

1 0

)
Y.

Solution: Let Y = ξer
tα

α , then(
−r −1

1 −r

)(
ξ1

ξ2

)
=

(
0

0

)
. (3.40)

Eq (3.40) have a nontrivial solution if and only if the determinant of coe�cients is

zero, thus ∣∣∣∣∣ −r −1

1 −r

∣∣∣∣∣ = 0.
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The eigenvalues are r1 = i and r2 = r̄1 = −i. If r1 = i this implies(
−i −1

1 −i

)(
ξ1

ξ2

)
=

(
0

0

)
.

Therefor, ξ2 = iξ1. The eigenvector corresponding to r1 = i can be taken as

ξ(1) =

(
ξ1

ξ2

)
=

(
1

i

)
.

So, the corresponding solution is

Y (1) =

(
1

i

)
ei
tα

α

=

(
1

i

)
(cos

tα

α
+ i sin

tα

α
)

=

(
cos tα

α

i cos tα

α

)
+

(
i sin tα

α

− sin tα

α

)

=

(
cos tα

α

− sin tα

α

)
+ i

(
sin tα

α

cos tα

α

)
.

Then, the vectors u(t) =

(
cos tα

α

− sin tα

α

)
and v(t) = i

(
sin tα

α

cos tα

α

)
are real valued

solution. The general solution is

Y = c1u(t) + c2v(t).

Example 3.14. Consider the system

Y (α) =

(
1 −1

1 3

)
Y.

Solution: Let Y = ξer
tα

α , then(
1− r −1

1 3− r

)(
ξ1

ξ2

)
=

(
0

0

)
. (3.41)

Eq (3.41) have a nontrivial solution if and only if the determinant of coe�cients is

zero, thus ∣∣∣∣∣ 1− r −1

1 3− r

∣∣∣∣∣ = 0.
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The eigenvalues are r = r1 = r2 = 2, this implies(
−1 −1

1 1

)(
ξ1

ξ2

)
=

(
0

0

)
.

Therefor, ξ1 = −ξ2. The eigenvector corresponding to r = 2 is

ξ =

(
ξ1

ξ2

)
=

(
−1

1

)
,

and the �rst solution is

Y (1) =

(
−1

1

)
e2 t

α

α .

A second solution is Y (2) =

(
−1

1

)
tα

α
e2 t

α

α + ηe2 t
α

α where η is determined from

(
−1 −1

1 1

)(
η1

η2

)
=

(
−1

1

)
.

Therefor, η1 = 1− η2. This implies,

η =

(
η1

η2

)
=

(
1

0

)
+

(
−1

1

)
η.

And the second solution is

Y (2) =

(
−1

1

)
tα

α
e2 t

α

α +

(
1

0

)
e2 t

α

α .

The general solution is

Y = c1

(
−1

1

)
e2 t

α

α + c2[

(
−1

1

)
tα

α
e2 t

α

α +

(
1

0

)
e2 t

α

α ].

To �nd a particular solution of the nonhomogeneous system (3.35), we assume that

Yp = ψ(t)κ(t) and substituting in eq (3.35) we obtain ψα(t)κ(t) + ψ(t)κα(t) =

Pψ(t)κ(t) +G(t), since ψ(t) is a fundamental matrix [11].

ψα(t) = Pψ(t), hence reduces to ψ(t)κα(t) = G(t).

Recall that ψ(t) is nonsingular on any interval where P is continues, hence ψ−1(t)

exists and therefor, κα(t) = ψ−1(t)G(t).
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Therefore we denote κ(t) by κ(t) = Iα[ψ−1(t)G(t)].

Finally, substituting for κ(t) in equation Yp = ψ(t)κ(t) gives the particular solution

Yp of the systems (3.35)

Yp = ψ(t)Iα[ψ−1(t)G(t)],

then the general solution of (3.35) will be Y = Yp + Yc.

Example 3.15. Consider the system

Y (α) =

(
4 2

3 −1

)
Y −

(
15

4

)
te−2 t

α

α .

Solution: Let Y = ξer
tα

α , then(
4− r 2

3 −1− r

)(
ξ1

ξ2

)
=

(
0

0

)
. (3.42)

Eq (3.42) have a nontrivial solution if and only if the determinant of coe�cients is

zero, thus ∣∣∣∣∣ 4− r 2

3 −1− r

∣∣∣∣∣ = 0.

The eigenvalues are r1 = −2 and r2 = 5. If r1 = −2, the eigenvector corresponding

to r1 = −2 is

ξ(1) =

(
1

−3

)
,

and the �rst solution is

Y (1) =

(
1

−3

)
e−2 t

α

α .

If r2 = 5, then the eigenvector is

ξ(2) =

(
2

−3

)
,

and the second solution is

Y (2) =

(
2

−3

)
e5 t

α

α .

The homogenous solution of the system is

Y = c1

(
1

−3

)
e−2 t

α

α + c2

(
2

−3

)
e5 t

α

α .
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To �nd the particular solution, let Yp = ψ(t)κ(t) such that κ(t) = Iα[ψ−1(t)G(t)].

Now, the fundamental matrix is

ψ(t) =

(
e−2 t

α

α 2e5 t
α

α

−3e−2 t
α

α −3e5 t
α

α

)
.

The inverse of ψ(t) is

ψ−1(t) =
1

3
e−3 t

α

α

(
−3e5 t

α

α −2e5 t
α

α

3e−2 t
α

α e−2 t
α

α

)
.

Therefor,

κ(t) = Iα[
1

3
e−3 t

α

α

(
−3e5 t

α

α −2e5 t
α

α

3e−2 t
α

α e−2 t
α

α

)(
−15te−2 t

α

α

−4te−2 t
α

α

)
] = Iα[

(
−t

−7te−7 t
α

α

)
].

Hence,

Yp = ψ(t)Iα[

(
−t

−7te−7 t
α

α

)
] = ψ(t)

∫ t

0

(
−sα

−7sαe−7 s
α

α

)
ds.
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Chapter 4

Finite di�erence methods of

conformable fractional di�erential

equations

Fractional di�erential equations (FDEs) have received signi�cant importance be-

cause of their wide-range of uses. Also, several problems in physics, biology, chem-

istry, applied science and engineering are mathematically modeled by systems of

ordinary and fractional di�erential equations ([27]-[8]). Finding the analytical and

numerical approximate solutions of di�erent types of (FDEs) became an exciting

topic for many researches ([10],[18],[22]). Di�erent numerical and analytical tech-

niques have been investigated and developed for solving (FDEs), especially the non-

linear problems since most of these equations don't have exact solutions.

The major goal of this subject is to �nd accurate approximate solutions for con-

formable fractional di�erential equations. Hence, we carry out this goal by preparing

a new method called fractional �ntie di�erence method (FFDM).

(FFDM) was applied to approximate the fractional di�erential equations. Some basic

de�nitions and mathematical preliminaries of the fractional calculus, fractional Euler

method, fractional Taylor method of order two for solving initial value (FDEs) and

the fractional Modi�ed and Heun's method for approximating fractional integrals

are introduced. We will use the Taylor method to derive fractional Eular method and

higher order, fractional Eular method is derived upon assuming h is small enough.

Fractional Eular method is fractional Taylor method of order one. Fractional Taylor

method of order two gives more accurate approximate values and closer to the exact
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values more than fractional Euler method.

Khalil et al.[16] de�ne the conformable fractional derivative of order α ∈ (0, 1] of a

function f : [a,∞)→ IR by

(Tαf)(t) = lim
h→0

f(t+ h(t)1−α)− f(t)

h
. (4.1)

An easy consequence of this de�nition is that if f has the classical derivative, then

we have the following relation [16]

(Tαf)(t) = t1−αf ′(t), (4.2)

where f ′(t) is the classical derivative of f . We immediately see that the conformable

fractional derivative of a constant function is zero. Some basic properties of this con-

formable fractional derivative can be found in ([5],[6],[1],[16]) in details. This new

de�nition intuitively is a natural extension of standard derivative to non-integer

order. Unlike the existing de�nitions of fractional derivative, there are no special

functions such as the Gamma, Beta and Mittag-le�er functions that are not easy

to evaluate and implement in the solutions. This conformable derivative has the

physical interpretation as a modi�cation of the classical derivative in direction and

magnitude of physical quantity [32]. In this chapter, we consider the following con-

formable fractional di�erential equation (FDEs).(Tαy)(t) = f(t, y(t)), t ∈ [a, b], b > a ≥ 0,

y(a) = y0.
(4.3)

4.1 Finite di�erence derivative of conformable frac-

tional di�erential equations

In this section, we derived the formulas of four numerical methods for solving eq

(4.3), Euler, Taylor, Modi�ed and Heun's methods by using the conformable frac-

tional derivative de�nition as a personal diligence. We also de�ned two new formulas

for Euler and Taylor methods that depend on their derivation on the conformable

fractional derivative de�nition to compare them with the Euler and Taylor formulas

that we derived.

• Conformable fractional Euler method (CFEM):

Fractional Euler method is the most elementary approximation technique for solv-

ing initial value problems. The goal of this section is to obtain on approximation
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solution of the eq (4.3).

Let a = t0 < t1 < ... < tk−1 < tk = b be a partition of [a, b] such that tn = a + nh,

∀n = 0, ..., k.

The common distance between the points h = b−a
k

= tn+1− tn is called the step size,

we will use the Taylor series of y(tn+1) about t = tn to derive conformable fractional

Euler method for each n = 0, 1, ..., k.

y(tn+1) = y(tn) + y′(tn)(tn+1 − tn) + y′′(ξn)
(tn+1 − tn)2

2
,

for some number ξn ∈ (tn, tn+1). Since yα(t) = t1−αy′(t) and h = tn+1 − tn, we have

y(tn+1) = y(tn) + htα−1
n yα(tn) +

h2

2
y′′(ξn).

Conformable fractional Euler method is derived upon assuming h is small enough,

so that h2 can be neglected.

Hence, the conformable fractional Euler method is

yn+1 = yn + htα−1
n yαn , (4.4)

where the notation yn = y(tn).

• Conformable fractional Taylor method of order 2 (CFTM):

Consider the initial value problem

y(α)(t) = f(t, y(t)), y(a) = y0, t ∈ [a, b].

Expand y(t) in the nth Taylor polynomial about tn, evaluate at tn+1.

y(tn+1) = y(tn) + hy′(tn) +
h2

2
y′′(tn) + ...+

hn

n!
y(n)(tn) +

hn+1

(n+ 1)!
y(n+1)(ξn).

Using Taylor method of order 2 given by

y(tn+1) = y(tn) + hy′(tn) +
h2

2
y′′(tn), (4.5)

to derive conformable fractional Taylor method of order 2 for each n = 0, 1, ..., k.

Since yα(t) = t1−αy′(t), we want to �nd a formula for y′′(tn) to replace it in the
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second term, we obtain

Tα(yα(tn)) = Tα(t1−αn y′(tn))

= t1−αn Tα(y′(tn)) + y′(tn)Tα(t1−αn )

= t1−αn t1−αn y′′(tn) + y′(tn)(1− α)t1−2α
n

= t2−2α
n y′′(tn) + (1− α)t1−2α

n tα−1
n yα(tn)

= t2−2α
n y′′(tn) + (1− α)t−αyα(tn)

= t2−2α
n y′′(tn) + (1− α)t−αf(tn, yn).

This leads to

y′′(tn) = t2α−2
n [Tα(f(tn, yn)) + (α− 1)t−αf(tn, yn)].

Substituting these results into eq (4.5), we gives

y(tn+1) = y(tn) + hy′(tn) +
h2

2
t2α−2
n [Tα(f(tn, yn)) + (α− 1)t−αf(tn, yn)]. (4.6)

Eq (4.6) represents the formula of conformable fractional Taylor method of order

2. Conformable fractional Euler method is conformable fractional Taylor method of

order one.

Now, we de�ned two formulas for conformable fractional Euler and Taylor meth-

ods that used the conformable fractional derivative de�nition in it's derivation.

B. Xin et al.[31] de�ne the �rst formula of conformable fractional Euler method by

y(tn+1) = y(tn) +
hα

α
f(tn, y(tn)), (4.7)

denoted by 1st (CFEM).

And Mohammad Nezhad et al.[19] de�ne the �rst formula of conformable fractional

Taylor method of order 2 by

y(tn+1) = y(tn) +
hα

α
f(tn, y(tn)) +

h2α

2α2
Tαf(tn, y(tn)), (4.8)

denoted by 1st (CFTM).

Toprakseven.[29] de�ne the second formula of conformable fractional Euler method

by

y(tn+1) = y(tn) +
hα

α
bnf(tn, y(tn)), bn = (n+ 1)α − nα, (4.9)
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denoted by 2nd (CFEM).

And the second formula of conformable fractional Taylor of order 2 method by

y(tn+1) = y(tn)+
hα

α
bnf(tn, y(tn))+

h2α

2α2
b2
nT

αf(tn, y(tn)), b2
n = (n+1)2α−n2α−2nαbn,

(4.10)

denoted by 2nd (CFTM).

We want to compare these formulas with the Euler and Taylor formulas that we

derived at the beginning of the section through numerical examples in the next

section.

• Conformable fractional Modi�ed method (CFMM):

Consider the initial value problem

Tαy(t) = f(t, y(t)), t ∈ [a, b].

To �nd the conformable fractional Modi�ed method. Take fractional integral for

both side over [t0, t1], we get∫ t1

t0

Tαy(t)

t1−α
dt =

∫ t1

t0

f(t, y(t))

t1−α
dt.

By Trapezoidal rule
∫ b
a
f(x)dx ≈ (b− a)f(a)+f(b)

2
, we get∫ t1

t0

t1−αy′(t)

t1−α
dt =

t1 − t0
2

[
f(t0, y(t0))

t1−α0

+
f(t1, y(t1))

t1−α1

]∫ t1

t0

y′(t)dt =
h

2
[
f(t0, y(t0))

t1−α0

+
f(t1, y(t1))

t1−α1

]

y(t1)− y(t0) =
h

2
[
f(t0, y(t0))

t1−α0

+
f(t1, y(t1))

t1−α1

].

By conformable fractional Euler method y1 = y0 + htα−1
0 f(t0, y(t0)), we get

y(t1) = y(t0) +
h

2
[
f(t0, y(t0))

t1−α0

+
f(t1, y0 + htα−1

0 f(t0, y(t0)))

t1−α1

].

In general the conformable fractional Modi�ed method

y(tn+1) = y(tn) +
h

2
[
f(tn, y(tn))

t1−αn

+
f(tn+1, yn + htα−1

n f(tn, y(tn)))

t1−αn+1

], (4.11)

for n = 0, 1, ..., k.

• Conformable fractional Heun's method (CFHM):

Consider the initial value problem

Tαy(t) = f(t, y(t)), t ∈ [a, b].
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To �nd the conformable fractional Heun's method. Take fractional integral for both

side over [t0, t1], we get ∫ t1

t0

Tαy(t)

t1−α
dt =

∫ t1

t0

f(t, y(t))

t1−α
dt.

By Simpson's rule
∫ b
a
f(x)dx ≈ ∆

3
[f(x0) + 4f(x1) + 2f(x2) + ...+ 4f(xn−1) + f(xn)],

we get ∫ t1

t0

t1−αy′(t)

t1−α
dt =

t1 − t0
3

[
f(t0, y(t0))

t1−α0

+
4f(t1, y(t1))

t1−α1

]∫ t1

t0

y′(t)dt =
h

3
[
f(t0, y(t0))

t1−α0

+
4f(t1, y(t1))

t1−α1

]

y(t1)− y(t0) =
h

3
[
f(t0, y(t0))

t1−α0

+
4f(t1, y(t1))

t1−α1

].

By conformable fractional Euler method y1 = y0 + htα−1
0 f(t0, y(t0)), we get

y(t1) = y(t0) +
h

3
[
f(t0, y(t0))

t1−α0

+
4f(t1, y0 + htα−1

0 f(t0, y(t0)))

t1−α1

].

In general the conformable fractional Heun's method

y(tn+1) = y(tn) +
h

3
[
f(tn, y(tn))

t1−αn

+
4f(tn+1, yn + htα−1

n f(tn, y(tn)))

t1−αn+1

], (4.12)

for n = 0, 1, ..., k.

4.2 Numerical tests

In this section, we worked on two examples, one linear and the other nonlinear.

In each example we found the approximate solution using all the formulas that we

derived in the �rst section and compared them with the exact solution and found

the absolute error for each of them.

First example is linear example.

Example 4.1. Consider the fractional linear di�erential equation

y( 1
2

) = t2 + 2t
3
2 − y, 0.1 ≤ t ≤ 1.1, (4.13)

with y(0.1) = 0.01 and h = 0.1.
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1. Find the approximate solution by using

(a) Conformable fractional Euler method (CFEM).

(b) Conformable fractional Taylor method of order 2 (CFTM).

(c) First formula of conformable fractional Euler method 1st (CFEM) and

second formula of conformable fractional Euler method 2nd (CFEM).

(d) First formula of conformable fractional Taylor method 1st (CFTM) and

second formula of conformable fractional Taylor method 2nd (CFTM).

And compare it with the exact solution given by y(t) = t2.

2. Compare the results in part (a) with the results in part (c).

3. Compare the results in part (b) with the results in part (d).

4. Find the approximate solution by using

(a) Conformable fractional Modi�ed method (CFMM).

(b) Conformable fractional Heun's method (CFHM).

And compare it with the exact solution.

Solution:

1. (a) For n = 0, 1, ..., 9,

yn+1 = yn + htα−1
n yαn = yn + ht

−1
2
n [t2n + 2t

3
2
n − yn].

So,

y1 = 0.01 + (0.1)(0.1)
−1
2 [(0.1)2 + 2(0.1)

3
2 − 0.01] = 0.03,

y2 = 0.03 + (0.1)(0.2)
−1
2 [(0.2)2 + 2(0.2)

3
2 − 0.03] = 0.072236,

and so on Table 4.1 shows the comparison between the approximate values at

tn, n = 0, 1, ..., 10 and the exact values.
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tn Approximation Exact Absolute error

0.1 0.01 0.01 0

0.2 0.03 0.04 0.01

0.3 0.072236 0.09 0.017764

0.4 0.135479 0.16 0.024521

0.5 0.219356 0.25 0.030644

0.6 0.323689 0.36 0.036311

0.7 0.448377 0.49 0.041623

0.8 0.593352 0.64 0.046648

0.9 0.758567 0.81 0.051433

1 0.943989 1 0.056011

1.1 1.149590 1.21 0.06041

Table 4.1: Approximation of y(t) by using conformable fractional Euler method.

(b) We need the conformable fractional derivative of f(t, y(t)) = t2 + 2t
3
2 − y

with respect to the variable t.

Tαf(t, y(t)) = Tα[t2 + 2t
3
2 − y]

= 2t1−αt+ (2)(
3

2
)t1−αt

1
2 − t1−αy1−αy′

= 2t2−α + t
3
2
−α − t1−αy1−αt1−αf(t, y(t))

= 2t2−α + t
3
2
−α − y1−α[t2 + 2t

3
2 − y].

So, with α = 1
2

Tαf(tn, yn(t)) = 2t
3
2
n + 3tn − y

1
2
n [t2n + 2t

3
2
n − yn].

The conformable fractional Taylor method of this example is

yn+1 = yn + ht
−1
2
n [t2n + 2t

3
2
n − yn] +

h2

2
t−1
n [Tαf(tn, yn(t))− 1

2
t
−1
2
n (t2n + 2t

3
2
n − yn)],

for n = 0, 1, ..., 9, so

y1 = 0.03 + 0.05[0.063246 + 0.3− 0.0063245− 0.099999915] = 0.042846,

y2 = 0.08220961+0.025[0.1788854+0.6−0.03643888−0.196818075] = 0.09585,
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tn Approximation Exact Absolute error

0.1 0.01 0.01 0

0.2 0.042846 0.04 0.002846

0.3 0.09585 0.09 0.00585

0.4 0.16868 0.16 0.00868

0.5 0.26116 0.25 0.01116

0.6 0.3732 0.36 0.0132

0.7 0.5046 0.49 0.0146

0.8 0.6554 0.64 0.0154

0.9 0.8255 0.81 0.0155

1 1.015 1 0.015

1.1 1.224 1.21 0.014

Table 4.2: Approximation of y(t) by using conformable fractional Taylor method.

and so on Table 4.2 shows the comparison between the approximate values at

tn and the exact values.

(c) On Table 4.3 shows the comparison between the approximate values at

tn by using 1st (CFEM) and 2nd (CFEM) and the exact values. We see that

the 2nd (CFEM) is much closer to the exact solution while the 1st (CFEM)

gets bigger.

(d) On Table 4.4 shows the comparison between the approximate values at tn

by using 1st (CFTM) and 2nd (CFTM) and the exact values. We see that the

2nd (CFEM) is closer to the exact solution while the 1st (CFEM) gets bigger.

2. Table 4.5 shows the comparison between (CFEM), 1st (CFEM) and 2nd (CFEM)

through the absolute error of each value with exact solution.

3. Table 4.6 shows the comparison between (CFTM), 1st (CFTM) and 2nd (CFTM)

through the absolute error of each value with exact solution.

4. (a) Table 4.7 shows the comparison between the approximate values at tn by

using (CFMM) and the exact values.

(b) Table 4.8 shows the comparison between the approximate values at tn
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tn 1st (CFEM) 2nd (CFEM) Exact

0.1 0.01 0.01 0.01

0.2 0.05 0.05 0.04

0.3 0.15681 0.09424 0.09

0.4 0.32240 0.15946 0.16

0.5 0.53969 0.24529 0.25

0.6 0.80369 0.35156 0.36

0.7 1.11095 0.47817 0.49

0.8 1.45904 0.62503 0.64

0.9 1.84613 0.79209 0.81

1 2.27082 0.97934 1

1.1 2.73199 1.18673 1.21

Table 4.3: Approximation of y(t) by using 1st (CFEM) and 2nd (CFEM).

tn 1st (CFTM) 2nd (CFTM) Exact

0.1 0.01 0.01 0.01

0.2 0.12138 0.12138 0.04

0.3 0.33203 0.43866 0.09

0.4 0.62255 0.45973 0.16

0.5 0.98435 0.51717 0.25

0.6 1.41395 0.60392 0.36

0.7 1.91075 0.71648 0.49

0.8 2.47622 0.85279 0.64

0.9 3.11371 1.01161 0.81

1 3.82861 1.19207 1

1.1 4.62881 1.39356 1.21

Table 4.4: Approximation of y(t) by using 1st (CFTM) and 2nd (CFTM).

by using (CFHM) and the exact values.
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tn Absolute errors

(CFEM)

Absolute errors

1st (CFEM)

Absolute errors

2nd (CFEM)

Exact

0.1 0 0 0 0.01

0.2 0.01 0.01 0.01 0.04

0.3 0.017764 0.06681 0.00424 0.09

0.4 0.024521 0.1624 0.00054 0.16

0.5 0.030644 0.28969 0.00471 0.25

0.6 0.036311 0.44369 0.00844 0.36

0.7 0.041623 0.62095 0.01183 0.49

0.8 0.046648 0.81904 0.01497 0.64

0.9 0.051433 1.03613 0.01791 0.81

1 0.056011 1.27082 0.02066 1

1.1 0.06041 1.52199 0.02327 1.21

Table 4.5: Numerical values of y(t) according to (CFEM), 1st (CFEM) and 2nd

(CFEM).

tn Absolute errors

(CFTM)

Absolute errors

1st (CFTM)

Absolute errors

2nd (CFTM)

Exact

0.1 0 0 0 0.01

0.2 0.002846 0.08138 0.08138 0.04

0.3 0.00585 0.24203 0.34866 0.09

0.4 0.00868 0.46255 0.29973 0.16

0.5 0.01116 0.73435 0.26717 0.25

0.6 0.0132 1.05395 0.24392 0.36

0.7 0.0146 1.42075 0.22648 0.49

0.8 0.0154 1.83622 0.21279 0.64

0.9 0.0155 2.30371 0.20161 0.81

1 0.015 2.82861 0.19207 1

1.1 0.014 3.41881 0.18356 1.21

Table 4.6: Numerical values of y(t) according to (CFTM), 1st (CFTM) and 2nd

(CFTM).
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tn Approximation Exact Absolute error

0.1 0.01 0.01 0

0.2 0.041118 0.04 0.001118

0.3 0.09183 0.09 0.00183

0.4 0.16635 0.16 0.00635

0.5 0.25618 0.25 0.00618

0.6 0.36605 0.36 0.00605

0.7 0.49594 0.49 0.00594

0.8 0.64585 0.64 0.00585

0.9 0.815776 0.81 0.005776

1 1.00571 1 0.00571

1.1 1.21566 1.21 0.00566

Table 4.7: The absolute errors between the approximate values obtained by CFMM

and exact solutions.

tn Approximation Exact Absolute error

0.1 0.01 0.01 0

0.2 0.07298 0.04 0.03298

0.3 0.16007 0.09 0.07007

0.4 0.272505 0.16 0.112505

0.5 0.41060 0.25 0.1606

0.6 0.57435 0.36 0.21435

0.7 0.763636 0.49 0.273636

0.8 0.97012 0.64 0.33012

0.9 1.21135 0.81 0.40135

1 1.47738 1 0.47738

1.1 1.76812 1.21 0.55812

Table 4.8: The absolute errors of y(t) between the approximate values obtained by

CFHM and exact solutions.
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Example 4.2. Consider the fractional nonlinear di�erential equation

y( 1
2

) = y
1
4 +

√
y

t
, t ∈ [1, 2],

with y(1) = 2 and h = 0.1

1. Find the approximate solution by using

(a) Conformable fractional Euler method (CFEM).

(b) Conformable fractional Taylor method of order 2 (CFTM).

(c) First formula of conformable fractional Euler method 1st (CFEM) and

second formula of conformable fractional Euler method 2nd (CFEM).

(d) First formula of conformable fractional Taylor method 1st (CFTM) and

second formula of conformable fractional Taylor method 2nd (CFTM).

And compare it with the exact solution given by y(t) = 2t( t
1
4−1

2
1
4

+ 1)4.

2. Compare the results in part (a) with the results in part (c).

3. Compare the results in part (b) with the results in part (d).

4. Find the approximate solution by using

(a) Conformable fractional Modi�ed method (CFMM).

(b) Conformable fractional Heun's method (CFHM).

And compare it with the exact solution.

Solution:

1. (a) For n = 0, 1, ..., 9,

yn+1 = yn + htα−1
n yαn = yn + ht

−1
2
n [y

1
4
n +

√
yn
tn

].

So,

y1 = 2 + 0.1(1)
−1
2 [(2)

1
4 +

√
2
1
] = 2.260342,

y2 = 2.260342 + 0.1(1.1)
−1
2 [(2.260342)

1
4 +

√
2.260342

1.1
] = 2.513925,

and so on Table 4.9 shows the comparison between the approximate values at

tn and the exact values.
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tn Approximation Exact Absolute error

1 2 2 0

1.1 2.26034 2.38394 0.1236

1.2 2.51393 2.79919 0.28526

1.3 2.76100 3.24549 0.48449

1.4 3.00188 3.72257 0.72069

1.5 3.23688 4.23022 0.99334

1.6 3.46634 4.76821 1.30187

1.7 3.78534 5.33638 1.55104

1.8 4.11500 5.93454 1.81954

1.9 4.33533 6.56252 2.22719

2 4.54961 7.22019 2.67058

Table 4.9: Approximation of y(t) by using conformable fractional Euler method.

(b) Because y(α) = y
1
4 +

√
y
t
, we have

Tαf(t, y(t)) = Tα[y
1
4 +

√
y

t
]

=
1

4
t1−αy

1
4
−αy′ +

1

2
t
1
2
−αy

1
2
−αy′ +

−1

2
t
−1
2
−αy

1
2

= [
1

4
t1−αy

1
4
−α +

1

2
t
1
2
−αy

1
2
−α]y′ − 1

2
t
−1
2
−αy

1
2

= [
1

4
t1−αy

1
4
−α +

1

2
t
1
2
−αy

1
2
−α]tα−1y(α) − 1

2
t
−1
2
−αy

1
2

= [
1

4
y

1
4
−α +

1

2
t
−1
2 y

1
2
−α]y(α) − 1

2
t
−1
2
−αy

1
2 .

So, with α = 1
2

Tαf(tn, yn(t)) = [
1

4
y
−1
4 +

1

2
t
−1
2 ][y

1
4
n +

√
yn
tn

]− 1

2
t−1y

1
2 .

The conformable fractional Taylor method of this example is

yn+1 = yn + ht
−1
2
n [y

1
4
n +

√
yn
tn

] +
h2

2
t−1
n [Tαf(tn, yn(t))− 1

2
t
−1
2
n (y

1
4
n +

√
yn
tn

)],
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for n = 0, 1, ..., 9, so

y1 = 2.26034 + 0.005[1.141905334− 1.301710339] = 2.25954,

y2 = 2.25954+0.095346258(2.6592226)+0.005(1.1)−1[1.09332213−1.2677346] =

2.51229,

and so on Table 4.10 shows the comparison between the approximate values

at tn and the exact values.

tn Approximation Exact Absolute error

1 2 2 0

1.1 2.25954 2.38394 0.1244

1.2 2.51229 2.79919 0.2869

1.3 2.75879 3.24549 0.4867

1.4 2.99918 3.72257 0.72339

1.5 3.23378 4.23022 0.99644

1.6 3.46290 4.76821 1.30531

1.7 3.68686 5.33638 1.64952

1.8 3.90594 5.93454 2.0286

1.9 4.12042 6.56252 2.4421

2 4.33055 7.22019 2.88964

Table 4.10: Approximation of y(t) by using conformable fractional Taylor method.

(c) On Table 4.11 shows the comparison between the approximate values at tn

by using 1st (CFEM) and 2nd (CFEM) and the exact values. We see that the

2nd (CFEM) is much closer to the exact solution while the 1st (CFEM) gets

bigger and the values oscillate frequently and not stable.

(d) On Table 4.12 shows the comparison between the approximate values at

tn by using 1st (CFTM) and 2nd (CFTM) and the exact values. We see that

the 2nd (CFTM) is much closer to the exact solution while the 1st (CFTM)

gets bigger and the values oscillate frequently and not stable.
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tn 1st (CFEM) 2nd (CFEM) Exact

1 2 2 2

1.1 3.64655 3.64655 2.38394

1.2 5.67205 4.48554 2.79919

1.3 8.02311 5.16673 3.24549

1.4 10.65873 5.76007 3.72257

1.5 13.54659 6.29421 4.23022

1.6 16.66058 6.78451 4.76821

1.7 19.97922 7.24044 5.33638

1.8 23.48453 7.66839 5.93454

1.9 27.16126 8.07294 6.56252

2 30.99637 8.45749 7.22019

Table 4.11: Approximation of y(t) by using 1st (CFEM) and 2nd (CFEM).

tn 1st (CFTM) 2nd (CFTM) Exact

1 2 2 2

1.1 4.20331 4.20331 2.38394

1.2 4.93283 5.25705 2.79919

1.3 7.41174 6.00817 3.24549

1.4 10.23249 6.65619 3.72257

1.5 13.35024 7.23568 4.23022

1.6 16.73009 7.76495 4.76821

1.7 20.34415 8.25516 5.33638

1.8 24.16958 8.71376 5.93454

1.9 28.18739 9.14607 6.56252

2 32.38144 9.55603 7.22019

Table 4.12: Approximation of y(t) by using 1st (CFTM) and 2nd (CFTM).
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2. Table 4.13 shows the comparison between (CFEM), 1st (CFEM) and 2nd

(CFEM) through the absolute error of each value with exact solution.

3. Table 4.14 shows the comparison between (CFTM), 1st (CFTM) and 2nd

(CFTM) through the absolute error of each value with exact solution.

tn Absolute errors

(CFEM)

Absolute errors

1st (CFEM)

Absolute errors

2nd (CFEM)

Exact

1 0 0 0 2

1.1 0.1236 1.26261 1.26261 2.38394

1.2 0.28525 2.87286 1.68635 2.79919

1.3 0.48449 4.77762 1.92124 3.24549

1.4 0.72069 6.93616 2.0375 3.72257

1.5 0.99334 9.31637 2.06399 4.23022

1.6 1.30187 11.89237 2.0163 4.76821

1.7 1.55104 14.64284 1.90406 5.33638

1.8 1.81954 17.54999 1.73385 5.93454

1.9 2.22719 20.59874 1.51042 6.56252

2 2.67058 23.77618 1.2373 7.22019

Table 4.13: Numerical values of y(t) according to (CFEM), 1st (CFEM) and 2nd

(CFEM).
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tn Absolute errors

(CFTM)

Absolute errors

1st (CFTM)

Absolute errors

2nd (CFTM)

Exact

1 0 0 0 2

1.1 0.1244 1.81937 1.81937 2.38394

1.2 0.2869 2.13364 2.45786 2.79919

1.3 0.4867 4.16625 2.76268 3.24549

1.4 0.72339 6.50992 2.93362 3.72257

1.5 0.99644 9.12002 3.00546 4.23022

1.6 1.30531 11.96188 2.99674 4.76821

1.7 1.64952 15.00777 2.91878 5.33638

1.8 2.0286 18.23504 2.77922 5.93454

1.9 2.4421 21.62487 2.58355 6.56252

2 2.88964 25.16125 2.33584 7.22019

Table 4.14: Numerical values of y(t) according to (CFTM), 1st (CFTM) and 2nd

(CFTM).

In general, we notice through the values presented in the tables in the part 2

and 3 of the two examples that the formulas of conformable fractional Euler

and Taylor methods that we derived in the �rst section is closer to exact solu-

tion and has the lowest and more stability error rate, while the 2nd (CFEM)

and 2nd (CFTM) formulas in the two examples have low error rates and ap-

proximately close to the exact solution but not stable.

The 1st (CFEM) and 1st (CFTM) in the two examples have very large error

rates, and it is used for special cases and can not be applied in general.

4. (a) Table 4.15 shows the comparison between the approximate values at tn by

using (CFMM) and the exact values.

(b) Table 4.16 shows the comparison between the approximate values at tn

by using (CFHM) and the exact values.
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tn Approximation Exact Absolute error

1 2 2 0

1.1 2.25696 2.38394 0.12698

1.2 2.50715 2.79919 0.29204

1.3 2.75126 3.24549 0.49423

1.4 2.98888 3.72257 0.73369

1.5 3.22074 4.23022 1.00948

1.6 3.44717 4.76821 1.32104

1.7 3.66848 5.33638 1.6679

1.8 3.88498 5.93454 2.04956

1.9 4.09695 6.56252 2.46557

2 4.30464 7.22019 2.91555

Table 4.15: The absolute errors between the approximate values obtained by CFMM

and exact solutions.

tn Approximation Exact Absolute error

1 2 2 0

1.1 2.42489 2.38394 0.04095

1.2 2.84963 2.79919 0.05044

1.3 3.27218 3.24549 0.02669

1.4 3.69126 3.72257 0.03131

1.5 4.10605 4.23022 0.12417

1.6 4.51607 4.76821 0.25214

1.7 4.92103 5.33638 0.41535

1.8 5.32079 5.93454 0.61375

1.9 5.71529 6.56252 0.84723

2 6.10455 7.22019 1.11564

Table 4.16: The absolute errors between the approximate values obtained by CFHM

and exact solutions.
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Conclusion

The objective of the this thesis is to use conformable fractional derivative which

is simpler and more e�cient. The new de�nition re�ects a natural extension of nor-

mal derivative to solve fractional di�erential equations.

In this thesis we found analytic expressions for the �nite di�erence method of the

fractional di�erential equations based on the new de�nition of the conformable frac-

tional derivative.
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