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Abstract 

     We study the definition of the determinant of a non-square matrix, using 

cofactor definition and Radic definition, and we proved that they are identical by 

proving the uniqueness of the determinant function that satisfies the four 

characterizing properties of determinant function.  

We also study the connection between the area of any polygon in the Cartesian 

plane and  determinant function for 2 × 𝑛 matrices. We used several methods to 

find the mathematical isotope and prove the properties for inverse and adjoint for 

a matrix as well as  solving systems of equations in several  ways. 
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 الملخص

  ، وتعريف رادك م تعريف العامل المساعد باستخدا  قمنا بدراسة تعريف محدد المصفوفة غير المربعة

 دالة المحددة. لل الاربع  شروطالأن كلاً منهما يحقق متطابقان من خلال إثبات  وأثبتنا أنهما

من  أيضًا العلاقة بين مساحة أي مضلع في المستوى الديكارتي والدالة المحددة لمصفوفات درسنا

   الرتبة

  ومضاد المصفوفة  الرياضي وإثبات خصائص معكوس ستخدمنا عدة طرق لإيجاد النظيرو أ

.بعدة طرقالخطية إلى حل أنظمة المعادلات  بالإضافة   مصفوفةال

2 × 𝑛     
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Preface 

     In the books of a linear algebra we studied the concept of matrix and its types, 

and we studied the definition of the determinant of the square matrix, its 

properties and its applications. Here we will study the definition of the 

determinant of the non-square matrix, its verified properties and its applications in 

finding the area of polygons and finding solutions to the system of linear 

equations. 

     My thesis consists of six chapters. Each chapter is divided into sections. A 

number like 2.1.3 indicates item (definition, theorem, corollary or lemma) number 

3 in section 1 of chapter 2. Each chapter begins with a clear statement of the 

pertinent definition and theorems together with illustrative and descriptive 

material. At the end of this thesis we present a collection of references.   

     In chapter (1) we introduce the basic results and definitions which shall be 

needed in the following chapters. The topics include results about matrices and 

matrix operations, properties of algebraic operations on matrices, Determinants of 

Matrices, The Inverse of a Matrix, Cofactor Expansion, Adjoint of Matrix, Linear 

Systems, Reduced Row-Echelon Form, Gauss-Jordan reduction, Cramer's rule, 

Rank and Nullity and Vectors in the Euclidean space 𝑅𝑛. This chapter is 

absolutely fundamental. The results have been stated without proofs, for theory 

may be looked in any text book in linear algebra. A reader who is familiar with 

these topics may this chapter and refer to it only when necessary.  

 

     Chapter (2) will be devoted to give a defined determinant of a non-square 

matrix. we will start by introducing the define a determinant function of non-

square matrix in terms of characterizing properties that we want it to have. In 

section (2) we define minors and cofactors. In section (3 and 4), we will study the 

method for finding a determinant of a non-square matrix ( 𝑚 ×  𝑛, 𝑚 ≤ 𝑛) using 

cofactor expansion, also study the effect of elementary row operations on 

determinant. In section (5) We will study the method for finding a determinant of 

a non-square matrix ( 𝑚 ×  𝑛, 𝑚 ≤ 𝑛) using Radic's definition. Finally, we can 

proof the cofactor definition and Radic definition are determinant function, and 

the cofactor definition and Radic definition are the same.



 

2 
 

     Chapter (3) we study Radic definition for determinant of a rectangular matrix 

in more detailed way. We present new identities for the determinant of a 

rectangular matrix. We develop some important properties of this determinant. 

We generalize several classical important determinant identities, and description 

how the determinant is affected by operation on columns, such as interchanging 

columns, reversing columns or decomposing a single column. 

     Chapter (4) we will study an application for determinants of non-square 

matrices in calculating the area of polygons in 𝑅2, and proof the area of a polygon 

is the determinant function, the area equals the determinant (the cofactor 

definition and Radic definition). 

     Chapter (5) we will study existence of inverses for non-square matrices. Also, 

we compute an inverse of a rectangular matrix using solution of a linear system 

and an adjoint of matrices. In section (2) we study some important properties for 

inverse and adjoint of non-square matrices. In section (3) we discuss Pseudo  

inverse method which gives an inverse of matrices.  

     Chapter (6) we will discuss some results concerning the solutions of a linear 

system 𝐴𝑥 = 𝑏 using inverses as well as the pseudo-inverse and adjoint of a 

rectangular  𝑚×  𝑛 matrix 𝐴, and General solution theorem. In section (3) we 

study want to generalize this method of Cramer's for an 𝑚 <  𝑛  system of linear 

equations. Finally in section (4) we study shall consider some particular cases and 

examples to illustrate the results of what we have done in the previous sections 

especially in applying pseudo inverse to some certain examples. 
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Chapter One 

Preliminaries 

     This chapter contains some definitions and basic results about matrices and 

matrix operations, properties of algebraic operations on matrices, Determinants of  

Matrices, The Inverse of a Matrix, Cofactor Expansion, Adjoint of Matrix, Linear 

Systems, Reduced Row-Echelon Form, Gauss-Jordan reduction, Cramer's rule, 

Rank and Nullity and Vectors in the Euclidean space 𝑅𝑛.  

 

1.1   Matrices and matrix operations   

Definition 1.1.1 [ 9 , 𝑝. 11 ]. An 𝑚 × 𝑛 matrix 𝐴 is a rectangular array of 𝑚 𝑛 real 

(or complex) numbers arranged in 𝑚 horizontal rows and 𝑛  vertical columns: 

𝐴 = [

𝑎11 𝑎12 …
𝑎21 𝑎22 …
⋮
𝑎𝑚1

⋮
𝑎𝑚1

⋱
…

   

𝑎1𝑛
𝑎2𝑛
⋮
𝑎𝑚𝑛

]            (1) 

The  𝑖𝑡ℎ   row of  𝐴  is    [𝑎𝑖1 𝑎𝑖2 𝑎𝑖3    ⋯ 𝑎𝑖𝑛]          (1 ≤ 𝑖 ≤ 𝑚),    

The  𝑗𝑡ℎ  column of  𝐴  is        

[
 
 
 
 
𝑎1𝑗
𝑎2𝑗
𝑎3𝑗
⋮
𝑎𝑚𝑗]

 
 
 
 

         (1 ≤ 𝑗 ≤ 𝑛).     

     We shall say that 𝐴 is  𝑚 by 𝑛 (written as  𝑚 × 𝑛). If 𝑚 = 𝑛, we say that 𝐴 is a 

square matrix of order 𝑛, and the numbers 𝑎11, 𝑎22, … ,  𝑎𝑛𝑛 form the main 

diagonal of  𝐴. We refer to the number 𝑎𝑖𝑗 which is in the 𝑖𝑡ℎ row and  𝑗𝑡ℎ column 

of  𝐴, as the 𝑖, 𝑗 𝑡ℎ  element  of  𝐴, or the (𝑖, 𝑗) entry of  𝐴,  and we often write  the 

matrix  as   𝐴 =  (𝑎𝑖𝑗).      

Definition 1.1.2 [ 9 , 𝑝. 16 ]. (The Transpose of a Matrix) If 𝐴 = (𝑎𝑖𝑗)  is an 

𝑚 × 𝑛  matrix, then the  𝑛 × 𝑚  matrix 𝐴𝑇 = (𝑎𝑖𝑗
𝑇),   where  𝑎𝑖𝑗

𝑇 = 𝑎𝑗𝑖    

( 1 ≤ 𝑖 ≤ 𝑚,   1 ≤ 𝑗 ≤ 𝑛), is called the transpose of 𝐴. Thus the transpose of 𝐴 is 

obtained by interchanging the rows and columns of 𝐴.  Before operations. 
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Definition 1.1.3 [ 2 , 𝑝. 27 ]. Two matrices are defined to be equal if they have the 

same size and their corresponding entries are equal. 

Definition 1.1.4 [ 9 , 𝑝. 12 ]. (Diagonal Matrix) a square matrix 𝐴 =  (𝑎𝑖𝑗)  for 

which every term off the main diagonal is zero, that is, 𝑎𝑖𝑗 = 0 for 𝑖 ≠ 𝑗,  is called 

a  diagonal matrix. 

 

Definition 1.1.5 [ 2 , 𝑝. 14 ].  

a. (Matrix Addition) If 𝐴 =  (𝑎𝑖𝑗) and 𝐵 = (𝑏𝑖𝑗) are 𝑚 × 𝑛 matrices, then the 

sum of  𝐴  and  𝐵  is the 𝑚 × 𝑛 matrix  𝐶 =  (𝑐𝑖𝑗),  defined by  𝑐𝑖𝑗 = 𝑎𝑖𝑗 + 𝑏𝑖𝑗   

( 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛).  

That is, 𝐶 is obtained by adding corresponding elements of  𝐴  and  𝐵. 

b. (Scalar Multiplication) If 𝐴 = (𝑎𝑖𝑗)  is an 𝑚× 𝑛 matrix, and 𝑟 is a real 

number, then the scalar multiple of  𝐴 by 𝑟 , 𝑟𝐴, is the  𝑚 × 𝑛  matrix 𝐵 =  (𝑏𝑖𝑗),   

where   𝑏𝑖𝑗 = 𝑟 𝑎𝑖𝑗  ,    ( 1 ≤ 𝑖 ≤ 𝑚,   1 ≤ 𝑗 ≤ 𝑛).   

That is,  𝐵  is obtained by multiplying each element of  𝐴  by 𝑟. 

c. (Matrix Multiplication)  If  𝐴 =  (𝑎𝑖𝑗)  is an 𝑚 × 𝑝 matrix, and 𝐵 =  (𝑏𝑖𝑗) is a 

𝑝 × 𝑛  matrix, then the product of  𝐴 and 𝐵, denoted  𝐴 𝐵,  is the  𝑚 × 𝑛  matrix   

𝐶 = (𝑐𝑖𝑗),   defined by  

 𝑐𝑖𝑗 = 𝑎𝑖1𝑏1𝑗 + 𝑎𝑖2𝑏2𝑗 +⋯+ 𝑎𝑖𝑝𝑏𝑝𝑗 = ∑ 𝑎𝑖𝑘𝑏𝑘𝑗
𝑝
𝑘=1  ,   (1 ≤ 𝑖 ≤ 𝑚,   1 ≤ 𝑗 ≤ 𝑛). 

The following proprieties for operations on matrices will be stated without proof.          

 

1.2   Properties of algebraic operations on matrices 

Theorem 1.2.1 [ 9 , 𝑝. 35 ].   

Let  𝐴 , 𝐵 , 𝐶  𝑎𝑛𝑑  𝐷  be an 𝑚× 𝑛  matrices.  and  𝑟 and  𝑠   are real numbers, then   

(1)  𝐴 + 𝐵 = 𝐵 + 𝐴. 

(2)  𝐴 + (𝐵 + 𝐶 ) = (𝐴 + 𝐵) + 𝐶 . 

(3) There is a unique  𝑚 × 𝑛  matrix  𝑂   such that  𝐴 + 𝑂 = 𝐴  for any  𝑚 × 𝑛      

      matrix  𝐴. The matrix 𝑂  is called the  𝑚 × 𝑛   additive identity or zero matrix. 

(4)  For each   𝑚× 𝑛  matrix   𝐴, there is a unique  𝑚 × 𝑛  matrix   𝐷  such that  

𝐴 + 𝐷 = 𝑂.          (1) 
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     We shall  write  𝐷 as  −𝐴,  so that (1) can be written as 

𝐴 + (−𝐴) = 𝑂. 

     The matrix –𝐴  is called the additive inverse or the negative of   𝐴.  

(5)   If  𝐴 , 𝐵 and 𝐶  are of the appropriate sizes, then   𝐴(𝐵 𝐶 ) = (𝐴 𝐵) 𝐶 . 

(6)   If 𝐴 , 𝐵  and 𝐶  are of the appropriate sizes, then  𝐴(𝐵 + 𝐶 ) = 𝐴 𝐵 + 𝐴 𝐶 . 

(7)  If 𝐴 , 𝐵 and 𝐶  are of the appropriate sizes, then  (𝐴+ 𝐵 )𝐶 = 𝐴 𝐶 + 𝐵 𝐶 . 

(8)  𝑟(𝑠 𝐴) = (𝑟 𝑠 )𝐴.  

(9) ( 𝑟 + 𝑠 )𝐴 = 𝑟 𝐴 + 𝑠 𝐴. 

(10)   𝑟( 𝐴 + 𝐵 ) = 𝑟 𝐴 + 𝑟 𝐵. 

(11) 𝐴 ( 𝑟 𝐵 ) = 𝑟 ( 𝐴 𝐵 ) = ( 𝑟𝐴 )𝐵. 

For a proof for these properties [9].  

Theorem 1.2.2 [ 9 , 𝑝. 41 ].  (Properties of Transposing a matrix) 

If   𝑟   is a scalar,  𝐴  and 𝐵  are matrices, then  

(a)  (𝐴𝑇)
𝑇
 =  𝐴.  

(b)  ( 𝐴 +  𝐵 )𝑇   =   𝐴𝑇  + 𝐵𝑇   and   ( 𝐴 −  𝐵 )𝑇   =   𝐴𝑇 − 𝐵𝑇.  

(c) ( 𝐴 𝐵 )𝑇  =  𝐵𝑇 𝐴𝑇. 

(d)  ( 𝑟 𝐴)𝑇  =  𝑟 𝐴𝑇.  

           For a proof for these properties [9]. 

 

1.3   Determinants of  Matrices 

Definition 1.3.1 [8]. (Determinant function) A determinant function assigns to 

each square matrix 𝐴 a scalar associated to the matrix, denoted by 𝑑𝑒𝑡(𝐴)  or  |𝐴| 

such that:   

(1)  The determinant of an  𝑛 × 𝑛  identity matrix  "𝐼"  is 1. |𝐼| = 1. 

(2)  If the matrix 𝐵 is identical to the matrix 𝐴 except the entries in one of the 

rows of 𝐵 are each equal to the corresponding entries of 𝐴 multiplied by the 

same scalar 𝑐, then  |𝐵| = 𝑐 |𝐴|. 

(3)  If the matrices 𝐴, 𝐵 and 𝐶 are identical except for the entries in one row, and 

for that row an entry in 𝐴 is found by adding the corresponding entries in 𝐵 

and 𝐶,   then  |𝐴| = |𝐵|+ |𝐶|. 
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(4) If the matrix 𝐵 is the result of exchanging two rows of 𝐴, then the 

determinant of  𝐵 is the negation of the determinant of  𝐴. (|𝐵| =  −|𝐴|)  

 

Theorem 1.3.2 [ 8]. A determinant function has the following four properties. 

(a)  The determinant of any matrix with an entire row of 0′𝑠 is  0. 

(b)  The determinant of any matrix with two identical rows is  0. 

(c)  If one row of a matrix is a scalar multiple of another row, then its 

determinant is  0. 

(d)  If a scalar multiple of one row of a matrix is added to another row, then the 

resulting matrix has the same determinant as the original matrix. 

Theorem 1.3.3 [ 8 ].  There is at most one determinant function. 

 

Definition 1.3.4 [ 9 , 𝑝. 92 ]. Let 𝐴 =  (𝑎𝑖𝑗) be an 𝑛 × 𝑛 matrix. The determinant 

of 𝐴 (written det(𝐴) or |𝐴|) is defined by  

det(𝐴) = |𝐴| = ∑(±)𝑎1𝑗1𝑎2𝑗2… 𝑎𝑛𝑗𝑛 , 

where the summation ranges over all permutations  𝑗1𝑗2… 𝑗𝑛 of the set  

 𝑆 =  {1,2, … , 𝑛}. The sign is taken as + or – according to whether the 

permutation  𝑗1𝑗2… 𝑗𝑛   is even or odd. 

 

Theorem 1.3.5  [ 9 , 𝑝. 95 ].  (Properties of Determinants of Matrices) 

(a)  If  𝐴 is a square matrix. then  det(𝐴) = det (𝐴𝑇)  

(b)  If matrix 𝐵 results from matrix 𝐴 by interchanging two rows (columns) of 𝐴,  

then  𝑑𝑒𝑡(𝐵) =  − 𝑑𝑒𝑡(𝐴) 

(c)  If  two rows (columns) of  𝐴 are equal, then  𝑑𝑒𝑡(𝐴) = 0 

(d)  If 𝐵 is obtained from 𝐴 by multiplying a row (column) of 𝐴 by real number 𝑐, 

then  𝑑𝑒𝑡(𝐵) =  𝑐 𝑑𝑒𝑡(𝐴).  

(e)  If 𝐵 = (𝑏𝑖𝑗) is obtained from 𝐴 = (𝑎𝑖𝑗) by adding to each element of the 

 𝑟𝑡ℎ row (column) of 𝐴 a corresponding element of the 𝑠𝑡ℎ row (column) 

 𝑟 ≠ 𝑠 of    𝐴,   then    𝑑𝑒𝑡(𝐵) =  𝑑𝑒𝑡(𝐴). 

(f) The determinant of a product of two matrices is the product of their         

     determinants, that is,  𝑑𝑒𝑡( 𝐴 𝐵) =  𝑑𝑒𝑡 (𝐴)𝑑𝑒𝑡(𝐵).  
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(g) If 𝐴 has a row (column) consisting of all zeros, then  𝑑𝑒𝑡(𝐴) = 0 

      For proofs of these properties [9]. 

 

Theorem 1.3.6 [9 , 𝑝. 93 ].  

1. Let 𝐴 , 𝐵 and 𝐶  be an  𝑛 × 𝑛  matrices  that differ only in a single row, say the 

𝑟𝑡ℎ row, and assume that the 𝑟𝑡ℎ row of 𝐶 can be obtained by adding 

corresponding entries in  the 𝑟𝑡ℎ rows of  𝐴  and  𝐵.   Then  

𝑑𝑒𝑡( 𝐶)  =  𝑑𝑒𝑡(𝐴)  +  𝑑𝑒𝑡(𝐵) 

The same result holds for columns.   

2. (Decomposing a column). If a column 𝐾 in a square matrix 𝐴 is a sum of two 

columns (eg. 𝐾 = 𝐾1 + 𝐾2), then the determinant | 𝐴| is a sum of tow 

determinants of matrices obtained from 𝐴 by replacing 𝐾 by 𝐾1 and 𝐾2 

respectively.   

1.4   Cofactor Expansion and Adjoint   

Definition 1.4.1 [ 9 , 𝑝. 103 ]. (Minor and Cofactor) Let 𝐴 =  (𝑎𝑖𝑗)  be an 𝑛 × 𝑛  

matrix. Let 𝑀𝑖𝑗 be the (𝑛 − 1) × (𝑛 − 1) submatrix of 𝐴 obtained by deleting the 

𝑖𝑡ℎ row and 𝑗𝑡ℎ column of 𝐴. The determinant 𝑑𝑒𝑡(𝑀𝑖𝑗) is called the minor of 𝑎𝑖𝑗. 

The cofactor 𝐴𝑖𝑗 of 𝑎𝑖𝑗 is defined as    𝐴𝑖𝑗 = (−1)
𝑖+𝑗𝑑𝑒𝑡(𝑀𝑖𝑗 ).  

 

Theorem 1.4.2 [ 9 , 𝑝. 104 ].  

 Let  𝐴 =  (𝑎𝑖𝑗)  be an  𝑛 × 𝑛  matrix. Then for each 1 ≤ 𝑖 ≤ 𝑛,      

𝑑𝑒𝑡(𝐴) = 𝑎𝑖1𝐴𝑖1 + 𝑎𝑖2𝐴𝑖2 +⋯+ 𝑎𝑖𝑛𝐴𝑖𝑛 

(expansion of 𝑑𝑒𝑡(𝐴) about the 𝑖𝑡ℎ row). 

And for each 1 ≤ 𝑗 ≤ 𝑛,      

𝑑𝑒𝑡(𝐴) = 𝑎1𝑗𝐴1𝑗 + 𝑎2𝑗𝐴2𝑗 +⋯+ 𝑎𝑛𝑗𝐴𝑛𝑗  

(expansion of 𝑑𝑒𝑡(𝐴) about the 𝑗𝑡ℎ column). 

Definition 1.4.3 [ 9 , 𝑝. 108 ]. (Adjoint of Matrix) Let 𝐴 =  (𝑎𝑖𝑗) be an 𝑛 × 𝑛  

matrix. Then 𝑛 × 𝑛  matrix 𝑎𝑑𝑗 𝐴, called the adjoint of 𝐴, is the matrix whose 

(𝑖, 𝑗)𝑡ℎ element is the cofactor 𝐴𝑗𝑖 of 𝑎𝑗𝑖. (The transpose of the matrix of 

cofactors), thus  
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𝑎𝑑𝑗(𝐴) =  [

𝐴11 𝐴21 ⋯
𝐴12 𝐴22 ⋯
⋮
𝐴1𝑛

⋮
𝐴2𝑛

⋱
⋯

   

𝐴𝑛1
𝐴𝑛2
⋮
𝐴𝑛𝑛

] . 

 

Theorem 1.4.4 [ 9 , 𝑝. 108 ].  (Properties of the Adjoint) 

(a) If  𝐴 =  (𝑎𝑖𝑗) is an 𝑛 × 𝑛  matrix. Then    𝐴(𝑎𝑑𝑗𝐴) = (𝑎𝑑𝑗𝐴)𝐴 = 𝑑𝑒𝑡(𝐴)𝐼𝑛 

(b) If 𝐴 =  (𝑎𝑖𝑗) is invertible 𝑛 × 𝑛  matrix. then   det(𝑎𝑑𝑗 𝐴) = det (𝐴)𝑛−1 

(c) If 𝐴 =  (𝑎𝑖𝑗) is invertible 𝑛 × 𝑛  matrix. then  𝑎𝑑𝑗(𝑎𝑑𝑗 𝐴) = (det 𝐴 )𝑛−2  𝐴 

(d) 𝑎𝑑𝑗(𝐴 𝐵) = 𝑎𝑑𝑗(𝐵) 𝑎𝑑𝑗(𝐴) 

(e) (𝑎𝑑𝑗(𝐴 ))
𝑇
= 𝑎𝑑𝑗(𝐴𝑇) 

(f) 𝑎𝑑𝑗( 𝑘 𝐴 ) = 𝑘𝑛−1𝑎𝑑𝑗(𝐴), where 𝑘 is any scalar  

      For proofs of  these properties [9]. 

1.5   The Inverse of a Matrix 

Definition 1.5.1 [ 9 , 𝑝. 19 ]. (Inverse of a Matrix) An 𝑛 × 𝑛 matrix 𝐴 is called 

non-singular (or invertible) if there exists an  𝑛 × 𝑛  matrix  𝐵  such that  

𝐴 𝐵 =  𝐵𝐴 =  𝐼𝑛. 

The matrix  𝐵  is called an inverse of  𝐴.  If there exists no such matrix  𝐵, then  𝐴  is called 

singular (or noninvertible).  

      It is easy to show that an inverse of a matrix is unique, if it exists, and so it is legitimate   

to say the inverse of  𝐴 and  write it as  𝐴−1,  thus   𝐴 𝐴−1 = 𝐴−1 𝐴 =  𝐼𝑛. 

Theorem 1.5.2 [ 9 , 𝑝. 71 ].  (Properties of the Inverse of a matrix) 

(a) If   𝐴  is a nonsingular matrix, then  𝐴−1 is a nonsingular and  (𝐴−1)
−1
= 𝐴 

(b) If  𝐴  and  𝐵  are nonsingular matrices, then  𝐴 𝐵 is nonsingular and   

(𝐴 𝐵)−1 = 𝐵−1 𝐴−1 

(c) If   𝐴  is a nonsingular matrix, then  (𝐴𝑇)
−1
= (𝐴−1)

𝑇
 

(d) For any nonzero scalar 𝑘, then (𝑘𝐴)−1  =
1

𝑘
  𝐴−1 

   For proofs of  these properties [9]. 
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Corollary 1.5.3 [ 9 , 𝑝. 100 ].   If  𝐴  is  nonsingular, then  𝑑𝑒𝑡(𝐴) ≠  0 and 

 det (𝐴−1) =
1

det (𝐴)
 

 

Theorem 1.5.4 [ 9 , 𝑝. 100 ].  A square matrix  𝐴 is nonsingular if and only if  

                                                             𝑑𝑒𝑡(𝐴) ≠  0  

Theorem 1.5.5 [ 9 , 𝑝. 107 ].  If 𝐴 =  (𝑎𝑖𝑗) is an 𝑛 × 𝑛  matrix. Then  

𝑎𝑖1𝐴𝑘1 + 𝑎𝑖2𝐴𝑘2 +⋯+ 𝑎𝑖𝑛𝐴𝑘𝑛 = 0      𝑓𝑜𝑟  𝑖 ≠ 𝑘
𝑎1𝑗𝐴1𝑘 + 𝑎2𝑗𝐴2𝑘 +⋯+ 𝑎𝑛𝑗𝐴𝑛𝑘 = 0      𝑓𝑜𝑟 𝑗 ≠ 𝑘

 

Corollary 1.5.6 [ 2 , 𝑝. 106 ]  If  𝐴  is an  𝑛 × 𝑛  matrix  and 𝑑𝑒𝑡(𝐴) ≠  0, then  

𝐴−1 =
1

det(𝐴)
𝑎𝑑𝑗(𝐴) =

[
 
 
 
 
 
 
 
𝐴11
det(𝐴)

𝐴21
det(𝐴)

⋯

𝐴12
det(𝐴)

𝐴22
det(𝐴)

⋯

⋮
𝐴1𝑛
det(𝐴)

⋮
𝐴2𝑛
det(𝐴)

⋱
⋯

   

𝐴𝑛1
det(𝐴)
𝐴𝑛2
det(𝐴)
⋮
𝐴𝑛𝑛
det(𝐴)]

 
 
 
 
 
 
 

.  

1.6   Linear Systems 

     A linear system (A system of linear equations) with  𝑚-equations and  𝑛-unknowns  

consists of  𝑚 simultaneous  equations each one is an equation in  𝑛-variables. That is, it 

has the form: 

𝑎11𝑥1
𝑎21𝑥1
⋮

𝑎𝑚1𝑥1

+
+

+

 

𝑎12𝑥2
𝑎22𝑥2
⋮

𝑎𝑚2𝑥2

 

+
+

+

 

…
…
⋱
…

  

+
+

+

 

𝑎1𝑛𝑥𝑛
𝑎2𝑛𝑥𝑛
⋮

𝑎𝑚𝑛𝑥𝑛

 

=
=

=

 

𝑏1
𝑏2
⋮
𝑏𝑚

        (1) 

     A solution for the linear system is a sequence of  𝑛  real numbers   s1,  s2,  ...,  sn   

 which when substituted in the equations of the linear system all become true statements.  

 

     The principal question for this kind of systems is to find the set of solutions to this 

system, that is to find all  𝑛-tuple  (𝑥1, 𝑥2, . . . ,  𝑥𝑛) that satisfy (1) 

 

      A general system of linear equations lies in one and only one of the following 

categories 

i. The system has no solution. 
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ii. The system has exactly one solution. 

iii. The system has infinitely many solutions. 

     If there are fewer equations than variables in a linear system, then the system 

either has no solution or it has infinitely many solutions. 

Definition 1.6.1 [ 9 , 𝑝. 3 ].  (Consistent and Inconsistent) A system of equations that has 

at least one solution is called consistent.  Otherwise, it is called inconsistent. 

     The key idea in finding the solution of a linear system is to apply elementary 

row operations 

Theorem 1.6.2 [ 9 , 𝑝. 7 ].   If any finitely many operations of the following is (are) applied 

to the linear system (1) 

1. Interchange two equations. 

2. Multiply an equation by a nonzero constant. 

3. Add a multiple of one equation to another. 

To get a new system. Then both systems have the same solution. 

      The operations listed in Theorem 1.6.2 are called elementary row operations.  

  matrices.   𝑚 × 𝑛  be two 𝐵 and 𝐴 Let Row equivalent)( [ 9 , 𝑝. 49 ]. 31.6. Definition 

We say that  𝐴 is row equivalent to  𝐵 if 𝐵 can be obtained by applying a finite 

sequence of elementary row operations to 𝐴.  

 

     Now define the following matrices:  

𝑨 = [

𝑎11 𝑎12 ⋯
𝑎21 𝑎22 ⋯
⋮
𝑎𝑚1

⋮
𝑎𝑚2

⋱
⋯

   

𝑎1𝑛
𝑎2𝑛
⋮
𝑎𝑚𝑛

] ,       𝒙 = [

𝑥1
𝑥2
⋮
𝑥𝑛

] ,          𝒃 = [

𝑏1
𝑏2
⋮
𝑏𝑚

] 

Then  

𝑨𝒙 =  [

𝑎11 𝑎12 ⋯
𝑎21 𝑎22 ⋯
⋮
𝑎𝑚1

⋮
𝑎𝑚2

⋱
⋯

   

𝑎1𝑛
𝑎2𝑛
⋮
𝑎𝑚𝑛

] [

𝑥1
𝑥2
⋮
𝑥𝑛

] = [

𝑎11𝑥1
𝑎21𝑥1
⋮

𝑎𝑚1𝑥1

+
+

+

 

𝑎12𝑥2
𝑎22𝑥2
⋮

𝑎𝑚2𝑥2

 

+
+

+

 

…
…
⋱

…

  

+
+

+

 

𝑎1𝑛𝑥𝑛
𝑎2𝑛𝑥𝑛
⋮

𝑎𝑚𝑛𝑥𝑛

] 
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     The entries in the product 𝑨𝒙 are merely the left sides of the equations in (1). 

Hence the linear system (1) can be written in matrix form as   𝑨𝒙 = 𝒃 .  

      The matrix 𝐴 is called the coefficient matrix of the linear system (1), and the 

matrix   

[

𝑎11 𝑎12 ⋯
𝑎21 𝑎22 ⋯
⋮
𝑎𝑚1

⋮
𝑎𝑚2

⋱
⋯

   

𝑎1𝑛
𝑎2𝑛
⋮
𝑎𝑚𝑛

  |

𝑏1
𝑏2
⋮
𝑏𝑚

], 

obtained by adjoining b to A, is called the augmented matrix of the linear system 

(1). The augmented matrix of (1) will be written as [𝑨|𝒃].  Conversely, any matrix 

with more than one column can be thought of as the augmented matrix of a linear 

system. The coefficient and augmented matrices play key roles in solving linear 

systems.  

Definition 1.6.4 [9 , 𝑝. 59 ]. (Homogenous Systems) A system of linear equations 

is said to be homogenous if the constant terms are all zero. That is, the system has 

form  𝑨𝒙 = 𝟎.   

We note here that a homogenous system is always consistent, 

 in fact  𝑥1 = 𝑥2 = ⋯ = 𝑥𝑛 = 0  is a solution which is called the trivial solution. 

1.7  Gaussian Elimination, Cramer's rule 

Definition 1.7.1 [2 , 𝑝. 8 ]. (Reduced Row-Echelon Form) A matrix having the 

following properties 1, 2 and 3 (but not necessarily 4) is said to be in row echelon 

form (r.e.f). A matrix that satisfies all the 4 conditions is said to be in reduced row 

echelon form (r.r.e.f)  

1-  If a row does not consist entirely of zeros, then the first nonzero number in 

the row is a 1. (We call this a leading 1.) 

2- Any row that consists entirely of zeros is placed at the bottom of the matrix. 

3- In any two successive rows that do not consist entirely of zeros, the leading 1 

in the lower row occurs farther to the right than the leading 1 in the higher row.  

4- Each column that contains a leading 1 has zeros everywhere else.  
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      Any  𝑚 ×  𝑛 matrix 𝐴 can be transformed into a reduced row echelon form 𝐴′ 

which is row equivalent to 𝐴,  and this 𝐴′ is  unique . 

Definition 1.7.2 [9 , 𝑝. 54 ] (Gauss-Jordan reduction) The Gauss-Jordan reduction 

procedure for solving the linear system 𝑨𝒙 = 𝒃  is as follows. 

Step1. Form the augmented matrix [𝑨|𝒃]. 

Step 2. Transform the augmented matrix to reduced row-echelon form by using 

elementary row operations. 

Step 3. The linear system that corresponds to the matrix in reduced row-echelon 

form that has been obtained in step 2 has exactly the same solutions as the given 

linear system.  For each nonzero row of the matrix in reduced row-echelon form, 

solve the corresponding equation for the unknown that corresponds to the leading 

entry of the row.  The rows consisting entirely of zeros can be ignored, since the 

corresponding equation will be satisfied for any values of the unknowns.  

Definition 1.7.3 [2 , 𝑝. 50 ]. ( Elementary matrix ) An 𝑛 × 𝑛 matrix is called an 

elementary matrix if can be obtained from the 𝑛 × 𝑛 identity matrix 𝐼𝑛 by 

preforming a single elementary row operations. 

Theorem 1.7.4 [2 , 𝑝. 19 ].  A homogeneous system of linear equations with more 

unknowns than equations has infinitely many solutions. 

Theorem 1.7.5 [2 , 𝑝. 109 ]. (Cramer's rule). If 𝑨𝒙 = 𝒃 is a system of 𝑛 linear 

equations in 𝑛  unknowns such that det(𝐴) ≠ 0, then the system has the unique 

solution, given as follows:  

𝑥1 =
det (𝐴1)

det (𝐴)
   ,    𝑥2 =

det (𝐴2)

det (𝐴)
    , ….    ,   𝑥𝑛 =

det (𝐴𝑛)

det (𝐴)
. 

Where 𝐴𝑗 is the matrix obtained  by replacing the entries in the  𝑗𝑡ℎ column of 𝐴  

by the entries in the matrix  𝒃 =  [

𝑏1
𝑏2
⋮
𝑏𝑛

] . 
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1.8   Vectors in the Euclidean space 𝑹𝒏  

     In this section we state some basic definitions regarding the vector space 𝑅𝑛 

Definition 1.8.1 [2 , 𝑝. 167 ]. (Vectors in 𝒏-space) If 𝑛 is a positive integer, then 

an ordered 𝑛-tuple is a sequence of 𝑛 real numbers (𝑎1, 𝑎2 , … , 𝑎𝑛). The set of all 

ordered 𝑛-tuples is called 𝑛-space and is denoted by 𝑅𝑛 and an element 

(𝑎1, 𝑎2 , … , 𝑎𝑛) is called a vector. 

     A vector in the plane is a 2-vector  𝑢 = [
𝑥1
𝑦1
], where 𝑥1 and  𝑦1  are real 

numbers, called the components of 𝑢.   

Definition 1.8.2 [9 , 𝑝. 148 ]. (Norm of a vector) The length (also called magnitude or 

norm) of the vector  𝑢 = (𝑢1, 𝑢2, … , 𝑢𝑛)  in  𝑅𝑛  is   ‖𝑢‖ = √𝑢1
2 + 𝑢2

2 +⋯+ 𝑢𝑛
2 . 

Definition 1.8.3 [9 , 𝑝. 148 ]. (Inner product) If 𝑢 = (𝑢1, 𝑢2, … , 𝑢𝑛) and  

 𝑣 = (𝑣1, 𝑣2, … , 𝑣𝑛) are vectors in 𝑅𝑛, then their dot product is defined by  

𝑢. 𝑣 = 𝑢1𝑣1 + 𝑢2𝑣2 +⋯+ 𝑢𝑛𝑣𝑛. The dot product in 𝑅𝑛 is also called the 

standard inner product 

Definition 1.8.4 [2 , 𝑝. 174 ]. (orthogonality) Two vectors 𝑢 and 𝑣 in 𝑅𝑛 are 

called orthogonal if   𝑢. 𝑣 = 0. 

Definition 1.8.5 [2 , 𝑝. 136 ]. (orthogonal projection)  

The vector 𝑢 is the sum of 𝑤1 and 𝑤2, where 𝑤1 is parallel to 𝑣 

and 𝑤2 is perpendicular to 𝑣. the vector 𝑤1 is called the 

orthogonal projection of 𝑢 on 𝑣 or sometimes the vector 
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component of 𝑢 along 𝑣.  It is denoted by  𝑝𝑟𝑜𝑗𝑣𝑢. 

The vector 𝑤2 is called the vector component of 𝑢 orthogonal to 𝑣. Since we have 

𝑤2 = 𝑢−𝑤1, thus the vector can be written  𝑤2 = 𝑢− 𝑝𝑟𝑜𝑗𝑣𝑢. 

Theorem 1.8.6  [2 , 𝑝. 136 ]. If  𝑢 and 𝑣 are vectors in 2-space or 3-space and if 

𝑣 ≠ 0,   then     𝑝𝑟𝑜𝑗𝑣𝑢 =
𝑢.𝑣

‖𝑣‖2
 𝑣    (vector component of 𝑢 along 𝑣). 

𝑢 − 𝑝𝑟𝑜𝑗𝑣𝑢 = 𝑢−
𝑢.𝑣

‖𝑣‖2
 𝑣         (vector component of 𝑢 orthogonal to 𝑣). 

1.9  Rank and Nullity 

Definition 1.9.1 [2 , 𝑝. 222 ]. (subspace) A subset 𝑊 of a vector space 𝑉 is called 

a subspace of 𝑉 if 𝑊 is itself a vector space under the addition and scalar 

multiplication defined on 𝑉.  

Definition 1.9.2 [9 , 𝑝. 207 ]. (Linear combination) Let 𝑣1, 𝑣2, … , 𝑣𝑛  be vectors 

in a vector space 𝑉. A vector 𝑣 in 𝑉 is called a linear combination of  𝑣1, 𝑣2, … , 𝑣𝑛 

if    𝑣 = 𝑘1 𝑣1 + 𝑘2 𝑣2 +⋯+ 𝑘𝑛 𝑣𝑛   for some numbers   𝑘1, 𝑘2, … , 𝑘𝑛 .  

Definition 1.9.3 [2 , 𝑝. 233 ].(Linear independence) If 𝑆 = {𝑣1, 𝑣2, … , 𝑣𝑛}  is a 

nonempty set of vectors, then the vector equation 𝑘1 𝑣1 + 𝑘2 𝑣2 +⋯+ 𝑘𝑛 𝑣𝑛 = 0    

has at least one solution, namely 𝑘1 = 0,   𝑘2 = 0,… , 𝑘𝑛 = 0. If this is the only 

solution, then S is called a linearly independent set. If there are other solutions, 

then S is called a linearly dependent set.   

Definition 1.9.4 [9 , 𝑝. 213 ]. ( Span ) The vector 𝑣1, 𝑣2, … , 𝑣𝑛 in a vector space 𝑉 are said 

to span 𝑉 if every vector in 𝑉 is a linear combination of  𝑣1, 𝑣2, … , 𝑣𝑛. Moreover, if these 

vectors are distinct and we denote them as a set 𝑆 = {𝑣1, 𝑣2, … , 𝑣𝑛}, then we also say that 

the set S spans V, or that  𝑣1, 𝑣2, … , 𝑣𝑛 spans 𝑉,  or that 𝑉 is spanned by 𝑆, or 𝑠𝑝𝑎𝑛 𝑆 =  𝑉.     
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Definition 1.9.5 [2 , 𝑝. 259 ]. (row space and column space) If 𝐴 an 𝑚 × 𝑛 

matrix, then the subspace of 𝑅𝑛 spanned by the row vectors of 𝐴 is called the row 

space of 𝐴, and the subspace of 𝑅𝑚 spanned by column vectors is called the 

column space of  A.  

Definition 1.9.6 [2 , 𝑝. 273 ]. (Rank and nullity) The common dimension of the 

row space and column space of a matrix 𝐴 is called the rank of 𝐴 and is denoted 

by 𝑟𝑎𝑛𝑘(𝐴), the dimension of the null space which is the solution space of 

𝑨𝒙 = 𝟎  of  𝐴 is called the nullity of  𝐴 and is denoted by  𝑛𝑢𝑙𝑙𝑖𝑡𝑦(𝐴).   

Theorem 1.9.7  [2 , 𝑝. 275 ].  If 𝐴 is an 𝑛 × 𝑛 matrix, then  

(a) 𝑟𝑎𝑛𝑘(𝐴)= the number of leading variables in the solution of  𝑨𝒙 = 𝟎. 

(b) 𝑛𝑢𝑙𝑙𝑖𝑡𝑦(𝐴) = the number of parameters in the solution of  𝑨𝒙 = 𝟎. 

Theorem 1.9.8  [9 , 𝑝. 249 ]. (Rank-Nullity Theorem) If  𝐴  is an  𝑚 × 𝑛  matrix, Then  

𝑟𝑎𝑛𝑘(𝐴) + nullity (𝐴) = 𝑛 

Theorem 1.9.9[2 , 𝑝. 275 ]. If 𝐴 is any 𝑛 ×𝑚 matrix, then  𝑟𝑎𝑛𝑘(𝐴) = 𝑟𝑎𝑛𝑘(𝐴𝑇) 

Theorem 1.9.10 [9 , 𝑝. 250 ]. if 𝐴 is an 𝑛 × 𝑛 matrix, then 𝑟𝑎𝑛𝑘(𝐴) = 𝑛 if and 

only if  𝑑𝑒𝑡(𝐴) ≠ 0  

Definition 1.9.11 [9 , 𝑝. 327 ] (Linear transformation from 𝑅𝑛 to 𝑅𝑚 ) 

 A linear transformation 𝑇 from 𝑅𝑛 into 𝑅𝑚 is a function assigning a unique 

vector 𝑇(𝑥) in  𝑅𝑚 to each  𝑥 in 𝑅𝑛 such that:  

(a) 𝑇(𝑥 + 𝑦)  = 𝑇(𝑥) + 𝑇(𝑦), for every  𝑥 and 𝑦  in  𝑅𝑛 . 

(b) 𝑇(𝑘 𝑥) =  𝑘 𝑇(𝑥) for every 𝑥  in  𝑅𝑛 and every scalar 𝑘.   

If  𝑛 = 𝑚, the linear transformation  𝑇: 𝑅𝑛 → 𝑅𝑛 is called a linear operator on 𝑅𝑛.  
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The matrix 𝐴𝑚×𝑛 = [𝑇(𝑒1): 𝑇(𝑒2):… : 𝑇(𝑒𝑛)] is called the standard matrix for the linear 

transformation and 𝑇: 𝑅𝑛 → 𝑅𝑚 is a multiplication by 𝐴, that is 𝑇𝐴(𝑥) = 𝐴𝑥. 

Definition 1.9.12  [2 , 𝑝. 395 ]. (Kernel and Range) If 𝑇: 𝑉 → 𝑊 is a linear 

transformation, then the set of vectors in 𝑉 that 𝑇 maps into 0 is called the kernel 

of 𝑇; it is  denoted by 𝑘𝑒𝑟(𝑇). The set of all vectors in 𝑊 that are images under 𝑇 

of at least one vector in 𝑉 is called the range of  𝑇; it is denoted by 𝑅(𝑇).  

 

Theorem 1.9.13  [2 , 𝑝. 397 ]. If 𝐴 is an  𝑚 × 𝑛 matrix, and 𝑇𝐴: 𝑅
𝑛 → 𝑅𝑚 is 

multiplication by 𝐴 and define  

  𝑟𝑎𝑛𝑘(𝑇𝐴) = dim(𝑅(𝑇𝐴)),     nullity (𝑇𝐴) = dim(ker(𝑇𝐴)),    then  

(i)   nullity (𝑇𝐴) = nullity (𝐴) 

(ii)  𝑟𝑎𝑛𝑘(𝑇𝐴) = 𝑟𝑎𝑛𝑘(𝐴) 

 

Theorem 1.9.14  [2 , 𝑝. 281 ]. (Invertible matrix theorem) If 𝐴 is an  𝑛 × 𝑛 matrix,  and 

if  𝑇𝐴: 𝑅
𝑛 → 𝑅𝑛  is multiplication by 𝐴,  then the following are equivalent.  

(a) 𝐴 is invertible 

(b)  𝑨𝒙 = 𝟎 has only the trivial solution. 

(c) The reduced row-echelon form of  𝐴  is 𝐼𝑛 

(d) 𝐴  is expressible as a product of elementary matrices. 

(e) 𝑨𝒙 = 𝒃 is consistent for every  𝑛 × 1  matrix  𝑏. 

(f) 𝑨𝒙 = 𝒃 has exactly one solution for every  𝑛 × 1  matrix  𝑏. 

(g) det(𝐴) ≠ 0 

(h) The range of  𝑇𝐴 is 𝑅𝑛  

(i) 𝑇𝐴 is one–to–one. 

(j) 𝐴 has rank 𝑛. 

(k) 𝐴 has nullity 0. 

     For proofs of  these properties [2]. 
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Theorem 1.9.15  [9 , 𝑝. 365 ]. Let  𝑇: 𝑅𝑛 → 𝑅𝑚  be a linear transformation defined by 

𝑇(𝑥) = 𝐴𝑥, 𝑥 in 𝑅𝑛,  where 𝐴 is an  𝑚 × 𝑛  matrix.   

(1) 𝑇 is one-to-one if and only if 𝑟𝑎𝑛𝑘(𝐴) = 𝑛 

(2) 𝑇 is onto if and only if 𝑟𝑎𝑛𝑘(𝐴) = 𝑚   

Lemma 1.9.16 [10]. Consider the vector spaces  𝑅𝑚 and  𝑅𝑛, and let  𝑇𝐴 ∶  𝑅
𝑚 → 𝑅𝑛  and  

𝑇
𝐴𝑇
: 𝑅𝑛 → 𝑅𝑚    the adjoint operator, then the following statement holds  

𝑅𝑎𝑛𝑔(𝐴) = 𝑅𝑛  ↔  ∃ 𝛾 > 0      such that  ‖𝐴𝑇𝑧‖
𝑅𝑚
≥  𝛾 ‖𝑧‖𝑅𝑛  , 𝑧 ∈ 𝑅

𝑛.  (1) 

𝑅𝑎𝑛𝑔(𝐴) = 𝑅𝑛   ↔   𝐾𝑒𝑟 (𝐴𝑇) = {0}   ↔   𝐴𝑇   𝑖𝑠  1 − 1  (see theorem 1.9.15)         (2) 
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Chapter Two 

Determinant 

      In the history of matrices, mathematicians are interested in finding the value 

of the determinant for square matrices only, actually the definition of determinant 

and its properties are discussed only for square matrices. To break this we 

generalize the concept of determinant from a square matrix to a non-square 

matrix, and we also study their properties, methods of computation and some 

application.   

2.1 Determinant function 

      There are many ways that general 𝑚 × 𝑛 determinants can be defined. We
'
ll 

first define a determinant function in terms of characterizing properties that we 

want it to have. Then we
'
ll use the construction of a determinant following the 

method given in the section, and through it we will prove that cofactor expansion 

definition of the determinant and radic definition are the same.   

We generalize the idea given in  [8]  for the case of rectangular matrices: 

Definition 2.1.1 An 𝑚 × 𝑛 matrix 𝐴 = (𝑎𝑖𝑗)  where 𝑚 ≤ 𝑛 is said to have form   

𝐼  if     i) Entries of A are 0 or 1 

          ii)  Eeach  row have exactly one non-zero entry 

That is,  𝐼 𝑚×𝑛   consists of all matrices of the form  [𝐴1 𝐴2 ⋯ 𝐴𝑛]  where 

 𝐴𝑗 ∈ {𝑒1 , 𝑒2 , … , 𝑒𝑚}  ∪  [

0
0
⋮
0

],    {𝑒1 , 𝑒2 , … , 𝑒𝑚}  is the standard basis for 𝑅𝑚 

Such a matrix is called a permutation matrix in literature. 

Example,  𝐴 = [
0 1 0
0 0 1
0 0 0

    
0
0
0
    
0
0
1
] is an example of an element in 𝐼 

 

Definition 2.1.2 A determinant function assigns to each 𝑚× 𝑛  (𝑚 ≤ 𝑛) matrix 

𝐴 a scalar associated to the matrix, denoted 𝑑𝑒𝑡(𝐴)  or  |𝐴| such that   

A1: The determinant of an  𝑚 × 𝑛  (𝑚 ≤ 𝑛) in  𝐼 𝑚×𝑛    is   (−1)𝑝+𝑞   
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where  𝑝 = 1 + 2 +⋯+𝑚  and 𝑞 = 𝑗1 + 𝑗2 +⋯+ 𝑗𝑛 (   𝑗1, 𝑗2, … , 𝑗𝑛)  represent columns 

that contain 1’s. 

A2: If the matrix 𝐵 is identical to the matrix 𝐴 except the entries in one of the 

rows of 𝐵 are each equal to the corresponding entries of multiplied by the same 

scalar 𝑐, then  |𝐵| = 𝑐|𝐴|. 

A3: If the matrices 𝐴, 𝐵 and 𝐶 are identical except for the entries in one row, and 

for that row an entry in 𝐴 is found by adding the corresponding entries in 𝐵 

and 𝐶,   then  |𝐴| = |𝐵|+ |𝐶|. 

A4: If the matrix 𝐵 is the result of exchanging two rows of 𝐴, then the determinant 

of  𝐵 is the negation of  the determinant of  𝐴.  

     These conditions are enough to characterize the determinant, but they don’t 

show such a determinant function exists and is unique. We'll show both existence 

and uniqueness, but start with uniqueness. First, we'll note a couple of properties 

that determinant functions have that follow from the definition.       

 

Theorem 2.1.3 A determinant function has the following four properties. 

(a) The determinant of any matrix  𝐴𝑚×𝑛  ( 𝑚 ≤ 𝑛) with an entire row of 0′𝑠 is 0. 

(b) The determinant of any matrix 𝐴𝑚×𝑛  ( 𝑚 ≤ 𝑛) with two identical rows is 0. 

(c) If one row of a matrix 𝐴𝑚×𝑛  ( 𝑚 ≤ 𝑛)  is a scalar multiple of another row, then 

its determinant is 0. 

(d) If a multiple of one row of a matrix 𝐴𝑚×𝑛  ( 𝑚 ≤ 𝑛) is added to another row, 

then the resulting matrix has the same determinant as the original matrix. 

 

Proof: Property (a) follows from the second statement (A2) in the definition. 

 If 𝐴 has a whole row of 0′𝑠, then using that row and 𝑐 = 0 in the second 

statement (A2) of the definition, then 𝐵 = 𝐴.   

 So,  |𝐴| = 0|𝐵|.   Therefore,  det (𝐴) = 0.  

 

Property (b) follows from the fourth statement (A4) in the definition. 



 

20 
 

If you exchange the two identical rows, the result is the original matrix, but its 

determinant is negated. The only scalar which is its own negation is 0. 

Therefore, the determinant of the matrix is 0. 

Property (c) follows from the second statement (A2) in the definition and Property (b). 

Property (d) follows from the third statement (A3) in the definition and Property (c).  

 

Now we can show the uniqueness of determinant function. 

Theorem 2.1.4 There is at most one determinant function.  

Proof: The four properties that determinants are enough to find the value of the 

determinant of a matrix. 

Suppose a matrix 𝐴𝑚×𝑛 (𝑚 ≤ 𝑛) has more than one nonzero entry in a row. Then 

using the third statement (A3)  in definition 2.1.2. 

Now,  det(𝐴) = det(𝐴1)+ det(𝐴2)+⋯+ det(𝐴𝑛)  

Where 𝐴𝑗 is the matrix that looks just like 𝐴 except in that row, all the entries are 

0 expect the 𝑗𝑡ℎ one which is the 𝑗𝑡ℎ entry of that row in  𝐴. 

That means we can reduce the question of evaluating determinants of general 

matrices to evaluating determinants of matrices that have at most one nonzero 

entry in each row. 

By Property (a) in the theorem 2.1.3, if the matrix has a row of all 0′𝑠, its 

determinant is 0. Thus, we only need to consider matrices that have exactly one 

nonzero entry in each row. 

Using the second statement (A2) in definition 2.1.2, we can further assume that 

the nonzero entry in that row is 1. 

Now, we're down to evaluating determinants that only have entries of 0′𝑠 and 1′𝑠 

with exactly one 1 in each row. 

If two of those rows have the 1′𝑠 in the same column, then by Property (b) in the 

theorem 2.1.3, that matrix has determinant 0. 

Now the only matrices left to consider are matrices from  𝐼. 

Using alternation, the fourth condition (A4) in definition 2.1.2, the rows can be 

interchanged until the 1′𝑠 only lie on the entry 𝑎𝑖𝑗    
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Finally, we're left with a matrix in 𝐼, but by the first condition (A1) in definition 

2.1.2, its determinant is (−1)𝑝+𝑞 . 

Thus, the value of the determinant of every matrix is determinant by the 

definition.  There can be only one determinant function.  

    

     We need some way to construct a function with those properties, and well do 

that with a "cofactor construction" and " radic construction". 

 2.2   Minors and cofactors. 

     To every non-square matrix 𝐴 = (𝑎𝑖𝑗) of order 𝑚× 𝑛, we can associate a 

number (real or complex) called determinant of the non-square matrix 𝐴, where 

 𝑎𝑖𝑗 = (𝑖, 𝑗)
𝑡ℎ element of 𝐴.   

     This may be thought of as a function which associates to each non-square 

matrix over a field 𝐹 a unique number from 𝐹 (real or complex). If 𝑀 is the set of 

non-square matrices, 𝐾 is the set of real numbers and  𝑓:𝑀 → 𝐾  is defined by 

𝑓(𝐴) = 𝑘,  where 𝐴 ∈ 𝑀 and  𝑘 ∈ 𝐾, then 𝑓(𝐴) is called the determinant of 𝐴. It 

is also denoted by  |𝐴|  or  det( 𝐴). 

     The determinant can also be viewed as a function of the columns of the matrix. 

Let these columns be  𝐴1 , 𝐴2, . . , 𝐴𝑛,  then we write the determinant as 

                                               |𝐴1 , 𝐴2, . . , 𝐴𝑛|    or      𝑑𝑒𝑡(𝐴1 , 𝐴2, . . , 𝐴𝑛)  

Definition 2.2.1 [3]  (Determinants of order  𝟏 × 𝒏  ) 

If  𝐴 = [𝑎11 𝑎12 𝑎13    ⋯ 𝑎1𝑛],   then the determinant of  𝐴 is 

| 𝐴 | = 𝑎11− 𝑎12 + 𝑎13 −⋯+ (−1)
1+𝑛  𝑎1𝑛 

                                                     = ∑(−1)1+𝑖  𝑎1𝑖

𝑛

𝑖=1

 

Example 2.2.2   |1 5 9| = 1− 5+ 9 = 5   

      For larger matrices, we use cofactor expansion to find the determinant of 𝐴.  

First of all, let’s define a few terms.  
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Definition 2.2.3 [3] (Minor) Let 𝐴 =  (𝑎𝑖𝑗)  be an 𝑚 × 𝑛 matrix. for each entry 

𝑎𝑖𝑗  of   𝐴, we define the minor   𝑀𝑖𝑗   of   𝑎𝑖𝑗   to be the determinant of the 

 ( 𝑚 − 1)× (𝑛− 1) matrix which remains when the 𝑖𝑡ℎ row and  𝑗𝑡ℎ column are 

deleted from  𝐴. 

Example 2.2.4   Let 𝐴 = [
1 3 5
2 4 6

] 

To find 𝑀11,  look at element 𝑎11 = 1, delete the entries from column 1 and row 1 

that corresponding to  𝑎11 = 1,  see the image below. 

                            [
1 − −
− 4 6

] 

Then  𝑀11   is the determinant of remaining matrix, i.e., 

                              𝑀11 = |4 6| = 4 − 6 =  −2    

Similarly,  𝑀22 can be found by looking at the element  𝑎22 = 4   and delete the 

same row and column where this element is found, i.e., deleting the second row, 

second column: 

                            [
1 − 5
− 4 −

]  

 Then,   𝑀22 = |1 5| = 1 − 5 =  −4 

It is easy to see that for the matrix  𝐴  the minors of ramming elements are   

                               [
− 3 −
2 − 6

] 

𝑀12 = |2 6| = 2− 6 = −4 

                               [− − 5
2 4 −

] 

𝑀13 = |2 4| = 2− 4 = −2 

                               [− 3 5
2 − −

] 

𝑀21 = |3 5| = 3− 5 = −2 

                                 [
1 3 −
− − 6

] 

𝑀23 = |1 3| = 1− 3 = −2 
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Definition 2.2.5 [3] (Cofactor).  Let 𝐴 = (𝑎𝑖𝑗)  be an 𝑚 × 𝑛 matrix. for each 

entry  𝑎𝑖𝑗  of  𝐴,  we define the cofactor of   𝑎𝑖𝑗 ,   which is denoted by  𝐶𝑖𝑗   as  

𝐶𝑖𝑗  = (−1)
𝑖+𝑗𝑀𝑖𝑗 

 The matrix of cofactors of 𝐴  is  𝐶 with  𝑐𝑖𝑗  is cofactor of  𝑎𝑖𝑗  and the adjoint of  

𝐴  is 𝑎𝑑𝑗(𝐴)  is the transpose of  𝐶.  

     Basically, the cofactor is either 𝑀𝑖𝑗 , or −𝑀𝑖𝑗  where the sign depends on the 

location of the element in the matrix. For that reason, it is easier to know the 

pattern of cofactor instead of actually remembering the formula. If you start in the 

position corresponding to 𝑎11 with a positive sign, the sign of the cofactor has an 

alternating pattern. you can see this by looking at a matrix containing the sign of 

the cofactors: 

[
+ − +
− + −
⋮ ⋮ ⋮

    
⋯ ⋯
⋯ ⋯
⋮ ⋮

] 

 

The element 1 in matrix 𝐴  (example 2.2.4) has place sign + and minor -2   so its 

cofactor is      + (-2) = -2   

The element 4 in matrix 𝐴 (example 2.2.4) has place sign + and minor -4   so its 

cofactor   is    + (- 4) = - 4 

Proceeding in this way we can find all the cofactors. 

The original matrix, its matrix of minors and its matrix of cofactors are:  

𝐴 =  [
1 3 5
2 4 6

],                   𝑀 = [
−2 −4 −2
−2 −4 −2

], 

𝐶 = [
−2 4 −2
2 −4 2

],          𝑎𝑑𝑗(𝐴) = [
−2 2
4 −4
−2 2

] 

2.3   Determinant Using Cofactor Expansion  

     In this section we shall deal with matrices of size  𝑚 × 𝑛  where 𝑛 ≤ 𝑚  or  

𝑛 ≥  𝑚. A matrix  𝐴𝑚×𝑛  with  𝑛 ≠ 𝑚  is called a rectangular matrix. When 

𝑚 ≤ 𝑛, 𝐴  is said to be a horizontal matrix, otherwise 𝐴 is said to be a vertical 

matrix. 
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Definition 2.3.1 [3] Let 𝐴 = (𝑎𝑖𝑗)   be an 𝑚 × 𝑛 matrix with 𝑚 ≤ 𝑛. (horizontal 

matrix).  The determinant of 𝐴 is defined as  

𝑑𝑒𝑡(𝐴) = 𝑎11 𝐶11 + 𝑎12 𝐶12 + 𝑎13 𝐶13 +⋯+  𝑎1𝑛 𝐶1𝑛 =∑ 𝑎1𝑗  𝐶1𝑗

𝑛

𝑗=1

 

This is called cofactor expansion along the first row. 

     The determinant of a vertical matrix 𝐴 is defined to be the determinant of the 

horizontal matrix  𝐴𝑇. 

     The following theorem asserts that we can evaluate the determinant of a larger 

horizontal matrix by selecting any row, multiplying each element in that row by 

its corresponding cofactor, and summing the result, a result which is true in the 

case of square matrices (Theorem 1.4.2). 

 

The following theorem is from  [7]  but we give here another proof   

Theorem 2.3.2  (The cofactor expansion theorem) 

Let 𝐴 =  (𝑎𝑖𝑗)   be an  𝑚 × 𝑛  matrix. If   𝑚 ≤ 𝑛,   the determinant of  𝐴  is  

𝑑𝑒𝑡(𝐴) = 𝑎𝑖1 𝐶𝑖1 + 𝑎𝑖2 𝐶𝑖2 + 𝑎𝑖3 𝐶𝑖3 +⋯+  𝑎𝑖𝑛 𝐶𝑖𝑛   

                             = ∑  𝑎𝑖𝑗  𝐶𝑖𝑗  

𝑛

𝑗=1

 

This is called the determinant using cofactor expansion along the  𝑖𝑡ℎ  row. 

     The proof of this theorem will be given after proving Theorem 2.4.1  

 Example 2.3.3.  Evaluate the determinant of    𝐴 = [
1 3 5
2 4 6

]  by cofactor expansion 

i) along the first row  

ii) along the second row 

Solution: 

                𝑑𝑒𝑡(𝐴) = |
1 3 5
2 4 6

| = 1 |4 6| − 3 |2 6| + 5 |2 4| 
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                                                    = 1 ( −2 ) − 3 (−4) + 5(−2 ) = 0 

               𝑑𝑒𝑡(𝐴) = |
1 3 5
2 4 6

| = −2 |3 5| + 4 |1 5| − 6 |1 3| 

                                                   = −2 ( −2 ) + 4 (−4) − 6(−2 ) = 0 

 

Note that : when 𝐴 is an 𝑚 × 𝑛 matrix with 𝑚 ≥ 3  or   𝑛 ≥ 3,  the cofactors 𝐶𝑖𝑗  

are determinants of (𝑚 − 1 ) × (𝑛 − 1) matrices. To compute these determinants, 

we apply cofactor expansion again, and obtain determinants of (𝑚 − 2 ) × 𝑛 − 2)  

matrices. We keep applying cofactor expansion until we hit  1 × 𝑛 determinants, 

which we know how to compute (see definition 2.2.1).  

Example 2.3.4  Evaluate the determinant of   𝐴 = [
2 3
1 5
2 4

     
4 1
0 2
1 3

] using Theorem 2.3.2   

Solution:  Since 𝑚 < 𝑛,  expanding a long any row, say first row  

|
2 3
1 5
2 4

     
4 1
0 2
1 3

| = 2  |5 0 2
4 1 3

|− 3  |1 0 2
2 1 3

|+ 4  |1 5 2
2 4 3

|− 1  |1 5 0
2 4 1

| 

                                =  2(5(−2) − 0 + 2(3)) − 3(1(−2) − 0 + 2(1)) 

+ 4(1(1) −  5(−1) + 2(−2)) − 1(1(3) − 5(1) + 0) 

                                 = 2(−4) − 3(0) + 4(2) − 1(−2) = 2 

     In calculating a determinant using cofactor expansion, it is usually a good idea 

to choose a row or column containing as many zeros as possible.  

 

Theorem 2.3.5 [3]  If 𝐴 is a horizontal matrix with a row of zeros, then 

 det(𝐴) = 0  

Proof: Since the determinant of 𝐴 can be found by a cofactor expansion along 

any row, we can use the row of zeros  

det(𝐴) = 0 𝐶𝑖1 + 0 𝐶𝑖2 +⋯+ (−1)
𝑖+𝑛  0  𝐶𝑖𝑛 

                                                         = 0        

     This theorem represents property (a) in the theorem 2.1.3 
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2.4     Effect of elementary row operations on determinates  

      The evaluation of the determinant of an 𝑚× 𝑛  (𝑚 ≤ 𝑛) matrix using the 

definition 2.3.1 involves the summation of    𝑝𝑛 ( 𝑚−1), each term being a product 

of 𝑚 factors. As 𝑚 , 𝑛 increases, this computation becomes too cumbersome and 

so another technique has been devised to evaluate the determinant which works 

quite efficiently. This technique uses row operations to put a matrix into a form in 

which the determinant is easily calculated, keeping track of the row operations 

used, and how they affect the determinant, we can backtrack, and determine what 

the original determinant was.  

     We will look at the effect of each elementary row operation on the 

determinant.  

 

The following theorem is from  [3], [7],  but we give here another proof   

Theorem 2.4.1. If 𝐴 and 𝐵 are 𝑚 × 𝑛 matrices with  𝑚 ≤ 𝑛, and 𝐵 is obtained 

from  𝐴 by interchanging two rows of  𝐴,  then  𝑑𝑒𝑡 (𝐴)  =  − 𝑑𝑒𝑡 (𝐵) 

Proof:  Base case :  Let   𝐴 = [
𝑎11 𝑎12 … 
𝑎21 𝑎22 …   

𝑎1𝑛
𝑎2𝑛
],   and  let  

 𝐵 =  [
𝑎21 𝑎22 … 
𝑎11 𝑎12 …   

𝑎2𝑛
𝑎1𝑛
]. Then 𝐵 is the only matrix that can be obtained from  

𝐴   by swapping rows.  And we see that 

 det(𝐵) = 𝑎21 (𝑎12  − 𝑎13 +⋯+ (−1)
𝑛 𝑎1𝑛)− 𝑎22(𝑎11  − 𝑎13 +⋯+

(−1)𝑛 𝑎1𝑛)+  𝑎23 (𝑎11  − 𝑎12 +⋯ + (−1)
𝑛𝑎1𝑛)+ …  + (−1)

𝑛+1 𝑎2𝑛 (𝑎11  −

 𝑎12 +⋯+ (−1)
𝑛 𝑎1𝑛−1)   

  

                =(𝑎21 𝑎12   − 𝑎21 𝑎13 +⋯+ (−1)
𝑛 𝑎21 𝑎1𝑛)− (𝑎22 𝑎11  − 𝑎22 𝑎13 +

⋯+ (−1)𝑛𝑎22 𝑎1𝑛)+ (𝑎23 𝑎11  − 𝑎23 𝑎12 +⋯ + (−1)
𝑛𝑎23 𝑎1𝑛)+ …  +

(−1)𝑛+1  (𝑎2𝑛 𝑎11  − 𝑎2𝑛 𝑎12 +⋯+ (−1)
𝑛𝑎2𝑛 𝑎1𝑛−1)                             (1)                                  
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Also , 

 det(𝐴) = 𝑎11 (𝑎22  − 𝑎23 +⋯ + (−1)
𝑛𝑎2𝑛)  − 𝑎12 (𝑎21  − 𝑎23 +⋯ +

(−1)𝑛𝑎2𝑛)  +  𝑎13 (𝑎21  − 𝑎22 +⋯+ (−1)
𝑛 𝑎2𝑛)+ …  + (−1)

1+𝑛 𝑎1𝑛 (𝑎21  −

 𝑎22 +⋯+ (−1)
𝑛 𝑎2𝑛−1)   

 

                   =   (𝑎11 𝑎22  − 𝑎11 𝑎23 +⋯ + (−1)
𝑛𝑎11𝑎2𝑛)  −  (𝑎12𝑎21  − 𝑎12𝑎23 +

⋯ + (−1)𝑛𝑎12 𝑎2𝑛)  +   (𝑎13𝑎21  − 𝑎13 𝑎22 +⋯+ (−1)
𝑛
𝑎13 𝑎2𝑛)+ …  +

(−1)1+𝑛  (𝑎1𝑛𝑎21  − 𝑎1𝑛 𝑎22 +⋯+ (−1)
𝑛𝑎1𝑛 𝑎2𝑛−1)                          (2)                                          

From (1) and (2) , clearly    

𝑑𝑒𝑡 (𝐴)  =  − 𝑑𝑒𝑡 (𝐵) 

Induction hypothesis: For all  𝑘 × 𝑛  with (𝑘 ≤ 𝑛)  matrices 𝐴, if 𝐵 is obtained 

from 𝐴  by swapping two  rows , then   𝑑𝑒𝑡 (𝐴)  =  − 𝑑𝑒𝑡 (𝐵)   

Induction step : Let 𝐴  be a ( 𝑘 + 1) × (𝑛) with (𝑘 + 1 ≤ 𝑛) matrix, and let 𝐵 be 

a matrix obtained from 𝐴 by swapping two rows. Say row 𝑟 and 𝑟 + 1 of 𝐴 were  

swapped when making  𝐵.  

𝐴 =

[
 
 
 
 
 
𝑎11 𝑎12 ⋯
⋮ ⋮ ⋱
𝑎𝑟1
𝑎(𝑟+1)1
⋮

𝑎( 𝑘+1)1

𝑎𝑟2
𝑎(𝑟+1)2
⋮

𝑎( 𝑘+1)2

⋯
⋯
⋱

⋯

   

𝑎1𝑛
⋮
𝑎𝑟𝑛
𝑎(𝑟+1)𝑛
⋮

𝑎( 𝑘+1)𝑛]
 
 
 
 
 

,      𝐵 =

[
 
 
 
 
 
𝑎11 𝑎12 ⋯
⋮ ⋮ ⋱

𝑎(𝑟+1)1
𝑎𝑟1
⋮

𝑎( 𝑘+1)1

𝑎(𝑟+1)2
𝑎𝑟2
⋮

𝑎( 𝑘+1)2

⋯
⋯
⋱

⋯

   

𝑎1𝑛
⋮

𝑎(𝑟+1)𝑛
𝑎𝑟𝑛
⋮

𝑎( 𝑘+1)𝑛]
 
 
 
 
 

 

We may evaluate 𝑑𝑒𝑡 (𝐵)  by cofactor expansion along its first row. 

𝑑𝑒𝑡(𝐵) = 𝑏11𝐵11 + 𝑏12𝐵12 + 𝑏13𝐵13 + ⋯+ 𝑏1𝑛𝐵1𝑛     

To compute 𝑑𝑒𝑡(𝐵), we will need to look at the submatrices 𝐵(𝑖 , 𝑗 ). Our choice 

of 𝑖 = 1 means that 𝐵(1 , 𝑗 ) can be obtained from 𝐴(1 , 𝑗 ) by swapping the rows 

𝑟 and 𝑟 + 1, as we swapped to get 𝐵 from 𝐴. This means that 𝐵(1 , 𝑗 ) is  a 𝑘 × 𝑛  

matrix that is obtained from 𝐴(1 , 𝑗 ) by swapping two rows, and thus, by our 

inductive hypothesis,   𝑑𝑒𝑡𝐵(1 , 𝑗 ) =  −det 𝐴(1 , 𝑗). 
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Now,   

𝑑𝑒𝑡 (𝐵) =  𝑏11(−1)
1+1𝑑𝑒𝑡 𝐵(1 , 1 ) + ⋯+ 𝑏1𝑛(−1)

1+𝑛 𝑑𝑒𝑡 𝐵(1 , 𝑛 )  

                =  𝑎11(−1)
1+1𝑑𝑒𝑡𝐵(1 , 1 ) + ⋯+ 𝑎1𝑛(−1)

1+𝑛 𝑑𝑒𝑡𝐵(1 , 𝑛 )  

               =  𝑎11(−1)
1+1(−1)𝑑𝑒𝑡𝐴(1 , 1 ) + ⋯+ 𝑎1𝑛(−1)

1+𝑛(−1) 𝑑𝑒𝑡𝐴(1 , 𝑛 ) 

                =  −(𝑎11(−1)
1+1𝑑𝑒𝑡𝐴(1 , 1 ) + ⋯+ 𝑎1𝑛(−1)

1+𝑛 𝑑𝑒𝑡𝐴(1 , 𝑛 )) 

det(𝐵) = −det(𝐴) 

This proves the result for the interchange of two adjacent rows in an 𝑚 × 𝑛  

matrix. To see that this result holds for arbitrary row interchanges, we note that 

the interchange of two rows, say row  𝑟  and  𝑠  where  𝑟 < 𝑠 can be performed by  

2(𝑠 − 𝑟) − 1 interchanges of adjacent rows. As the number of interchanges is odd 

and each one changes the sign of the determinant, the net effect is a change of 

sign as desired.                                                                              

 

We are now able to prove the cofactor expansion theorem 2.3.2  

Proof: Let 𝐵 be the matrix obtained by moving the 𝑖𝑡ℎ  row of 𝐴 to the top, using 

𝑖 − 1 interchanges of adjacent rows. Thus 𝑑𝑒𝑡 (𝐵)  = (−1)𝑖−1 det(𝐴), but 

𝑏1𝑗 = 𝑎𝑖𝑗   and   𝐵1𝑗 = 𝐴𝑖𝑗    for   𝑗 ∈ [1, 𝑛]  and so  

det  (𝐵) =

|

|

 

𝑎𝑖1 ⋯ 𝑎𝑖𝑗
𝑎11 ⋯ 𝑎1𝑗
⋮

𝑎(𝑖−1)1
𝑎(𝑖+1)1
⋮
𝑎𝑚1

⋱
⋯
⋯
⋱
⋯

⋮
𝑎(𝑖−1)𝑗
𝑎(𝑖+1)𝑗
⋮
𝑎𝑚𝑗

    

⋯ 𝑎𝑖𝑛
⋯ 𝑎1𝑛

⋱
⋯
⋯
⋱
⋯

⋮
𝑎(𝑖−1)𝑛
𝑎(𝑖+1)𝑛
⋮
𝑎𝑚𝑛

  

|

|

 

Hence,  

det(𝐴) = (−1)𝑖−1 det(𝐵) = (−1)𝑖−1∑(−1)1+𝑗𝑏1𝑗det (𝐵1𝑗

𝑛

𝑗=1

) 
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= (−1)𝑖−1∑(−1)1+𝑗𝑎𝑖𝑗det (𝐴𝑖𝑗

𝑛

𝑗=1

) =∑(−1)𝑖+𝑗𝑎𝑖𝑗det (𝐴𝑖𝑗

𝑛

𝑗=1

) 

Giving the formula for cofactor expansion along the  𝑖𝑡ℎ row.   

 

Corollary 2.4.2 [3] If any two rows of a horizontal matrix are identical, then the 

value of its determinant is zero.    

Proof: Let |𝐴| be the determinant of the horizontal matrix 𝐴. Assume that row 𝑖 

and row 𝑗 in 𝐴  are identical. By Theorem 2.4.1 interchange row 𝑖 and row 𝑗, the 

determinant of the resulting matrix is −|𝐴|. But the original matrix and the 

resulting matrix are the same 

That is  |𝐴| = −|𝐴|. Hence, we obtain  |𝐴| = 0.   

     This theorem represents property (b) in the theorem 2.1.3 

 

The following theorem is from  [3 ], [7 ],  but we give here another proof   

Theorem 2.4.3 Let 𝐴 and 𝐵 be 𝑚 × 𝑛 matrices with 𝑚 ≤ 𝑛, and 𝐵 is obtained 

from 𝐴 by multiplying all the entries of some row of  𝐴  by  a scalar 𝑘. Then 

𝑑𝑒𝑡 (𝐵)  =  𝑘 𝑑𝑒𝑡 (𝐴) 

Proof: If we expand along the  𝑖𝑡ℎ  row of  𝐵  to calculate its determinant, we get   

det(𝐵) = 𝑏𝑖1𝐵𝑖1 +⋯+ (−1)
𝑖+𝑛𝑏𝑖𝑛 𝐵𝑖𝑛 . 

But the reason we have chosen the  𝑖𝑡ℎ  row of  𝐵  is that we know that 𝑏𝑖𝑗  = 𝑘 𝑎𝑖𝑗 

for 𝑗 = 1 , … , 𝑛. Moreover, since the submatrices 𝐵(𝑖 , 𝑗 ) will all have row  𝑖  

removed, and since this is the only place where  𝐵 differs from 𝐴, we see that 

𝐴(𝑖 , 𝑗 ) = 𝐵(𝑖 , 𝑗 ). Thus, the cofactor 𝐵𝑖𝑗 for 𝑏𝑖𝑗  is the same as the cofactor  𝐴𝑖𝑗  

for  𝑎𝑖𝑗  . So we have that  
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det(𝐵) = 𝑘𝑎𝑖1𝐵𝑖1 +⋯+ (−1)
𝑖+𝑛
𝑘 𝑎𝑖𝑛 𝐵𝑖𝑛 

                     = 𝑘 (𝑎𝑖1𝐴𝑖1 +⋯+ (−1)
𝑖+𝑛 𝑎𝑖𝑛 𝐴𝑖𝑛) 

                                                             = 𝑘 det(𝐴)    
         

     If we know the determinant of matrix  𝐴,  we can use this information to calculate the 

determinant of the matrix  𝑘 𝐴,  where  k is a constant.   

Corollary 2.4.4 Let 𝐴 and 𝐵 be an 𝑚× 𝑛 matrices with 𝑚 ≤ 𝑛, and 𝐵 is obtained 

from  𝐴  by multiplying all the entries of  rows of  𝐴  by  a scalar  𝑘.  Then  

 det(𝑘 𝐴) = 𝑘𝑚det (𝐴) 

Proof: Since all 𝑚 rows of 𝐴 are multiplied by the scalar  𝑘  to get  𝑘 𝐴, using the 

above theorem  𝑚  times gives 

 det(𝑘 𝐴) = (𝑘)(𝑘)… (𝑘)det(𝐴)        

                   =  𝑘𝑚 det(𝐴) 

 

The following theorem is from  [3 ],   but we give here another proof   

Theorem 2.4.5 Let 𝐴 and 𝐵 be an 𝑚 × 𝑛 matrices with  𝑚 ≤ 𝑛, and 𝐵 is obtained 

from  𝐴 by adding a multiple of one row of  𝐴  to another row of  𝐴.  Then 

  𝑑𝑒𝑡 (𝐵)  =  𝑑𝑒𝑡 (𝐴) 

 

Proof:  Let  𝐴 =

[
 
 
 
 
 
 
𝑎11 𝑎12 ⋯
⋮ ⋮ ⋱
𝑎𝑠1
⋮
𝑎𝑟1
⋮
𝑎𝑚1

𝑎𝑠2
⋮
𝑎𝑟2
⋮
𝑎𝑚2

⋯
⋱
⋯
⋱
⋯

   

𝑎1𝑛
⋮
𝑎𝑠𝑛
⋮
𝑎𝑟𝑛
⋮
𝑎𝑚𝑛]

 
 
 
 
 
 

,  and suppose that  𝐵  is the matrix obtained from  

𝐴  by adding   𝑘  times  row  𝑠  to row  𝑟,   

  𝐵 =

[
 
 
 
 
 
 

𝑎11 𝑎12 ⋯
⋮ ⋮ ⋱
𝑎𝑠1
⋮

𝑘𝑎𝑠1 + 𝑎𝑟1
⋮
𝑎𝑚1

𝑎𝑠2
⋮

𝑘𝑎𝑠2 + 𝑎𝑟2
⋮
𝑎𝑚2

⋯
⋱
⋯
⋱
⋯

   

𝑎1𝑛
⋮
𝑎𝑠𝑛
⋮

𝑘𝑎𝑠2 + 𝑎𝑟𝑛
⋮
𝑎𝑚𝑛 ]
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Then we can compute the determinant of  𝐵 by expanding along row 𝑟,  getting 

det(𝐵) = 𝑏𝑟1𝐶𝑟1 +⋯+ (−1)
𝑟+𝑛 𝑏𝑟𝑛 𝐶𝑟𝑛 

Our choice of 𝑟 gets us that 𝑏𝑟𝑗 = 𝑘𝑎𝑠𝑗 + 𝑎𝑟𝑗 for all 𝑗 = 1,… , 𝑛.  So, now let's 

consider the submatrices 𝐵(𝑟 , 𝑗 ) and 𝐴(𝑟 , 𝑗 ) are the cofactor of 𝐴 and 𝐵. This 

means that  𝐵(𝑟 , 𝑗 ) can obtained from 𝐴(𝑟 , 𝑗 ) by adding 𝑘 times row 𝑠 to row 𝑟. 

And since  𝐵(𝑟 , 𝑗 ) and  𝐴(𝑟 , 𝑗 ) are  ( 𝑚 − 1) × (𝑛 − 1)  matrices, we get 

  𝑑𝑒𝑡 𝐵(𝑟 , 𝑗 ) =   det 𝐴(𝑟 , 𝑗 ).   That is, 

𝑑𝑒𝑡 (𝐵) =  𝑏𝑟1(−1)
𝑟+1𝑑𝑒𝑡𝐵(𝑟 , 1 ) + ⋯+ 𝑏𝑟𝑛(−1)

𝑟+𝑛 𝑑𝑒𝑡𝐵(𝑟 , 𝑛 )  

                = (𝑘𝑎𝑠1 + 𝑎𝑟1)(−1)
𝑟+1𝑑𝑒𝑡𝐴(𝑟 , 1 ) + ⋯+ 

                +(𝑘𝑎𝑠𝑛 +   𝑎𝑟𝑛)(−1)
𝑟+𝑛 𝑑𝑒𝑡𝐴(𝑟 , 𝑛 )  

 

det(𝐵) = 𝑘𝑎𝑠1(−1)
𝑟+1𝑑𝑒𝑡𝐴(𝑟 , 1 )+ 𝑎𝑟1(−1)

𝑟+1𝑑𝑒𝑡𝐴(𝑟 , 1 )+⋯ 

+ 𝑘𝑎𝑠𝑛(−1)
𝑟+𝑛𝑑𝑒𝑡𝐴(𝑟 , 𝑛 )+ 𝑎𝑟𝑛(−1)

𝑟+𝑛𝑑𝑒𝑡𝐴(𝑟 , 𝑛 ) 

 

= (𝑘𝑎𝑠1(−1)
𝑟+1𝑑𝑒𝑡𝐴(𝑟 , 1 ) + ⋯+ k 𝑎𝑠𝑛(−1)

𝑟+𝑛𝑑𝑒𝑡𝐴(𝑟 , 𝑛 ))

+ 𝑎𝑟1(−1)
𝑟+1𝑑𝑒𝑡𝐴(𝑟 , 1 ) + ⋯ + 𝑎𝑟𝑛(−1)

𝑟+𝑛𝑑𝑒𝑡𝐴(𝑟 , 𝑛 ) 

 

det(𝐵) =

|

|

𝑎11 𝑎12 ⋯
⋮ ⋮ ⋱
𝑎𝑠1
⋮

𝑘𝑎𝑠1
⋮
𝑎𝑚1

𝑎𝑠2
⋮

𝑘𝑎𝑠2
⋮
𝑎𝑚2

⋯
⋱
⋯
⋱
⋯

   

𝑎1𝑛
⋮
𝑎𝑠𝑛
⋮

𝑘𝑎𝑠2
⋮
𝑎𝑚𝑛

|

|

+ 

|

|

𝑎11 𝑎12 ⋯
⋮ ⋮ ⋱
𝑎𝑠1
⋮
𝑎𝑟1
⋮
𝑎𝑚1

𝑎𝑠2
⋮
𝑎𝑟2
⋮
𝑎𝑚2

⋯
⋱
⋯
⋱
⋯

   

𝑎1𝑛
⋮
𝑎𝑠𝑛
⋮
𝑎𝑟𝑛
⋮
𝑎𝑚𝑛

|

|

, 

 any matrix in which one row is a multiple of another has determinant 

zero, thus,  det(𝐵) = 0+ det(𝐴)   

det(𝐵) = det(𝐴) 

     This theorem represents property (d) in the theorem 2.1.3 
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     Since we know how elementary row operations affect the determinant, we can 

compute the determinant of a given matrix by computing the determinant of its 

r.r.e.f (see definition 1.7.1) and taking into account the effect of the row 

operations. The same procedure that we used in books of linear algebra for 

determinant of square matrices. 

      The following table describes the effect of applying row operations on 

computing the determinant of a horizontal matrix.  

 

 Type of ERO Effect on determinant 

1 Add a multiple of one row to another row  No effect 

2 Multiply a row by a constant k  Determinate is multiplied by k 

3 Interchange two rows Determinant changes sign   

 

      We mention here that these properties correspond to their counter parts for   

determinants of square matrices (See Theorem 1.3.5) 

Example 2.4.6   Find the determinant of  𝐴 = [
2 4 6

1 3 5
]   

Solution:  We use row reduction until 𝐴 is in reduced row echelon form. At each 

step we keep track of the effect on the determinant. 

  

|
2 4 6
1 3 5

|  
𝑅1↔𝑅2 : det×(−1)  
→              − |

1 3 5
2 4 6

| 

 

R2−2𝑅1 →R2∶det𝑢𝑛𝑐ℎ𝑎𝑛𝑔𝑒𝑑
→                      − |1 3 5

0 −2 −4
|  
(−
1

2
)𝑅2: 𝑑𝑒𝑡(−

1

2
)

→            − |
1 3 5
0 1 2

| 

 

R1− 3𝑅2 →R1∶det 𝑢𝑛𝑐ℎ𝑎𝑛𝑔𝑒𝑑
→                         

1

2
|
1 0 −1
0 1 2

| 

   
1

2
 |
1 0 −1
0 1 2

| =
1

2
 (1|1 2|−  |0 1|) 

=
1

2
 ((−1)− (−1) ) = 0      
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Note that, the definition of the determinant (see theorem 2.4.1, 2.4.3, 3.1.1) satisfies the 

axioms of determinant function 2.1.2    (*). 

Also, the cofactor definition of the determinant (see theorem 2.3.5, 2.4.2, 2.4.5) satisfies 

the properties of determinant function 2.1.3.  

2.5    Radic's determinant  

      Many definitions have been proposed for the determinant of non-square 

matrices. Earlier works have been mainly focused on utilizing the determinant of 

square blocks to define the determinant of the non-square matrix. They studied 

many useful properties of this determinant. Radic (1969) proposed the following 

efficient definition that has some of the major properties of the determinants of 

square matrices.  

Definition 2.5.1 [14 ]. Let 𝐴 =  (𝑎𝑖𝑗) be an 𝑚× 𝑛 matrix with 𝑚 ≤ 𝑛. The 

determinant of  𝐴   is defined as  

det(𝐴) = ∑ (−1)𝑟+𝑆

1≤𝑗1<⋯<𝑗𝑚≤𝑛

𝑑𝑒𝑡 [

𝑎1𝑗1 ⋯ 𝑎1𝑗𝑚
⋮ ⋱ ⋮
𝑎𝑚𝑗1 ⋯ 𝑎𝑚𝑗𝑚

]               (2.5.1) 

Where   𝑗1, 𝑗2, … , 𝑗𝑚  ∈ 𝑁,   𝑟 = 1 + 2 +⋯+𝑚  and  𝑠 =  𝑗1 + 𝑗2 +⋯+ 𝑗𝑚 .  

If    𝑚 > 𝑛,   then   𝑑𝑒𝑡(𝐴)  =  𝑑𝑒𝑡(𝐴𝑇) . 

The determinant of a square matrix and the determinant 2.5.1 of a 𝑚 ×  𝑛 matrix, 

where  𝑚 ≤ 𝑛, have several common standard properties, including the following: 

(1) If a row of matrix 𝐴 is a linear combination of some other rows, then 

𝑑𝑒𝑡(𝐴) = 0  

(2)  If a row of A is multiplied by a number 𝑘, then the determinant of the 

resulting matrix is equal to  𝑘. 𝑑𝑒𝑡(𝐴). 

(3) Interchanging two rows of 𝐴 results in changing the sign of the 

determinant. 

(4) If the matrix 𝐴 has two identical rows, then 𝑑𝑒𝑡(𝐴) = 0. 
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Proof: Let  𝐴 be an  𝑚 × 𝑛 matrix with 𝑚 ≤ 𝑛, by Radic's definition   

det(𝐴) = ∑ (−1)𝑟+𝑆

1≤𝑗1<⋯<𝑗𝑚≤𝑛

𝑑𝑒𝑡 [

𝑎1𝑗1 ⋯ 𝑎1𝑗𝑚
⋮ ⋱ ⋮
𝑎𝑚𝑗1 ⋯ 𝑎𝑚𝑗𝑚

]                

Where   𝑗1, 𝑗2, … , 𝑗𝑚  ∈ 𝑁,   𝑟 = 1 + 2 +⋯+𝑚  and  𝑠 =  𝑗1 + 𝑗2 +⋯+ 𝑗𝑚 .  

(1)  If a row of matrix 𝐴 is a linear combination of some other rows, then all 

𝑑𝑒𝑡 [

𝑎1𝑗1 ⋯ 𝑎1𝑗𝑚
⋮ ⋱ ⋮

𝑎𝑚𝑗1 ⋯ 𝑎𝑚𝑗𝑚

] contains a row is a linear combination of some other rows, and 

therefore, all  𝑑𝑒𝑡 [

𝑎1𝑗1 ⋯ 𝑎1𝑗𝑚
⋮ ⋱ ⋮

𝑎𝑚𝑗1 ⋯ 𝑎𝑚𝑗𝑚

] = 0,  where   𝑗1, 𝑗2, … , 𝑗𝑚  ∈ 𝑁,  are square matrices, 

hence  𝑑𝑒𝑡(𝐴) = 0 

(2)  Let 𝐴 =

[
 
 
 
 
𝑎11 𝑎12 ⋯
⋮ ⋮ ⋱
𝑎𝑖1
⋮
𝑎𝑚1

𝑎𝑖2
⋮
𝑎𝑚2

⋯
⋱
⋯

   

𝑎1𝑛
⋮
𝑎𝑖𝑛
⋮
𝑎𝑚𝑛]

 
 
 
 

, and suppose that 𝐵 is the matrix obtained 

from  𝐴  by multiplying row 𝑖 by 𝑘  ,  𝐵 =

[
 
 
 
 
𝑎11 𝑎12 ⋯
⋮ ⋮ ⋱
𝑘𝑎𝑖1
⋮
𝑎𝑚1

𝑘𝑎𝑖2
⋮
𝑎𝑚2

⋯
⋱
⋯

   

𝑎1𝑛
⋮

𝑘𝑎𝑖𝑛
⋮
𝑎𝑚𝑛 ]

 
 
 
 

   then, 

det(𝐵) = ∑ (−1)𝑟+𝑆

1≤𝑗1<⋯<𝑗𝑚≤𝑛

𝑑𝑒𝑡

[
 
 
 
 
 
𝑎1𝑗1 𝑎1𝑗2 ⋯

⋮ ⋮ ⋱
𝑘𝑎𝑖𝑗1
⋮
𝑎𝑚𝑗1

𝑘𝑎𝑖𝑗2
⋮
𝑎𝑚𝑗2

⋯
⋱
⋯

   

𝑎1𝑗𝑚
⋮

𝑘𝑎𝑖𝑗𝑚
⋮

𝑎𝑚𝑗𝑚 ]
 
 
 
 
 

 

Since all  𝑑𝑒𝑡

[
 
 
 
 
𝑎1𝑗1 𝑎1𝑗2 ⋯

⋮ ⋮ ⋱
𝑘𝑎𝑖𝑗1
⋮

𝑎𝑚𝑗1

𝑘𝑎𝑖𝑗2
⋮

𝑎𝑚𝑗2

⋯
⋱
⋯

   

𝑎1𝑗𝑚
⋮

𝑘𝑎𝑖𝑗𝑚
⋮

𝑎𝑚𝑗𝑚 ]
 
 
 
 

  where   𝑗1, 𝑗2, … , 𝑗𝑚  ∈ 𝑁  are square matrices, 



 

35 
 

𝑑𝑒𝑡

[
 
 
 
 
𝑎1𝑗1 𝑎1𝑗2 ⋯

⋮ ⋮ ⋱
𝑘𝑎𝑖𝑗1
⋮

𝑎𝑚𝑗1

𝑘𝑎𝑖𝑗2
⋮

𝑎𝑚𝑗2

⋯
⋱
⋯

   

𝑎1𝑗𝑚
⋮

𝑘𝑎𝑖𝑗𝑚
⋮

𝑎𝑚𝑗𝑚 ]
 
 
 
 

= 𝑘𝑑𝑒𝑡

[
 
 
 
 
𝑎1𝑗1 𝑎1𝑗2 ⋯

⋮ ⋮ ⋱
𝑎𝑖𝑗1
⋮

𝑎𝑚𝑗1

𝑎𝑖𝑗2
⋮

𝑎𝑚𝑗2

⋯
⋱
⋯

   

𝑎1𝑗𝑚
⋮
𝑎𝑖𝑗𝑚
⋮

𝑎𝑚𝑗𝑚]
 
 
 
 

, 𝑗1, 𝑗2, … , 𝑗𝑚  ∈ 𝑁   

can be taken 𝑘 out from all determinant square in common to produce 𝑑𝑒𝑡(𝐵) = 𝑘𝑑𝑒𝑡(𝐴). 

(3) Let  𝐴 =

[
 
 
 
 
 
𝑎11 𝑎12 ⋯
⋮ ⋮ ⋱
𝑎𝑟1
⋮
𝑎𝑠1
⋮
𝑎𝑚1

𝑎𝑟2
⋮
𝑎𝑠2
⋮
𝑎𝑚2

⋯
⋱
⋯
⋱
⋯

   

𝑎1𝑛
⋮
𝑎𝑟𝑛
⋮
𝑎𝑠𝑛
⋮
𝑎𝑚𝑛]

 
 
 
 
 

,   and suppose that 𝐵  is the matrix 

 obtained Interchanging two rows of 𝐴,    𝐵 =

[
 
 
 
 
 
𝑎11 𝑎12 ⋯
⋮ ⋮ ⋱
𝑎𝑠1
⋮
𝑎𝑟1
⋮
𝑎𝑚1

𝑎𝑠2
⋮
𝑎𝑟2
⋮
𝑎𝑚2

⋯
⋱
⋯
⋱
⋯

   

𝑎1𝑛
⋮
𝑎𝑠𝑛
⋮
𝑎𝑟𝑛
⋮
𝑎𝑚𝑛]

 
 
 
 
 

 

then, 

det(𝐵) = ∑ (−1)𝑟+𝑆

1≤𝑗1<⋯<𝑗𝑚≤𝑛

𝑑𝑒𝑡

[
 
 
 
 
 
 
𝑎1𝑗1 𝑎1𝑗2 ⋯

⋮ ⋮ ⋱
𝑎𝑠𝑗1
⋮
𝑎𝑟𝑗1
⋮
𝑎𝑚𝑗1

𝑎𝑠𝑗2
⋮
𝑎𝑟𝑗2
⋮
𝑎𝑚𝑗2

⋯
⋱
⋯
⋱
⋯

   

𝑎1𝑗𝑚
⋮
𝑎𝑠𝑗𝑚
⋮
𝑎𝑟𝑗𝑚
⋮

𝑎𝑚𝑗𝑚]
 
 
 
 
 
 

, 

Since all  𝑑𝑒𝑡

[
 
 
 
 
 
 
𝑎1𝑗1 𝑎1𝑗2 ⋯

⋮ ⋮ ⋱
𝑎𝑠𝑗1
⋮
𝑎𝑟𝑗1
⋮

𝑎𝑚𝑗1

𝑎𝑠𝑗2
⋮
𝑎𝑟𝑗2
⋮

𝑎𝑚𝑗2

⋯
⋱
⋯
⋱
⋯

   

𝑎1𝑗𝑚
⋮
𝑎𝑠𝑗𝑚
⋮

𝑎𝑟𝑗𝑚
⋮

𝑎𝑚𝑗𝑚]
 
 
 
 
 
 

  where   𝑗1, 𝑗2, … , 𝑗𝑚  ∈ 𝑁  are square matrices, 

𝑑𝑒𝑡

[
 
 
 
 
 
 
𝑎1𝑗1 𝑎1𝑗2 ⋯

⋮ ⋮ ⋱
𝑎𝑠𝑗1
⋮
𝑎𝑟𝑗1
⋮

𝑎𝑚𝑗1

𝑎𝑠𝑗2
⋮
𝑎𝑟𝑗2
⋮

𝑎𝑚𝑗2

⋯
⋱
⋯
⋱
⋯

   

𝑎1𝑗𝑚
⋮
𝑎𝑠𝑗𝑚
⋮

𝑎𝑟𝑗𝑚
⋮

𝑎𝑚𝑗𝑚]
 
 
 
 
 
 

= −𝑑𝑒𝑡

[
 
 
 
 
 
 
𝑎1𝑗1 𝑎1𝑗2 ⋯

⋮ ⋮ ⋱
𝑎𝑟𝑗1
⋮
𝑎𝑠𝑗1
⋮

𝑎𝑚𝑗1

𝑎𝑟𝑗2
⋮
𝑎𝑠𝑗2
⋮

𝑎𝑚𝑗2

⋯
⋱
⋯
⋱
⋯

   

𝑎1𝑗𝑚
⋮

𝑎𝑟𝑗𝑚
⋮

𝑎𝑠𝑗𝑚
⋮

𝑎𝑚𝑗𝑚]
 
 
 
 
 
 

, 𝑗1, 𝑗2, … , 𝑗𝑚  ∈ 𝑁   
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can be taken sign negative out from all determinant square in common to produce 

𝑑𝑒𝑡(𝐵) = −𝑑𝑒𝑡(𝐴). 

(4)  Let 𝐴 =

[
 
 
 
 
 
𝑎11 𝑎12 ⋯
⋮ ⋮ ⋱
𝑎𝑟1
⋮
𝑎𝑟1
⋮
𝑎𝑚1

𝑎𝑟2
⋮
𝑎𝑟2
⋮
𝑎𝑚2

⋯
⋱
⋯
⋱
⋯

   

𝑎1𝑛
⋮
𝑎𝑟𝑛
⋮
𝑎𝑟𝑛
⋮
𝑎𝑚𝑛]

 
 
 
 
 

,   then  

det(𝐴) = ∑ (−1)𝑟+𝑆

1≤𝑗1<⋯<𝑗𝑚≤𝑛

𝑑𝑒𝑡

[
 
 
 
 
 
 
𝑎1𝑗1 𝑎1𝑗2 ⋯

⋮ ⋮ ⋱
𝑎𝑟𝑗1
⋮
𝑎𝑟𝑗1
⋮
𝑎𝑚𝑗1

𝑎𝑟𝑗2
⋮
𝑎𝑟𝑗2
⋮
𝑎𝑚𝑗2

⋯
⋱
⋯
⋱
⋯

   

𝑎1𝑗𝑚
⋮
𝑎𝑟𝑗𝑚
⋮
𝑎𝑟𝑗𝑚
⋮

𝑎𝑚𝑗𝑚]
 
 
 
 
 
 

                

Since all  𝑑𝑒𝑡

[
 
 
 
 
 
 
𝑎1𝑗1 𝑎1𝑗2 ⋯

⋮ ⋮ ⋱
𝑎𝑟𝑗1
⋮
𝑎𝑟𝑗1
⋮

𝑎𝑚𝑗1

𝑎𝑟𝑗2
⋮
𝑎𝑟𝑗2
⋮

𝑎𝑚𝑗2

⋯
⋱
⋯
⋱
⋯

   

𝑎1𝑗𝑚
⋮

𝑎𝑟𝑗𝑚
⋮

𝑎𝑟𝑗𝑚
⋮

𝑎𝑚𝑗𝑚]
 
 
 
 
 
 

  where   𝑗1, 𝑗2, … , 𝑗𝑚  ∈ 𝑁  are square matrices, 

 

then  all  𝑑𝑒𝑡

[
 
 
 
 
 
 
𝑎1𝑗1 𝑎1𝑗2 ⋯

⋮ ⋮ ⋱
𝑎𝑟𝑗1
⋮
𝑎𝑟𝑗1
⋮

𝑎𝑚𝑗1

𝑎𝑟𝑗2
⋮
𝑎𝑟𝑗2
⋮

𝑎𝑚𝑗2

⋯
⋱
⋯
⋱
⋯

   

𝑎1𝑗𝑚
⋮

𝑎𝑟𝑗𝑚
⋮

𝑎𝑟𝑗𝑚
⋮

𝑎𝑚𝑗𝑚]
 
 
 
 
 
 

= 0,   hence 𝑑𝑒𝑡(𝐴) = 0 

 

(5)  We need to show that radic definition of the determinant satisfies the axioms 

(A3) of determinant function 

Let  𝐴 = [

𝑎11 𝑎12 ⋯
𝑎21 𝑎22 ⋯
⋮
𝑎𝑚1

⋮
𝑎𝑚2

⋱
⋯

   

𝑎1𝑛
𝑎2𝑛
⋮
𝑎𝑚𝑛

],      𝐵 = [

𝑏11 𝑏12 ⋯
𝑎21 𝑎22 ⋯
⋮
𝑎𝑚1

⋮
𝑎𝑚2

⋱
⋯

   

𝑏1𝑛
𝑎2𝑛
⋮
𝑎𝑚𝑛

],  

                𝐶 = [

𝑎11 + 𝑏11 𝑎12 + 𝑏12 ⋯
𝑎21 𝑎22 ⋯
⋮
𝑎𝑚1

⋮
𝑎𝑚2

⋱
⋯

   

𝑎1𝑛 + 𝑏1𝑛
𝑎2𝑛
⋮
𝑎𝑚𝑛

] 
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Then,  

det(𝐶) = ∑ (−1)𝑟+𝑆

1≤𝑗1<⋯<𝑗𝑚≤𝑛

𝑑𝑒𝑡

[
 
 
 
 
𝑎1𝑗1 + 𝑏1𝑗1

𝑎1𝑗2 + 𝑏1𝑗2
⋯

𝑎2𝑗1 𝑎2𝑗2 ⋯

⋮
𝑎𝑚𝑗1

⋮
𝑎𝑚𝑗2

⋱
⋯

   

𝑎1𝑗𝑚 + 𝑏1𝑗𝑚
𝑎2𝑗𝑚
⋮

𝑎𝑚𝑗𝑚 ]
 
 
 
 

  

Since all  𝑑𝑒𝑡

[
 
 
 
𝑎1𝑗1 + 𝑏1𝑗1 𝑎1𝑗2 + 𝑏1𝑗2 ⋯
𝑎2𝑗1 𝑎2𝑗2 ⋯

⋮
𝑎𝑚𝑗1

⋮
𝑎𝑚𝑗2

⋱
⋯

   

𝑎1𝑗𝑚 + 𝑏1𝑗𝑚
𝑎2𝑗𝑚
⋮

𝑎𝑚𝑗𝑚 ]
 
 
 
  where   𝑗1, 𝑗2, … , 𝑗𝑚  ∈ 𝑁  are 

square matrices, 

Therefore, 𝑑𝑒𝑡

[
 
 
 
𝑎1𝑗1 + 𝑏1𝑗1 𝑎1𝑗2 + 𝑏1𝑗2 ⋯
𝑎2𝑗1 𝑎2𝑗2 ⋯

⋮
𝑎𝑚𝑗1

⋮
𝑎𝑚𝑗2

⋱
⋯

   

𝑎1𝑗𝑚 + 𝑏1𝑗𝑚
𝑎2𝑗𝑚
⋮

𝑎𝑚𝑗𝑚 ]
 
 
 
 

= 𝑑𝑒𝑡 [

𝑎1𝑗1 𝑎1𝑗2 ⋯
𝑎2𝑗1 𝑎2𝑗2 ⋯

⋮
𝑎𝑚𝑗1

⋮
𝑎𝑚𝑗2

⋱
⋯

   

𝑎1𝑗𝑚
𝑎2𝑗𝑚
⋮

𝑎𝑚𝑗𝑚

] + 𝑑𝑒𝑡

[
 
 
 
𝑏1𝑗1 𝑏1𝑗2 ⋯
𝑎2𝑗1 𝑎2𝑗2 ⋯

⋮
𝑎𝑚𝑗1

⋮
𝑎𝑚𝑗2

⋱
⋯

   

𝑏1𝑗𝑚
𝑎2𝑗𝑚
⋮

𝑎𝑚𝑗𝑚]
 
 
 
 

Hence,  det(𝐶) = 

∑ (−1)𝑟+𝑆(
1≤𝑗1<⋯<𝑗𝑚≤𝑛

𝑑𝑒𝑡

[
 
 
 
 
𝑎1𝑗1 𝑎1𝑗2 ⋯
𝑎2𝑗1 𝑎2𝑗2 ⋯

⋮
𝑎𝑚𝑗1

⋮
𝑎𝑚𝑗2

⋱
⋯

   

𝑎1𝑗𝑚
𝑎2𝑗𝑚
⋮

𝑎𝑚𝑗𝑚]
 
 
 
 

+ 𝑑𝑒𝑡

[
 
 
 
 
𝑏1𝑗1 𝑏1𝑗2 ⋯
𝑎2𝑗1 𝑎2𝑗2 ⋯

⋮
𝑎𝑚𝑗1

⋮
𝑎𝑚𝑗2

⋱
⋯

   

𝑏1𝑗𝑚
𝑎2𝑗𝑚
⋮

𝑎𝑚𝑗𝑚]
 
 
 
 

) 

= det(𝐴) + det (𝐵) 

 

Note that, the definition of the determinant (see properties 2,3,5) satisfies the 

axioms of determinant function 2.1.2    (**).  

           

     Also, the Radic definition of the determinant (see properties  1.4 ) satisfies the 

properties of determinant function 2.1.3.  
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Corollary 2.5.2 The determinant obtained by cofactor expansion and Radic 

definition are the same. 

Proof: the cofactor definition and Radic definition are determinant function, since 

the four characterizing properties of determinant listed in definition 2.1.2 are 

satisfied by the cofactor definition 2.3.1 and Radic definition 2.5.1 of 

determinants, and because of uniqueness of determinant function (see theorem 

2.1.4), the cofactor definition and Radic definition are the same. ( see * , **)     

 

Example 2.5.3    Evaluate the determinant of   𝐴 =  [𝑎1 𝑎2 𝑎3]   using Radic definition 

Solution:   |𝐴| = (−1)1+1𝑎1 + (−1)
1+2𝑎2 + (−1)

1+3𝑎3 

                             =  𝑎1 − 𝑎2 + 𝑎3  

Example 2.5.4  Evaluate the determinant of  𝐴 = [
𝑎1 𝑎2 𝑎3
𝑏1 𝑏2 𝑏3

]  using Radic definition 

Solution : 

|𝐴| = (−1)(3)+(1+2) |
𝑎1 𝑎2
𝑏1 𝑏2

| + (−1)(3)+(1+3) |
𝑎1 𝑎3
𝑏1 𝑏3

| + (−1)(3)+(2+3) |
𝑎2 𝑎3
𝑏2 𝑏3

|  

      = |
𝑎1 𝑎2
𝑏1 𝑏2

| − |
𝑎1 𝑎3
𝑏1 𝑏3

| + |
𝑎2 𝑎3
𝑏2 𝑏3

| 

     The evaluation of the determinant of an  𝑚 × 𝑛  matrix (𝑚 ≤ 𝑛) using Radic's 

definition reduces to evaluation of    (𝑛𝑚)  determinant of    𝑚 ×𝑚   matrices.   

 

Note,   Let  A1 , A2 , … , An    be columns of  the matrix   𝐴𝑚×𝑛 (𝑚 ≤  𝑛).   Then  Radic’s 

determinant of  𝐴 is a function in the columns of  𝐴  and can be written in the form  

𝑑𝑒𝑡(𝐴) = 𝑑𝑒𝑡(𝐴1 , … , 𝐴𝑛) =  |𝐴1 , … , 𝐴𝑛| 
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Theorem 2.5.5 [13 ] Let 𝐴 =  [𝐴1 , … , 𝐴𝑛] be  2 × 𝑛 matrix with 𝑛 ≥ 2. Then 

𝑑𝑒𝑡(𝐴1 , … , 𝐴𝑛) = 𝑑𝑒𝑡(𝐴1 , 𝐴2  −  𝐴3 + 𝐴4  … + (−1)
𝑛 𝐴𝑛) + 

                                   𝑑𝑒𝑡(𝐴2 , 𝐴3  −  𝐴4 + … + (−1)
𝑛−1 𝐴𝑛) + ⋯+

                                    𝑑𝑒𝑡(𝐴𝑛−1 , 𝐴𝑛)   

Proof: By principle of mathematical induction, (P.M.I) 

Base case,    𝑛 = 3 , 

𝑑𝑒𝑡(𝐴1 , 𝐴2 , 𝐴3 ) = 𝑑𝑒𝑡(𝐴1 , 𝐴2 ) − 𝑑𝑒𝑡(𝐴1 , 𝐴3 ) + 𝑑𝑒𝑡(𝐴2 , 𝐴3 ) 

Since 𝑑𝑒𝑡(𝐴1 , 𝐴2 ), 𝑑𝑒𝑡(𝐴1 , 𝐴3 ) are square then 

 𝑑𝑒𝑡(𝐴1 , 𝐴2 ) − 𝑑𝑒𝑡(𝐴1 , 𝐴3 ) = 𝑑𝑒𝑡(𝐴1 , 𝐴2 − 𝐴3 )  

Then,              𝑑𝑒𝑡(𝐴1 , 𝐴2 , 𝐴3 ) = 𝑑𝑒𝑡(𝐴1 , 𝐴2 − 𝐴3 ) + 𝑑𝑒𝑡(𝐴2 , 𝐴3 ) 

Induction hypothesis:  We assume that it is true for  𝑛 = 𝑘  

 𝑑𝑒𝑡(𝐴1 , … , 𝐴𝑘) = 𝑑𝑒𝑡(𝐴1 , 𝐴2  −  𝐴3 + 𝐴4  … + (−1)
𝑘 𝐴𝑘) + 

                                   𝑑𝑒𝑡(𝐴2 , 𝐴3  −  𝐴4 + … + (−1)
𝑘−1 𝐴𝑘) + ⋯+  𝑑𝑒𝑡(𝐴𝑘−1 , 𝐴𝑘)     

We will  show  that  the  identity  holds  for    𝑛 = 𝑘 + 1  

𝑑𝑒𝑡(𝐴1 , … , 𝐴𝑘+1) = (−1)
(3)+(3)𝑑𝑒𝑡(𝐴1 , 𝐴2 ) + (−1)

(3)+(4)𝑑𝑒𝑡(𝐴1 , 𝐴3 ) +

(−1)(3)+(5)𝑑𝑒𝑡(𝐴1 , 𝐴4 ) + (−1)
(3)+(6) 𝑑𝑒𝑡(𝐴1 , 𝐴5 ) + ⋯+

(−1)(3)+(1+𝑘+1)𝑑𝑒𝑡(𝐴1 , 𝐴𝑘+1 ) + (−1)
(3)+(5) 𝑑𝑒𝑡(𝐴2 , 𝐴3 ) +

(−1)(3)+(6)𝑑𝑒𝑡(𝐴2 , 𝐴4 ) + (−1)
(3)+(7)𝑑𝑒𝑡(𝐴2 , 𝐴5 ) + ⋯+

  (−1)(3)+(2+𝑘+1)𝑑𝑒𝑡(𝐴2 , 𝐴𝑘+1 ) + ⋯+ (−1)
(3)+(𝑘+𝑘+1)𝑑𝑒𝑡(𝐴𝑘 , 𝐴𝑘+1 )    

  =  𝑑𝑒𝑡(𝐴1 , 𝐴2  − 𝐴3 + 𝐴4  … + (−1)
𝑘+1 𝐴𝑘+1) 

+ 𝑑𝑒𝑡(𝐴2 , 𝐴3  −  𝐴4 + … + (−1)
𝑘 𝐴𝑘+1) + ⋯+  𝑑𝑒𝑡(𝐴𝑘 , 𝐴𝑘+1)     
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     Theorem 2.5.5 converts the computations of the determinant of an 2 × 𝑛 

matrix according to Radic definition which needs computing (𝑛2)  determinants to   

computation of   𝑛 − 1 determinants of  size  2 × 2. 

  (   (𝑛
2
) =

𝑛(𝑛−1)

2
 >  𝑛 − 1  ) 

Example 2.5.6  Evaluate the determinant of   𝐴= [
1 3 5
2 4 6

]  using theorem  2.5.5 

Then,     𝑑𝑒𝑡(𝐴) =  |
1 −2
2 −2

| + |
3 5
4 6

|  = (−2 + 4 ) + ( 18 − 20 ) = 0  .  

 

Theorem 2.5.7 [13 ] Let 𝐴 =  [𝐴1 , … , 𝐴𝑛] be  2 × 𝑛 matrix with 𝑛 ≥ 2. Then 

𝑑𝑒𝑡(𝐴1 ,  𝐴2 , … , 𝐴𝑛−1 , 𝐴𝑛) = 𝑑𝑒𝑡(𝐴1 ,  𝐴2 , … , 𝐴𝑛−1 ) + 

                                                     (−1)𝑛𝑑𝑒𝑡(𝐴1 −  𝐴2 + …+ (−1)
𝑛 𝐴𝑛−1 , 𝐴𝑛)  

Proof: By principle of mathematical induction, (P.M.I) 

Base case:  𝑛 = 3,   

𝑑𝑒𝑡(𝐴1 ,  𝐴2 , 𝐴3) = 𝑑𝑒𝑡(𝐴1 ,  𝐴2  ) −  𝑑𝑒𝑡(𝐴1 ,  𝐴3  ) +  𝑑𝑒𝑡(𝐴2 , 𝐴3)       

                                 = 𝑑𝑒𝑡(𝐴1 ,  𝐴2  ) −  𝑑𝑒𝑡(𝐴1 −  𝐴2 , 𝐴3) 

Induction hypothesis:  We assume that it is true for  𝑛 = 𝑘  

 𝑑𝑒𝑡(𝐴1 , … , 𝐴𝑘)

= (−1)3+3𝑑𝑒𝑡(𝐴1 , 𝐴2 ) + (−1)
3+4𝑑𝑒𝑡(𝐴1 , 𝐴3 ) + (−1)

3+5𝑑𝑒𝑡(𝐴1 , 𝐴4 )  

+ ⋯+ (−1)4+𝑘𝑑𝑒𝑡(𝐴1 , 𝐴𝑘  ) + (−1)
3+5𝑑𝑒𝑡(𝐴2 , 𝐴3 )

+ (−1)3+6𝑑𝑒𝑡(𝐴2 , 𝐴4 ) + (−1)
3+7𝑑𝑒𝑡(𝐴2 , 𝐴5 ) + ⋯

+ (−1)5+𝑘𝑑𝑒𝑡(𝐴2 , 𝐴𝑘  ) + ⋯+ (−1)
2+2𝑘𝑑𝑒𝑡(𝐴𝑘−1 , 𝐴𝑘 ) 

                 = 𝑑𝑒𝑡(𝐴1 , 𝐴2 , 𝐴3 , … , 𝐴𝑘−1) + (−1)
𝑘 𝑑𝑒𝑡(𝐴1 − 𝐴2 + … + (−1)

𝑘 𝐴𝑘−1, 𝐴𝑘)     
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We will show that the equality holds for    𝑛 = 𝑘 + 1  

𝑑𝑒𝑡(𝐴1 , … , 𝐴𝑘+1) = (−1)
3+3𝑑𝑒𝑡(𝐴1 , 𝐴2 ) + (−1)

3+4𝑑𝑒𝑡(𝐴1 , 𝐴3 ) +

(−1)3+5𝑑𝑒𝑡(𝐴1 , 𝐴4 ) + ⋯+ (−1)
4+𝑘𝑑𝑒𝑡(𝐴1 , 𝐴𝑘 ) + (−1)

3+𝑘𝑑𝑒𝑡(𝐴1 , 𝐴𝑘+1 ) +

 +(−1)3+5 𝑑𝑒𝑡(𝐴2 , 𝐴3 ) + (−1)
3+6𝑑𝑒𝑡(𝐴2 , 𝐴4 ) + (−1)

3+7𝑑𝑒𝑡(𝐴2 , 𝐴5 ) +

⋯+ (−1)5+𝑘𝑑𝑒𝑡(𝐴2 , 𝐴𝑘 ) + (−1)
6+𝑘𝑑𝑒𝑡(𝐴2 , 𝐴𝑘+1 ) + ⋯+

(−1)4+2𝑘𝑑𝑒𝑡(𝐴𝑘 , 𝐴𝑘+1 )  

= 𝑑𝑒𝑡(𝐴1 , 𝐴2 , 𝐴3 , … , 𝐴𝑘−1) + (−1)
𝑘 𝑑𝑒𝑡(𝐴1 − 𝐴2 + … + (−1)

𝑘 𝐴𝑘−1, 𝐴𝑘)

+ (−1)𝑘+1𝑑𝑒𝑡(𝐴1 , 𝐴𝑘+1 ) + (−1)
𝑘+1𝑑𝑒𝑡(𝐴2 , 𝐴𝑘+1 ) + ⋯

+ 𝑑𝑒𝑡(𝐴𝑘 , 𝐴𝑘+1 ) 

  = 𝑑𝑒𝑡(𝐴1 , 𝐴2 , 𝐴3 , … , 𝐴𝑘−1) + (−1)
𝑘 𝑑𝑒𝑡(𝐴1 − 𝐴2 + … + (−1)

𝑘 𝐴𝑘−1, 𝐴𝑘)

+ (−1)𝑘+1𝑑𝑒𝑡(𝐴1 − 𝐴2 + … + (−1)
𝑘+1 𝐴𝑘 , 𝐴𝑘+1) 

  𝑑𝑒𝑡(𝐴1 , … , 𝐴𝑘+1)  = 𝑑𝑒𝑡(𝐴1 , 𝐴2 , 𝐴3 , … , 𝐴𝑘) 

                                          +(−1)𝑘+1 𝑑𝑒𝑡(𝐴1 −𝐴2 + … +  (−1)
𝑘+1 𝐴𝑘, 𝐴𝑘+1)     

 

Example 2.5.8. Evaluate the determinant of  𝐴 = [
1 3 5
2 4 6

], using theorem 2.5.7 

Solution :  

  |𝐴| = |
1 3
2 4

| + (-1)
(3)

 |−2 5
−2 6

|  = ( 4 – 6 ) – (-12 + 10 ) = 0 
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Chapter Three 

Properties for non-square determinant 

      In this chapter we study Radic definition for determinant of a rectangular 

matrix in more detailed way. We present new identities for the determinant of a 

rectangular matrix. We develop some important properties of this determinant. 

We generalize several classical important determinant identities, and describe 

how the determinant is affected by operation on columns such as interchanging 

columns, reversing columns or decomposing a single column. 

     Although we present here properties of Radic determinant but we have proved 

in chapter 2 that Radic determinant and the determinant by cofactor expansion 

give the same value. So, we may use the term determinant to mean any of the 

common values. 

3.1     Properties for determinant of a rectangular matrix.  

      In this section we will be mainly concerned with the properties of the 

determinants of square matrices (theorem 1.3.5) that are still valid when one goes 

to rectangular matrices. 

The following theorem is from [3 ],  but we give here another proof   

Theorem 3.1.1  If every element in any fixed row of a horizontal matrix can be 

expressed as the sum of tow quantities then the given horizontal matrix 

determinant can be expressed as the sum of tow horizontal matrix determinant of 

the same order with the elements of the remaining rows of the both being the 

same.    

Proof : Let  𝐴 =  [

𝛼 + 𝑎11 𝛽 + 𝑎12
𝑎21 𝑎22
⋮
𝑎𝑚1

⋮
𝑎𝑚2

     

… 𝛿 + 𝑎1𝑛
… 𝑎2𝑛
⋱
…

⋮
𝑎𝑚𝑛

], 

By cofactor expansion along first row of   det (𝐴) 
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 | 𝐴 | = (𝛼+ 𝑎
11
)  |
𝑎22 … 𝑎2𝑛
⋮
𝑎𝑚2

⋱
…

⋮
𝑎𝑚𝑛

|− (𝛽 + 𝑎12)  |
𝑎21 … 𝑎2𝑛
⋮
𝑎𝑚1

⋱
…

⋮
𝑎𝑚𝑛

|+

 (𝛾 + 𝑎
13
) |
𝑎21 … 𝑎2𝑛
⋮
𝑎𝑚1

⋱
…

⋮
𝑎𝑚𝑛

|+⋯+(−1)
1+𝑛 (𝛿 + 𝑎1𝑛) |

𝑎21 … 𝑎2(𝑛−1)
⋮
𝑎𝑚1

⋱
…

⋮
𝑎𝑚(𝑛−1)

|    

det(𝐴) =

(𝛼  |
𝑎22 … 𝑎2𝑛
⋮
𝑎𝑚2

⋱
…

⋮
𝑎𝑚𝑛

|−  𝛽 |
𝑎21 … 𝑎2𝑛
⋮
𝑎𝑚1

⋱
…

⋮
𝑎𝑚𝑛

|+  𝛾 |
𝑎21 … 𝑎2𝑛
⋮
𝑎𝑚1

⋱
…

⋮
𝑎𝑚𝑛

|+

⋯+(−1)1+𝑛 𝛿 |

𝑎21 … 𝑎2(𝑛−1)
⋮
𝑎𝑚1

⋱
…

⋮
𝑎𝑚(𝑛−1)

|)+ (𝑎11   |
𝑎22 … 𝑎2𝑛
⋮
𝑎𝑚2

⋱
…

⋮
𝑎𝑚𝑛

|− 𝑎12  |
𝑎21 … 𝑎2𝑛
⋮
𝑎𝑚1

⋱
…

⋮
𝑎𝑚𝑛

|+

 𝑎13 |
𝑎21 … 𝑎2𝑛
⋮
𝑎𝑚1

⋱
…

⋮
𝑎𝑚𝑛

|+⋯+(−1)1+𝑛 𝑎1𝑛 |

𝑎21 … 𝑎2(𝑛−1)
⋮
𝑎𝑚1

⋱
…

⋮
𝑎𝑚(𝑛−1)

|)    

= |

𝛼 𝛽
𝑎21 𝑎22
⋮
𝑎𝑚1

⋮
𝑎𝑚2

     

… 𝛿
… 𝑎2𝑛
⋱
…

⋮
𝑎𝑚𝑛

|   +   |

𝑎11 𝑎12
𝑎21 𝑎22
⋮
𝑎𝑚1

⋮
𝑎𝑚2

     

… 𝑎1𝑛
… 𝑎2𝑛
⋱
…

⋮
𝑎𝑚𝑛

| 

Note: 1-  is those axiom A3 in definition 2.1.2 

2- This property  is valid  for square matrices  as well ( see theorem 1.3.6) 

Theorem 3.1.2 [1 ].  Let  1 ≤ 𝑚 ≤ 𝑛,  and 𝐴  be  an  𝑚 ×𝑚  matrix,  and  𝐵   be 

an   𝑚 × 𝑛   matrix,  then  𝑑𝑒𝑡(𝐴 𝐵) = det(A) det(B) 

Proof:  Let 𝐵 =  [𝐵1, … , 𝐵𝑛],  then 

𝑑𝑒𝑡(𝐴 𝐵) = det(A [𝐵1, … , 𝐵𝑛] ) = 𝑑et ([A B1, … , A B𝑛]) 

By Radic definition 

det(𝐴 𝐵) = ∑ (−1)𝑟+𝑆

1≤𝑗1<⋯<𝑗𝑚≤𝑛

𝑑𝑒𝑡 ([A Bj1 , … , A Bj𝑚])   

Where    𝑟 = 1 + 2 +⋯+𝑚    and     𝑠 =  𝑗1 + 𝑗2 +⋯+ 𝑗𝑚  
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det(𝐴 𝐵)  = ∑ (−1)
𝑟+𝑆

1≤𝑗1<⋯<𝑗𝑚≤𝑛

det(A) 𝑑𝑒𝑡 ([Bj1 , … , Bj𝑚])   

Since Radic definition gives square matrix (see theorem1.3.5.f) 

= det(A) ∑ (−1)𝑟+𝑆

1≤𝑗1<⋯<𝑗𝑚≤𝑛

  𝑑𝑒𝑡 ([Bj1 , … , Bj𝑚])  

                                      = det(A)det(B)   

Example 3.1.3   Prove   theorem 3.1.2  for   𝐴 =  [
2 2
−1 3

] ,        𝐵 = [
3 5 7
2 1 4

] 

Then,  𝐴 𝐵 =  [
10 12 22
3 −2 5

],       

det(A) = 8,    det(B) = 8,     det(𝐴.𝐵) = 64 

𝑑𝑒𝑡(𝐴 𝐵) = det(A) det(B) = 8 × 8 = 64  

     A sufficient condition for the equation is that 𝐴 is square and 𝐴 𝐵 is defined. 

We note here that 𝐵 𝐴 is not defined. 

     In fact there is no determinant function that satisfies 𝑑𝑒𝑡(𝐴𝐵) = 𝑑𝑒𝑡(𝐴)𝑑𝑒𝑡(𝐵)  for all 

matrices 𝐴, 𝐵. 

Example 3.1.4    Let     𝐴 = [
1 0 2
−1 1 1

]  ,        𝐵 = [
1 2 3
3 0 −2
2 1 0

] 

Then,     𝐴 𝐵 =  [
5 3 3
4 0 −5

],       

det(A) = −4,    det(B) = 7,     det(𝐴𝐵) = 10 

det(A) det(B) = −28 ≠ 𝑑𝑒𝑡(𝐴 𝐵)   

     We notice from this example that the determinant is not distributed in the case 

that the first matrix is rectangular, so for the theorem to be true, the first matrix 

must be the square. 
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Example 3.1.5    Let     𝐴 = [
1 1 0
2 3 0

]  ,        𝐵 = [
0 1
2 0
−4 2

] 

Then,   𝐴 𝐵 =  [
2 1
6 2

],     𝐵 𝐴 = [
2 3 0
2 2 0
0 2 0

]  

det(A) = 1,    det(B) = −2,     det(𝐴 𝐵) = −2,    det(𝐵 𝐴) = 0 

Now, det(𝐴 𝐵) = det(A) det(B) = det(B) det(A) ≠ 𝑑𝑒𝑡(𝐵 𝐴) 

                  −2 = (1)(−2) = (−2)(1) ≠ 0   

Lemma 3.1.6  [1 ]  Let 𝐴  be an  𝑚 × 𝑛 matrix,   1 ≤ 𝑚 < 𝑛,   and  

𝑚 + 𝑛  odd,  then    
𝑑𝑒𝑡

1≤𝑖≤𝑚
1≤𝑗≤𝑛

[(𝑎𝑖𝑗)] = 0,     where    𝑎1𝑗 = 1   for all   𝑗,    1 ≤ 𝑗 ≤ 𝑛 .      

Proof:  by induction on even integer  𝑛  for all odd integer numbers  𝑚, 

 1 ≤ 𝑚 < 𝑛.      

Base case  :  If    𝑛 = 2 ,   then  𝑚 = 1    we have   det([1 , 1]) = 1− 1 = 0 

Induction hypothesis :  We assume that it is  true  for  even  𝑛  and  odd   𝑚,  

1 ≤ 𝑚 < 𝑛,    

𝐷 = 𝑑𝑒𝑡[𝐴1 , 𝐴2, … , 𝐴𝑛] =   𝑑𝑒𝑡 [
1 1  … 1
𝐵1 𝐵2   … 𝐵𝑛

]  where   𝐵𝑗 = [

𝑎2,𝑗
⋮
𝑎𝑚,𝑗

] ,   (1 ≤ 𝑗 ≤ 𝑛) 

Expanding the determinant with respect to the first row yields  

𝐷 = 𝑑𝑒𝑡[𝐵2 , 𝐵3, … , 𝐵𝑛] − 𝑑𝑒𝑡[𝐵1 , 𝐵3, … , 𝐵𝑛] + ⋯+ (−1)
𝑛+1𝑑𝑒𝑡[𝐵1 , 𝐵2, … , 𝐵𝑛−1] = 0 

Induction step : We  will  show  that  the  identity  holds  for    𝑛 + 2  

( which is even number )  and  all odd   𝑚,     1 ≤ 𝑚 < 𝑛 + 2  

𝐷 = 𝑑𝑒𝑡[𝐴1 , 𝐴2, … , 𝐴𝑛 , 𝐴𝑛+1 , 𝐴𝑛+2] = 𝑑𝑒𝑡 [
1 1  … 1
𝐵1 𝐵2   … 𝐵𝑛

1 1
       𝐵𝑛+1 𝐵𝑛+2

] 

Expanding the determinant with respect to the first row yields  
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𝐷  = 𝑑𝑒𝑡[𝐵2 , 𝐵3, … , 𝐵𝑛+2] − 𝑑𝑒𝑡[𝐵1 , 𝐵3, … , 𝐵𝑛+2] + ⋯

+ (−1)𝑛+1𝑑𝑒𝑡[𝐵1 , 𝐵2, … , 𝐵𝑛−1, 𝐵𝑛+1, 𝐵𝑛+2]   

+  (−1)1+𝑛+1𝑑𝑒𝑡[𝐵1 , 𝐵2, … , 𝐵𝑛, 𝐵𝑛+2] + (−1)
1+𝑛+2𝑑𝑒𝑡[𝐵1 , 𝐵2, … , 𝐵𝑛+1] 

By theorem 2.5.7, all the resulting determinants are deleted from each other. 

  Then , 𝐷 = 0.    

Another case can be established in the same way(odd  𝑛  and  even   𝑚). 

     This property does not apply if the matrices are square ( 𝑛 × 𝑛) because the 

sum of the order is even (whether  𝑛 is odd or even) 

Example 3.1.7   Evaluate the determinant of   𝐴 = [
1 1
2 3

]  and   𝐵 = [
1 1 1
4 5 6

] 

Then,  det(A) = 1 ≠ 0,  and     𝑑𝑒𝑡(𝐵)  =  0 

Lemma 3.1.8  [1 ] .   

1. det [𝐴1 , 𝐴2 , … , 𝐴𝑛 , 0𝑚] =  𝑑𝑒𝑡 [𝐴1 , 𝐴2 , … , 𝐴𝑛],      and 

𝟐.  det[𝐴1 , 𝐴2 , … , 𝐴𝑗−1 , 0𝑚 , 𝐴𝑗+1 , … , 𝐴𝑛] = 𝑑𝑒𝑡[𝐴1 , 𝐴2 , … , 𝐴𝑗−1 , −𝐴𝑗+1 , … ,−𝐴𝑛]  

Where 𝑚 ≤ 𝑛,     𝐴𝐾 = [𝑎1,𝑘, … , 𝑎𝑚,𝑘]
𝑇
 for 𝑘 ∈ {1 , … , 𝑛} − {𝑗} and 0𝑚 is an 𝑚  

by   1  zero vector . 

Proof : proof of the first formula,  

Let  𝐴𝑗 = [

𝑎1,𝑗
𝑎2,𝑗
⋮
𝑎𝑚,𝑗

] ,    𝐴𝑗 = [
𝑎1,𝑗
𝐵𝑗
]   where  𝐵𝑗 = [

𝑎2,𝑗
⋮
𝑎𝑚,𝑗

] ,   (1 ≤ 𝑗 ≤ 𝑛) 

 By expanding the determinant with respect to the first row,  we get  

D = det [𝐴1 , 𝐴2 , … , 𝐴𝑛 , 0𝑚] =𝑑𝑒𝑡 [
𝑎11 𝑎12 ⋯
𝐵1 𝐵2 ⋯  

𝑎1𝑛
𝐵𝑛
   
0
0𝑚
]  
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𝐷 = (−1)2𝑎1,1 𝑑𝑒𝑡[𝐵2 , 𝐵3, … , 𝐵𝑛, 0𝑚]  + (−1)
3 𝑎12𝑑𝑒𝑡[𝐵1 , 𝐵3, … , 𝐵𝑛, 0𝑚] + ⋯  

+ (−1)1+𝑛 𝑎1𝑛𝑑𝑒𝑡[𝐵1 , 𝐵2, … , 𝐵𝑛−1, 0𝑚]

+ (−1)2+𝑛 (0) 𝑑𝑒𝑡[𝐵1 , 𝐵2, … , 𝐵𝑛] 

𝐷 = 𝑎1,1 𝑑𝑒𝑡[𝐵2 , 𝐵3, … , 𝐵𝑛, 0𝑚] − 𝑎12𝑑𝑒𝑡[𝐵1 , 𝐵3, … , 𝐵𝑛, 0𝑚] + ⋯  

+ (−1)1+𝑛 𝑎1𝑛𝑑𝑒𝑡[𝐵1 , 𝐵2, … , 𝐵𝑛−1, 0𝑚] 

det [𝐴1 , 𝐴2 , … , 𝐴𝑛 , 0𝑚] =  𝑑𝑒𝑡 [𝐴1 , 𝐴2 , … ,𝐴𝑛] 

Now,   proof the second formula,   by (P.M.I) 

Base case  :   For  𝑛 = 2 ,   𝑚 = 1  , we have    𝑑𝑒𝑡[𝑎1   0 ] =  𝑎1 − 0 = 𝑎1 

Induction hypothesis: Assume that for all 𝑛   and   𝑚,   1 ≤ 𝑚 < 𝑛,  it is true that  

det[𝐴1 , 𝐴2 , … , 𝐴𝑗−1 , 0𝑚 , 𝐴𝑗+1 , … ,𝐴𝑛] = 𝑑𝑒𝑡[𝐴1 , 𝐴2 , … , 𝐴𝑗−1 , −𝐴𝑗+1 , … ,−𝐴𝑛] 

Induction step: We will show that the identity holds for 𝑛 + 1,    1 ≤ 𝑚 < 𝑛 + 1 ? 

 Let  𝐴𝑗 = [

𝑎1,𝑗
𝑎2,𝑗
⋮
𝑎𝑚,𝑗

] ,    𝐴𝑗 = [
𝑎1,𝑗
𝐵𝑗
]   where  𝐵𝑗 = [

𝑎2,𝑗
⋮
𝑎𝑚,𝑗

] ,   (1 ≤ 𝑗 ≤ 𝑛) 

 By expanding the determinant with respect to the first row,  we get  

D = det[𝐴1 , 𝐴2 , … , 𝐴𝑗−1 , 0𝑚 , 𝐴𝑗+1 , … , 𝐴𝑛, 𝐴𝑛+1]

= 𝑑𝑒𝑡 [
𝑎1,1    … 𝑎1,𝑗−1 0

𝐵1       … 𝐵𝑗−1  0𝑚

      𝑎1,𝑗+1      … 𝑎1,𝑛
       𝐵𝑗+1        … 𝐵𝑛

   
𝑎1,𝑛+1
𝐵𝑛+1

] 

                           = 𝑎1,1 𝑑𝑒𝑡[𝐵2 , … , 𝐵𝑗−1, 𝑜𝑚, 𝐵𝑗+1… ,𝐵𝑛,𝐵𝑛+1]  + ⋯

+ (−1)𝑗−1+1𝑎1,𝑗−1𝑑𝑒𝑡[𝐵1 , … , 𝐵𝑗−2, 0𝑚, 𝐵𝑗+1… ,𝐵𝑛,𝐵𝑛+1] + 0                 

+ (−1)𝑗+1+1𝑎1,𝑗+1𝑑𝑒𝑡[𝐵1 , … , 𝐵𝑗−1, 0𝑚, 𝐵𝑗+2… ,𝐵𝑛,𝐵𝑛+1] + ⋯  

+ (−1)𝑛+2𝑎1,𝑛+1𝑑𝑒𝑡[𝐵1 , … , 𝐵𝑗−1, 0𝑚+1, 𝐵𝑗+2… ,𝐵𝑛] 
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By inductive hypothesis  

                      𝐷 = 𝑎1,1 𝑑𝑒𝑡[𝐵2 , … , 𝐵𝑗−1, −𝐵𝑗+1… ,−𝐵𝑛+1]  + ⋯

+  (−1)𝑗−1+1𝑎1,𝑗−1𝑑𝑒𝑡[𝐵1 , … , 𝐵𝑗−2, − 𝐵𝑗+1… ,−𝐵𝑛+1] + ⋯  

+ (−1)𝑗+1+1𝑎1,𝑗+1𝑑𝑒𝑡[𝐵1 , … , 𝐵𝑗−1, − 𝐵𝑗+2… ,−𝐵𝑛+1] + ⋯

+ (−1)𝑛+2𝑎1,𝑛+1𝑑𝑒𝑡[𝐵1 , … , 𝐵𝑗−1, − 𝐵𝑗+2… ,−𝐵𝑛]  

                       = 𝑑𝑒𝑡 [
𝑎1,1    … 𝑎1,𝑗−1 −  𝑎1,𝑗+1
𝐵1       … 𝐵𝑗−1       − 𝐵𝑗+1      

   … −𝑎1,𝑛+1
  … −𝐵𝑛+1

] 

                       = 𝑑𝑒𝑡[𝐴1 , 𝐴2 , … , 𝐴𝑗−1 , −𝐴𝑗+1 , … , −𝐴𝑛+1]          

     This property does not apply if the matrices are square since if all the elements 

of a column are zeros, then the value of the determinant is zero. (see theorem 

1.3.5) 

Example  3.1.9   An example that  illustrates Theorem 3.1.8  is 

Let    𝐴 =   [
3 5 7
2 1 4

],   det(𝐴) = 8 

So,  |3 5 7    
2 1 4   

0
0
| = |3 5 7

2 1 4
| = 8,     

  and    |3 0 5      
2 0 1       

7
4
| = |3 −5 −7   

2 −1 −4   
|  =  8 

Theorem 3.1.10 [1 ]. Suppose 1 ≤ 𝑚 < 𝑛 , and 𝑚 + 𝑛 be an odd integer,   

𝐴 = (𝑎𝑖,𝑗) = [𝐴1, … , 𝐴𝑛] be an 𝑚 × 𝑛 matrix, and 𝑋 be an arbitrary  𝑚 × 1  

column  vector,  then  

det[𝐴1 +𝑋 ,… ,𝐴𝑛 +𝑋] = 𝑑𝑒𝑡[𝐴1 , … ,𝐴𝑛] 

Proof: by (P.M.I ) 

Base case :  For   𝑛 = 2 ,    𝑚 =  1,    we have 

det[𝑎1,1 + 𝑋         𝑎1,2 +𝑋] = 𝑎1,1 − 𝑎1,2 = 𝑑𝑒𝑡[𝑎1,1     𝑎1,2] 
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Induction hypothesis: Assume the assertion is true for all 𝑛  even and  𝑚 odd with   

1 ≤ 𝑚 < 𝑛 , 

det[𝐴1 +𝑋 ,… ,𝐴𝑛 +𝑋] = 𝑑𝑒𝑡[𝐴1 , … ,𝐴𝑛] 

We have to prove that is true for   𝑛 + 2   even and all   𝑚   odd ?   

With  1 ≤ 𝑚 < 𝑛 + 2 ,  

Let   𝐴𝑗 = [
𝑎1𝑗
𝐵𝑗
]   where  𝐵𝑗 = [

𝑎2𝑗
⋮
𝑎𝑚𝑗

] ,   (1 ≤ 𝑗 ≤ 𝑛 + 2)  and   𝑋 = [
𝑥1
𝑋/
]   where   𝑋/ = [

𝑥2
⋮
𝑥𝑚
] 

By expanding the determinant with respect to the first row  ,  we get  

det[𝐴1 +𝑋 ,… , 𝐴𝑛+2 +𝑋] = 𝑑𝑒𝑡 [
𝑎1,1 + 𝑥1 … 𝑎1,𝑛+2 + 𝑥1

𝐵1 +𝑋
/ … 𝐵𝑛+2 + 𝑋

/ ] 

         = (−1)1+1(𝑎1,1 + 𝑥1)𝑑𝑒𝑡 [ 𝐵2 +𝑋
/, … , 𝐵𝑛+2 +𝑋

/
]+⋯

+ (−1)𝑛+2+1(𝑎1,𝑛+2 + 𝑥1)𝑑𝑒𝑡 [ 𝐵1 +𝑋
/, … , 𝐵𝑛+1 +𝑋

/
] 

By induction hypothesis  for each component we obtain: 

𝑑𝑒𝑡[𝐴1 +𝑋 ,… ,𝐴𝑛+2 +𝑋] = (−1)
1+1(𝑎1,1 + 𝑥1)𝑑𝑒𝑡[ 𝐵2, … , 𝐵𝑛+2]

+⋯ +(−1)𝑛+2+1(𝑎1,𝑛+2 + 𝑥1)𝑑𝑒𝑡[ 𝐵1, … , 𝐵𝑛+1] 

= (−1)1+1(𝑎1,1)𝑑𝑒𝑡[ 𝐵2, … , 𝐵𝑛+2]+⋯+ (−1)
𝑛+2+1(𝑎1,𝑛+2)𝑑𝑒𝑡[ 𝐵1, … , 𝐵𝑛+1]

+ 𝑥1 [(−1)
1+1𝑑𝑒𝑡[ 𝐵2, … , 𝐵𝑛+2]+⋯ (−1)

𝑛+2+1𝑑𝑒𝑡[ 𝐵1, … , 𝐵𝑛+1]] 

    𝑑𝑒𝑡[𝐴1 + 𝑋 , … , 𝐴𝑛+2 + 𝑋] = 𝑑𝑒𝑡 [
𝑎1,1 … 𝑎1,𝑛+2
𝐵1 … 𝐵𝑛+2

] + 𝑥1𝑑𝑒𝑡 [
1 … 1
𝐵1 … 𝐵𝑛+2

]     

Applying lemma 3.1.6     

 𝑑𝑒𝑡[𝐴1 + 𝑋 , … , 𝐴𝑛+2 + 𝑋]  =  𝑑𝑒𝑡 [
𝑎1,1 … 𝑎1,𝑛+2
𝐵1 … 𝐵𝑛+2

] + 0       

                                                       = 𝑑𝑒𝑡[𝐴1 , … , 𝐴𝑛+2] 

The second case (𝑛  odd and  𝑚 even) can be treated similarly. 
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Example  3.1.11  Let   𝐴= [
3 5 7
2 1 4

],   take    𝑋 = [
1
2
],    

Then,   𝑑𝑒𝑡(𝐴) = det (𝐴1 , 𝐴2, 𝐴3) = 8  

Also,  det(𝐴1 +𝑋 , 𝐴2 +𝑋 , 𝐴3 +𝑋) = |
4 6 8  
4 3 6  

| = 8 

Corollary 3.1.12 [1]  For  𝑚 +  𝑛  odd,   1 ≤ m < n   and for all  𝑘,  

1 ≤ k ≤ n ,   we have    

det[𝐴1 , … , 𝐴𝑘−1 , 𝐴𝑘 , 𝐴𝑘+1 , … , 𝐴𝑛]

= 𝑑𝑒𝑡[𝐴𝑘 − 𝐴1 , … ,𝐴𝑘 −𝐴𝑘−1 , 𝐴𝑘+1 −𝐴𝑘 , … ,𝐴𝑛 − 𝐴𝑘] 

Proof:   det(A) =  det[𝐴1 , … , 𝐴𝑘−1 , 𝐴𝑘 , 𝐴𝑘+1 , … , 𝐴𝑛]                 

    Applying theorem 3.1.10  with   X =  −Ak  and  lemma 3.1.8 

                     = 𝑑𝑒𝑡[𝐴1 − 𝐴𝑘 , … , 𝐴𝑘−1 − 𝐴𝑘  , 𝐴𝑘 − 𝐴𝑘 , 𝐴𝑘+1 − 𝐴𝑘  , … , 𝐴𝑛 − 𝐴𝑘]  

                     = 𝑑𝑒𝑡[𝐴1 − 𝐴𝑘 , … , 𝐴𝑘−1 − 𝐴𝑘 , 0𝑚 , 𝐴𝑘+1 − 𝐴𝑘  , … , 𝐴𝑛 − 𝐴𝑘]  

                    = 𝑑𝑒𝑡[𝐴1 − 𝐴𝑘 , … , 𝐴𝑘−1 − 𝐴𝑘  , 𝐴𝑘 − 𝐴𝑘+1 , … , 𝐴𝑘 − 𝐴𝑛]     

                    = 𝑑𝑒𝑡[𝐴𝑘 − 𝐴1 , … , 𝐴𝑘 − 𝐴𝑘−1 , 𝐴𝑘+1 − 𝐴𝑘  , … , 𝐴𝑛 − 𝐴𝑘] 

Example 3.1.13   let   𝐴 = [
3 5 7
2 1 4

] ,  then     det(𝐴 ) =  8  

 Applying Corollary 3.1.12   with   𝐴𝑘 = [
5
1
]  

det(𝐴 ) =  | 2 2
−1 3

| = 8  

Note, This properties (theorem 3.1.10 and corollary 3.1.12) do not apply if the 

matrices are square ( 𝑛 × 𝑛) because the sum of the order is even (Whether 𝑛 is 

odd or even ) 
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3.2    How determinant is affected by operations on columns. 

      In this section we describe how the determinant is affected by operations on 

columns such as interchanging columns, reversing columns or decomposing a 

single column.  

(1)  Decomposing column  in a square matrix if   

   𝐴𝑛×𝑛 = [𝐴1 , 𝐴2 , … ,𝐴𝑘 , … , 𝐴𝑛]   and   𝐴𝑘 = 𝐵𝑘 + 𝐶𝑘 , 𝑘 𝜖 {1,2,… , 𝑛}   then 

 | 𝐴 | = | 𝐴1 , 𝐴2 , … , 𝐴𝑘−1 , 𝐵𝑘 , 𝐴𝑘+1 , … , 𝐴𝑛|+ | 𝐴1 , 𝐴2 , … ,𝐴𝑘−1 , 𝐶𝑘 , 𝐴𝑘+1 , … ,𝐴𝑛|.  

  In non-square matrices case what happens, we have 

Theorem 3.2.1 [ 12 ]. Let 𝐴 =  [𝐴1 , 𝐴2 , … , 𝐴𝑘 , … , 𝐴𝑛] be a 𝑚 × 𝑛 matrix,   

𝑚 ≤ 𝑛,   and   𝐴𝑘 = 𝐵𝑘 + 𝐶𝑘   for some  𝑘 𝜖 {1,2, … , 𝑛} .  Then  

| 𝐴 | = | 𝐴1 , 𝐴2 , … , 𝐴𝑘−1 , 𝐵𝑘 , 𝐴𝑘+1 , … , 𝐴𝑛|+ | 𝐴1 , 𝐴2 , … ,𝐴𝑘−1 , 𝐶𝑘 , 𝐴𝑘+1 , … ,𝐴𝑛|  

+   ∑ (−1)𝑟+𝑗1+𝑗2+⋯+𝑗𝑚+1

1≤𝑗1<⋯<𝑗𝑚 ≤𝑛
𝑘 {𝑗1  ,… ,𝑗𝑚}

|𝐴𝑗1 , 𝐴𝑗2 , … , 𝐴𝑗𝑚  | 

Where    𝑟 = 1 + 2 +⋯+𝑚 

Proof : After applying (2.5.1)  

     |𝐴| = ∑ (−1)𝑟+𝑗1+𝑗2+⋯+𝑗𝑚

1≤𝑗1<⋯<𝑗𝑚 ≤𝑛

|𝐴𝑗1 , 𝐴𝑗2 , … , 𝐴𝑗𝑚  | 

We separate the sum of determinants into tow sums: the first one consisting of the 

determinants of matrices which contain the column 𝐴𝑘 = 𝐵𝑘 + 𝐶𝑘 and the 

second one consisting of other determinants.  

  | 𝐴 | =   ∑ (−1)𝑟+𝑗1+𝑗2+⋯+𝑗𝑚

1≤𝑗1<⋯<𝑗𝑚  ≤𝑛
𝑘∈ {𝑗1  ,… ,𝑗𝑚}

  |𝐴𝑗1 , … 𝐴𝑘 , … , 𝐴𝑗𝑚  |

+   ∑ (−1)𝑟+𝑗1+𝑗2+⋯+𝑗𝑚

1≤𝑗1<⋯<𝑗𝑚 ≤𝑛
𝑘 {𝑗1  ,… ,𝑗𝑚}

  |𝐴𝑗1 , 𝐴𝑗2 , … , 𝐴𝑗𝑚  |  
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             =   ∑ (−1)𝑟+𝑗1+𝑗2+⋯+𝑗𝑚

1≤𝑗1<⋯<𝑗𝑚  ≤𝑛
𝑘∈ {𝑗1  ,… ,𝑗𝑚}

  |𝐴𝑗1 , … , 𝐵𝑘, … , 𝐴𝑗𝑚  |

+   ∑ (−1)𝑟+𝑗1+𝑗2+⋯+𝑗𝑚

1≤𝑗1<⋯<𝑗𝑚 ≤𝑛
𝑘∈ {𝑗1  ,… ,𝑗𝑚}

  |𝐴𝑗1 , . . , 𝐶𝑘, … , 𝐴𝑗𝑚  |    

+   ∑ (−1)𝑟+𝑗1+𝑗2+⋯+𝑗𝑚

1≤𝑗1<⋯<𝑗𝑚  ≤𝑛
𝑘 {𝑗1  ,… ,𝑗𝑚}

  |𝐴𝑗1 , 𝐴𝑗2 , … , 𝐴𝑗𝑚  | 

Now the third sum is added and subtracted so that it can be included into both the 

first and the second sum :  

| 𝐴 | = | 𝐴1 , 𝐴2 , … , 𝐴𝑘−1 , 𝐵𝑘 , 𝐴𝑘+1 , … , 𝐴𝑛|+ | 𝐴1 , 𝐴2 , … ,𝐴𝑘−1 , 𝐶𝑘 , 𝐴𝑘+1 , … ,𝐴𝑛|  

              −    ∑ (−1)𝑟+𝑗1+𝑗2+⋯+𝑗𝑚

1≤𝑗1<⋯<𝑗𝑚  ≤𝑛
𝑘 {𝑗1  ,… ,𝑗𝑚}

|𝐴𝑗1 , 𝐴𝑗2 , … , 𝐴𝑗𝑚  | 

     = | 𝐴1 , 𝐴2 , … , 𝐴𝑘−1 , 𝐵𝑘 , 𝐴𝑘+1 , … , 𝐴𝑛| +  | 𝐴1 , 𝐴2 , … , 𝐴𝑘−1 , 𝐶𝑘 , 𝐴𝑘+1 , … , 𝐴𝑛|  

                    +    ∑ (−1)𝑟+𝑗1+𝑗2+⋯+𝑗𝑚+1

1≤𝑗1<⋯<𝑗𝑚 ≤𝑛
𝑘 {𝑗1  ,… ,𝑗𝑚}

|𝐴𝑗1 , 𝐴𝑗2 , … , 𝐴𝑗𝑚  | 

   

Example 3.2.2 Let [𝐴1 ,  𝐴2, 𝐴3] be a 2 × 3 matrix and 𝐴1 = 𝐵1 +  𝐶1. Then 

according to theorem  2.7.2   we have  

|𝐵1 + 𝐶1   , 𝐴2 ,  𝐴3|

= |𝐵1  , 𝐴2 ,  𝐴3|+ |𝐶1   , 𝐴2 ,  𝐴3|+ ∑ (−1)
(1+2)+𝑗1+𝑗2+1

1≤𝑗1<𝑗2≤3

1 {𝑗1 ,𝑗2}

|𝐴𝑗1 , 𝐴𝑗2  | 

= |𝐵1 , 𝐴2 ,  𝐴3| +  |𝐶1 , 𝐴2 ,  𝐴3| +  (−1)
3+2+3+1|𝐴2 ,  𝐴3| 

                               = |𝐵1 , 𝐴2 ,  𝐴3| +  |𝐶1 , 𝐴2 ,  𝐴3| − |𝐴2 ,  𝐴3|. 

(2) Interchanging columns in a square matrix results in changing the sign of the 

determinant. Non-square matrices in which the number of columns is equal to the 

number of rows increased by one have the same property.  
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Theorem 3.2.3  [12 ]. Let 𝐴 =  [𝐴1 , 𝐴2 , … , 𝐴𝑚  , 𝐴𝑚+1 ] be a 𝑚 × (𝑚 + 1) 

matrix. Then for each   𝑖 , 𝑗 ∈ {1,2, … ,𝑚 + 1}   such that   𝑖 < 𝑗, we have 

𝑑𝑒𝑡(𝐴) = −𝑑𝑒𝑡(𝐴1 , 𝐴2 , … , 𝐴𝑖−1  , 𝐴𝑗 , 𝐴𝑖+1, … , 𝐴𝑗−1 , 𝐴𝑖 , 𝐴𝑗+1 , … , 𝐴𝑚 , 𝐴𝑚+1) 

Proof: Let  𝑟 = 1 + 2 +⋯+𝑚. Fix each 𝑖 , 𝑗 ∈ {1,2, … ,𝑚 + 1} such that 𝑖 < 𝑗.  

From all the determinants in the right–hand side of  

     |𝐴| = ∑ (−1)𝑟+𝑗1+𝑗2+⋯+𝑗𝑚

1≤𝑗1<⋯<𝑗𝑚 ≤𝑛

|𝐴𝑗1 , 𝐴𝑗2 , … , 𝐴𝑗𝑚  | 

We distinguish the determinants in the expression which contain either  𝐴𝑖  or  𝐴𝑗  

but not both of them. Thus, we have  

     |𝐴| = (−1)(𝑟+
(𝑚+1)(𝑚+2)

2
 −𝑖)|𝐴1 , 𝐴2 , … , 𝐴𝑖−1  , 𝐴𝑖+1, … , 𝐴𝑗−1 , 𝐴𝑗  , 𝐴𝑗+1 , … , 𝐴𝑚+1| 

+  (−1)(𝑟+
(𝑚+1)(𝑚+2)

2  −𝑗)
|𝐴1 , 𝐴2 , … , 𝐴𝑖−1  , 𝐴𝑖 , 𝐴𝑖+1, … , 𝐴𝑗−1  , 𝐴𝑗+1 , … , 𝐴𝑚+1| 

+ ∑ (−1)𝑟+𝑗1+𝑗2+⋯+𝑗𝑚

1≤𝑗1<⋯<𝑗𝑚 ≤𝑛
𝑖 ,𝑗 ∈ {𝑗1,,… ,𝑗𝑚}

|𝐴𝑗1 , … , 𝐴𝑖 , … , 𝐴𝑗  , . . , 𝐴𝑗𝑚  | 

Notice that exactly 𝑗 − 𝑖 − 1 inversions are needed to move the column 𝐴𝑗 to the 

position between 𝐴𝑖−1 and 𝐴𝑖+1 in the first summand. Similarly, in the second 

summand, also 𝑗 − 𝑖 − 1 inversions are needed to move the column 𝐴𝑖 to the 

position between  𝐴𝑗−1 and  𝐴𝑗+1 .  

In other summands we can simply interchange columns  𝐴𝑖 and  𝐴𝑗 with the sign 

change ( square matrix  𝑚 ×𝑚). Thus, we have  

     |𝐴| = (−1)
(𝑟+

(𝑚+1)(𝑚+2)
2

 −𝑖+(𝑖−𝑗−1))

× |𝐴1 , 𝐴2 , … , 𝐴𝑖−1  , 𝐴𝑗  , 𝐴𝑖+1, … , 𝐴𝑗−1 , 𝐴𝑗+1 , … , 𝐴𝑚+1| 

+  (−1)
(𝑟+(𝑚+1)(𝑚+2)2  −𝑗+(𝑗−𝑖−1))

|𝐴1 , 𝐴2 , … ,𝐴𝑖−1  , 𝐴𝑖+1, … , 𝐴𝑗−1  , 𝐴𝑖 , 𝐴𝑗+1 , … , 𝐴𝑚+1| 
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− ∑ (−1)(−1)
𝑟+𝑗1+𝑗2+⋯+𝑗𝑚

1≤𝑗1<⋯<𝑗𝑚 ≤𝑛
𝑖 ,𝑗 ∈ {𝑗1 ,… ,𝑗𝑚}

|𝐴𝑗1 , … , 𝐴𝑗 , … , 𝐴𝑖  , . . , 𝐴𝑗𝑚  | 

det(𝐴)   = −(−1)(𝑟+
(𝑚+1)(𝑚+2)

2 −𝑗)
|𝐴1 , 𝐴2 , … ,𝐴𝑖−1  , 𝐴𝑗 , 𝐴𝑖+1, … ,𝐴𝑗−1 , 𝐴𝑗+1 , … , 𝐴𝑚+1| 

−  (−1)(𝑟+
(𝑚+1)(𝑚+2)

2
−𝑖)
|𝐴1 , 𝐴2 , … , 𝐴𝑖−1  , 𝐴𝑖+1, … ,𝐴𝑗−1  , 𝐴𝑖 , 𝐴𝑗+1 , … , 𝐴𝑚+1| 

− ∑ (−1)𝑟+𝑗1+𝑗2+⋯+𝑗𝑚

1≤𝑗1<⋯<𝑗𝑚 ≤𝑛

𝑖 ,𝑗 ∈ {𝑗1 ,… ,𝑗𝑚
}

|𝐴𝑗1 , … , 𝐴𝑗 , … , 𝐴𝑖 , . . , 𝐴𝑗𝑚  | 

det (𝐴) = −𝑑𝑒𝑡(𝐴1 , 𝐴2 , … , 𝐴𝑖−1  , 𝐴𝑗 , 𝐴𝑖+1, … , 𝐴𝑗−1 , 𝐴𝑖  , 𝐴𝑗+1 , … , 𝐴𝑚 , 𝐴𝑚+1) 

 

Remark 3.2.4 Consider an 𝑚 × 𝑛 matrix 𝐴 with 𝑚 rows and 𝑛 columns, 𝑚 ≤ 𝑛. 

Let 𝐴/ be a matrix obtained from 𝐴 by interchanging two columns. Theorem 3.2.3 

tells us that det(𝐴)+ det (𝐴/) = 0 when 𝑛 −𝑚 = 1. However, in general, if  

𝑛 −𝑚 > 1 the sum det(𝐴)+ det (𝐴/) is not zero as explained in the following 

example. 

Example 3.2.5   Let  𝐴 = [
1 2 7
3 0 1

    
4 3
−1 2

] , det(𝐴) = 5 

 And  𝐴/ = [1 2 4
3 0 −1

    7 3
1 2

]  ,   det (𝐴/) = 5  

det(𝐴)+ det (𝐴/)   is not zero, since  𝑛 −𝑚 > 1   

Theorem 3.2.6  [1] (Cyclic). If  1 ≤ 𝑚 < 𝑛,  and  𝑚 + 𝑛  is  an odd integer,  then for all 

𝑖 ∈ {1 , … , 𝑛}.  We have 

(−1)
(𝑖+1)𝑚𝑑𝑒𝑡[𝐴𝑖 , … , 𝐴𝑛 , … , 𝐴𝑖−1] = 𝑑𝑒𝑡[𝐴1 , … , 𝐴𝑛] 

Proof:  It is sufficient to prove  

(−1)𝑚𝑑𝑒𝑡[𝐴𝑛 , 𝐴1 , … , 𝐴𝑛−1] = 𝑑𝑒𝑡[𝐴1 , … , 𝐴𝑛] 
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Applying Theorem 3.1.10   with 𝑋 = −𝐴𝑛   and Lemma 3.1.8   we have  

(−1)𝑚𝑑𝑒𝑡[𝐴𝑛 , 𝐴1 , … ,𝐴𝑛−1] = (−1)
𝑚𝑑𝑒𝑡[0𝑚 , 𝐴1 −𝐴𝑛 , … , 𝐴𝑛−1 −𝐴𝑛] 

                                                  = (−1)𝑚(−1)𝑚𝑑𝑒𝑡[  𝐴1 − 𝐴𝑛 , … , 𝐴𝑛−1 − 𝐴𝑛] 

                                                = 𝑑𝑒𝑡[  𝐴1 − 𝐴𝑛 , … , 𝐴𝑛−1 − 𝐴𝑛] 

                                                     = 𝑑𝑒𝑡[  𝐴1 − 𝐴𝑛 , … , 𝐴𝑛−1 − 𝐴𝑛, 𝐴𝑛 − 𝐴𝑛] 

Applying Theorem 3.1.10   with 𝑋 = 𝐴𝑛 

  (−1)𝑚𝑑𝑒𝑡[𝐴𝑛 , 𝐴1 , … ,𝐴𝑛−1] = 𝑑𝑒𝑡[𝐴1 , … , 𝐴𝑛]        

Theorem 3.2.7  [1 ] (Semi-Cyclic). If   1 ≤ 𝑚 < 𝑛 , and  𝑚 + 𝑛  even, then 

 for all 𝑖 ∈ {1 , … , 𝑛}. We have  

(−1)
(𝑛−𝑖)𝑚𝑑𝑒𝑡[𝐴𝑖 , … , 𝐴𝑛 , −𝐴1 , … ,−𝐴𝑖−1] = 𝑑𝑒𝑡[𝐴1 , … , 𝐴𝑛] 

Proof:  It is sufficient to prove  

𝑑𝑒𝑡[𝐴𝑛 , − 𝐴1 , … , − 𝐴𝑛−1] = 𝑑𝑒𝑡[𝐴1 , … , 𝐴𝑛] 

Applying Lemma 3.1.8  and  Theorem 3.1.10   with  𝑋 = −𝐴𝑛  we have  

𝑑𝑒𝑡[𝐴𝑛 , − 𝐴1 , … , − 𝐴𝑛−1] = 𝑑𝑒𝑡[𝐴𝑛 , − 𝐴1 , … , − 𝐴𝑛−1 , 0𝑚] 

                                                = 𝑑𝑒𝑡[𝐴𝑛 − 𝐴𝑛 , − 𝐴1 − 𝐴𝑛 , … , − 𝐴𝑛−1 − 𝐴𝑛 , 0𝑚 − 𝐴𝑛] 

                                               = 𝑑𝑒𝑡[0𝑚 , − 𝐴1 − 𝐴𝑛 , … , − 𝐴𝑛−1 − 𝐴𝑛 , −𝐴𝑛] 

                                           = 𝑑𝑒𝑡[ 𝐴1 + 𝐴𝑛 , … , 𝐴𝑛−1 + 𝐴𝑛 , 𝐴𝑛] 

    = 𝑑𝑒𝑡[ 𝐴1 + 𝐴𝑛 , … , 𝐴𝑛−1 + 𝐴𝑛 , 𝐴𝑛 ,0𝑚 ] 

                                             = 𝑑𝑒𝑡[ 𝐴1 , … , 𝐴𝑛−1 , 0𝑚, 0𝑚 − 𝐴𝑛 ] 

                                                = 𝑑𝑒𝑡[ 𝐴1 , … , 𝐴𝑛−1 , 𝐴𝑛  ] 
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Example 3.2.8   Let    𝐴 =  [
1 2 7
3 0 1

   
4
−1
    
3
2
] ,  then det(𝐴 ) = 5  

 let   𝑖 = 2,   by theorem 3.2.6 

det(𝐴2) =  (−1)
(3)(2) |

2 7 4
0 1 −1

    3
2
    1
3
| = 5  

let   𝑖 = 3,  by theorem 3.2.6 

det(𝐴3 ) = (−1)
(4)(2)  |7 4 3

1 −1 2
     1
3
    2
0
| = 5 

Let  𝐵 =  [
1 2 7
3 0 1

     
2
3
],  then det(𝐵 ) =  26  

Let   𝑖 = 2  ,  by theorem 3.2.7 

det(𝐵2 ) = (−1)
(2)(2)  |2 7 2

0 1 3
      −1
−3
| = 26 

(3)  Reversing columns in a  𝑛 × 𝑛 square matrix results in changing the sign of 

its determinant if and only if 𝑛 is congruent to 2 or 3 (mod 4).  Surprisingly, the 

determinant of non-square matrix also either change or does not change the sign 

after column reversing, depending on the number of rows and the number of 

columns of the matrix.   

Theorem 2.7.13 [12 ].  Let [𝐴1, 𝐴2, … , 𝐴𝑛]  be a 𝑚× 𝑛 matrix,  𝑚 ≤ 𝑛. Then  we 

have        |𝐴𝑛, 𝐴𝑛−1, … , 𝐴2, 𝐴1| = |𝐴1, 𝐴2, … , 𝐴𝑛−1, 𝐴𝑛|. (−1)
𝑚(2𝑛+𝑚+1)

2  

=

{
 

 
|𝐴1, 𝐴2, … , 𝐴𝑛−1, 𝐴𝑛|                            𝑖𝑓 𝑚 ≡ 0(𝑚𝑜𝑑4),

|𝐴1, 𝐴2, … , 𝐴𝑛−1, 𝐴𝑛| . (−1)
𝑛+1          𝑖𝑓 𝑚 ≡ 1(𝑚𝑜𝑑4),

|𝐴1, 𝐴2, … , 𝐴𝑛−1, 𝐴𝑛|. (−1)                  𝑖𝑓 𝑚 ≡ 2(𝑚𝑜𝑑4),
|𝐴1, 𝐴2, … , 𝐴𝑛−1, 𝐴𝑛| . (−1)

𝑛               𝑖𝑓 𝑚 ≡ 3(𝑚𝑜𝑑4),

 

Proof:  Let 𝑟 = 1 + 2 +⋯+𝑚 =
𝑚(𝑚+1)

2
    and    𝐵𝑘 = 𝐴𝑛+1−𝑘 ,  

𝑘 ∈ {1,2, … , 𝑛}. Since exactly (𝑚− 1)+ (𝑚− 2)+⋯+ 1 =
(𝑚−1)𝑚

2
 inversions 

of (adjacent) columns are needed to reverse the columns of a 𝑚 ×𝑚 matrix, we 

have     

|𝐵1, 𝐵2, … ,𝐵𝑛| = ∑ (−1)𝑟+𝑖1+𝑖2+⋯+𝑖𝑚1≤𝑖1<⋯<𝑖𝑚 ≤𝑛 |𝐵𝑖1, 𝐵𝑖2, … ,𝐵𝑖𝑚 | 
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= ∑ (−1)𝑟+𝑖1+𝑖2+⋯+𝑖𝑚+
(𝑚−1)𝑚

2

1≤𝑖1<⋯<𝑖𝑚 ≤𝑛

|𝐵𝑖𝑚 , 𝐵𝑖𝑚−1 , … , 𝐵𝑖1  | 

                       = ∑ (−1)𝑟+𝑖1+𝑖2+⋯+𝑖𝑚+
(𝑚−1)𝑚

2

1≤𝑖1<⋯<𝑖𝑚 ≤𝑛

|𝐴𝑛+1−𝑖𝑚 , 𝐴𝑛+1−𝑖𝑚−1 , … , 𝐴𝑛+1−𝑖1  |. 

Applying the following change of variables: 𝑗𝑘 = 𝑛+ 1− 𝑖𝑚−𝑘+1 for each 

𝑘 ∈ {1,2, … ,𝑚},    we get  

|𝐴𝑛, 𝐴𝑛−1, … , 𝐴2, 𝐴1| = |𝐵1, 𝐵2, … , 𝐵𝑛| 

                                       = ∑ (−1)𝑟+(𝑛+1)−(𝑗1+𝑗2+⋯+𝑗𝑚)+
(𝑚−1)𝑚

2

1≤𝑗1<⋯<𝑗𝑚 ≤𝑛

|𝐴𝑗1 , 𝐴𝑗2 , … , 𝐴𝑗𝑚  | 

                                      = ∑ (−1)𝑟+𝑚(𝑛+1)−(𝑗1+𝑗2+⋯+𝑗𝑚)+
(𝑚−1)𝑚

2

1≤𝑗1<⋯<𝑗𝑚 ≤𝑛

|𝐴𝑗1 , 𝐴𝑗2 , … , 𝐴𝑗𝑚  | 

                                      = |𝐴1, 𝐴2, … , 𝐴𝑛−1, 𝐴𝑛|. (−1)
𝑚(𝑛+1)+

(𝑚−1)𝑚
2  

                                     = |𝐴1, 𝐴2, … , 𝐴𝑛−1, 𝐴𝑛|. (−1)
𝑚(2𝑛+𝑚+1)

2  

Finally, we state that  

(−1)
𝑚
2
(2𝑛+𝑚+1) =

{
 
 

 
 
1                        𝑖𝑓 𝑚 ≡ 0(𝑚𝑜𝑑4),

(−1)𝑛+1          𝑖𝑓 𝑚 ≡ 1(𝑚𝑜𝑑4),
(−1)                  𝑖𝑓 𝑚 ≡ 2(𝑚𝑜𝑑4),

(−1)𝑛               𝑖𝑓 𝑚 ≡ 3(𝑚𝑜𝑑4),

 

Which is easy to verify.                                         

Example 2.7.14     Let 𝐴 =  [
1 2 7
3 0 1

    
4
−1
      
3
2
]  

 Then det(𝐴 ) =  5,   by theorem 2.7.13,  

|
3 4 7
2 −1 1

      2
0
       1
3
| = (−1)

2
2
(10+2+1) det(𝐴) = (−1)(5) = −5 

𝑚 ≡ 2(𝑚𝑜𝑑4) → 2 𝑚𝑜𝑑 4 = 2 

 |
3 4 7
2 −1 1

      
2
0
       
1
3
| = |

1 2 7
3 0 1

    
4
−1
      
3
2
| (−1) = −5  
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Chapter Four 

Applications of Determinant to Area of Polygons in 𝑹 𝟐 

      In this Chapter we will study the application for determinants of non-square 

matrices in calculating the area of polygons in 𝑹𝟐. 

4.1  Areas of certain polygons in connection with determinant of rectangular 

matrices. 

      First we state and prove the following result that relates the determinant of a  

2 × 2 matrix with the area of the parallelogram spanned by its columns  

Theorem 4.1.1 [9] The absolute value of the determinant  

det [
𝑢1 𝑣1
𝑢2 𝑣2

] 

is equal to the area of the parallelogram in 2-space determined by the vectors 

  𝑢 = (𝑢1, 𝑢2)  𝑎𝑛𝑑   𝑣 = (𝑣1, 𝑣2)   

Proof:  The parallelogram defined by the columns of the above matrix is the one 

with vertices at (0, 0), (𝑢1, 𝑢2), (𝑢1  +  𝑣1, 𝑢2  + 𝑣2)  𝑎𝑛𝑑  (𝑣1, 𝑣2), as shown in 

the accompanying diagram.                              

area of the parallelogram  𝐴 =  𝐵 𝐻  

𝐵 = ‖�⃗� ‖,   and      𝐻2 + ‖𝑝𝑟𝑜𝑗𝑢 𝑣 ‖
2 = ‖𝑣 ‖2  

𝐻2 = ‖𝑣 ‖2 − ‖𝑝𝑟𝑜𝑗𝑢 𝑣 ‖
2   

𝐻2 = 𝑣 . 𝑣 − ‖
�⃗� .�⃗⃗� 

�⃗⃗� .�⃗⃗� 
 𝑢 ‖

2

    (see theorem 1.9.6) 
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𝐻2 = 𝑣 . 𝑣 − (
𝑣 . �⃗� 

�⃗� . �⃗� 
 �⃗�  .
𝑣 . �⃗� 

�⃗� . �⃗� 
 �⃗� ) 

𝐻2 = 𝑣 . 𝑣 − (
(𝑣 . �⃗� )(𝑣 . �⃗� )

(�⃗� . �⃗� )(�⃗� . �⃗� )
  (𝑢 ⃗⃗  ⃗. �⃗� )) 

𝐻2 = 𝑣 . 𝑣 − (
(𝑣 . �⃗� )2

(�⃗� . �⃗� )
 ) 

Now,  𝐴2 =  𝐵2 𝐻2 

𝐴2 = �⃗� . �⃗�  (𝑣 . 𝑣 − 
(𝑣 . �⃗� )2

(�⃗� . �⃗� )
  ) 

𝐴2 = (�⃗� . �⃗� )(𝑣 . 𝑣 ) − (𝑣 . �⃗� )2 

But,  𝑢 = (𝑢1, 𝑢2) 𝑎𝑛𝑑   𝑣 = (𝑣1, 𝑣2)   

So,   

𝐴2 = (𝑢1
2 + 𝑢2

2)(𝑣1
2 + 𝑣2

2) − (𝑢1𝑣1 + 𝑢2 𝑣2)
2        (see definition 1.8.3) 

𝐴2 = 𝑢1
2 𝑣1

2 + 𝑢1
2 𝑣2

2 + 𝑢2
2 𝑣1

2 + 𝑢2
2 𝑣2

2 − 𝑢1
2 𝑣1

2 − 2𝑢1𝑣1𝑢2 𝑣2 −  𝑢2
2 𝑣2

2 

𝐴2 = 𝑢1
2 𝑣2

2 − 2𝑢1𝑣1𝑢2 𝑣2  + 𝑢2
2 𝑣1

2  

𝐴2 = (𝑢1𝑣2  −  𝑢2 𝑣1)
2  = (det [

𝑢1 𝑣1
𝑢2 𝑣2

])
2

 

Area = |det [
𝑢1 𝑣1
𝑢2 𝑣2

]|   

The area of the triangle whose heads are 𝑢 = (𝑢1, 𝑢2) 𝑎𝑛𝑑   𝑣 = (𝑣1, 𝑣2) is 

Area = 
1

2
|det [

𝑢1 𝑣1
𝑢2 𝑣2

]|          

𝑑𝑒𝑡(𝑢, 𝑣) = −𝑑𝑒𝑡(𝑣, 𝑢) and orientation 
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Also, the area of the quadrilateral can be found by dividing the shape into four 

triangles, as in the adjacent figure  

 

 

 

area 𝐴1 𝐴2 𝐴3 𝐴4 = area of triangle 𝐴1 𝐴2 𝑍  + area of triangle 𝐴2 𝐴3 𝑍  + area of 

triangle 𝐴3 𝐴4 𝑍  + area of triangle 𝐴4 𝐴1 𝑍   

area  𝐴1 𝐴2 𝐴3 𝐴4 = 
1

2
|𝐴1, 𝐴2| +  

1

2
|𝐴2, 𝐴3| +

1

2
|𝐴3, 𝐴4| +

1

2
|𝐴4, 𝐴1| 

This division of quadrilateral into triangles gives us the idea of calculating the 

area of any polygon in 𝑅2. 

Theorem 4.1.2   The area of a polygon with vertices 

   (𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑛, 𝑦𝑛) listed counter-clockwise around the perimeter is 

given by  

𝐴 =  
1

2
( |
𝑥1 𝑥2
𝑦1 𝑦2

| + |
𝑥2 𝑥3
𝑦2 𝑦3

| + ⋯+ |
𝑥𝑛 𝑥1
𝑦𝑛 𝑦1

|) 

 

From the adjacent figure it is clear that the 

area of the polygon is equal to the sum of the 

areas of triangles resulting from two 

consecutive vertices and the center of the 

polygon 

 

     It is clear that every real  𝑚 × 𝑛 matrix 𝐴 = [𝐴1, … , 𝐴𝑛]  determines a polygon 

in  𝑅𝑚 (the columns of the matrix correspond to the vertices of the polygon) and 

vice versa. The polygon which corresponds to the matrix  [𝐴1, … , 𝐴𝑛]  will be 

denoted by    𝐴1…𝐴𝑛. 
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area of 𝐴1…𝐴𝑛 =
1

2
(|𝐴1, 𝐴2| + |𝐴2, 𝐴3| + ⋯+ |𝐴𝑛−1, 𝐴𝑛| + |𝐴𝑛, 𝐴1|).  

In the following we shall restrict ourselves to the case when  𝑚 = 2  (polygons in  𝑅2 ).  

Now, if  𝑛 = 3. The area 𝐴 with vertices (𝑥1, 𝑦1), (𝑥2, 𝑦2), (𝑥3, 𝑦3) listed counter-

clockwise around the perimeter is given by  

         𝐴 =  
1

2
( |
𝑥1 𝑥2
𝑦1 𝑦2

| + |
𝑥2 𝑥3
𝑦2 𝑦3

| + |
𝑥3 𝑥1
𝑦3 𝑦1

|) 

             =
1

2
((𝑥1𝑦2 − 𝑥2𝑦1) + (𝑥2𝑦3 − 𝑥3𝑦2) + (𝑥3𝑦1 − 𝑥1𝑦3)) 

            =
1

2
(𝑥1(𝑦2 − 𝑦3) − 𝑥2(𝑦1 − 𝑦3) + 𝑥3(𝑦1 − 𝑦2)) 

            = 
1

2
|
𝑥1 𝑥2 𝑥3
𝑦1 𝑦2 𝑦3

| 

Theorem 4.1.3   The area  𝐴 of the polygon determined by  𝐴1…𝐴𝑛 is given by 

   𝐴 =
1

2
(|𝐴1, 𝐴2| + |𝐴2, 𝐴3| + ⋯+ |𝐴𝑛−1, 𝐴𝑛| + |𝐴𝑛, 𝐴1|)   

        = |𝐴1, 𝐴2, … , 𝐴𝑛 | 

Proof: What we need here is to prove the second equality, we shall proceed by 

showing that the formula 
1

2
(|𝐴1, 𝐴2| + |𝐴2, 𝐴3| + ⋯+ |𝐴𝑛−1, 𝐴𝑛| + |𝐴𝑛, 𝐴1|) is 

indeed a determinant function 

A1: The area of a triangle with vertices  (1,0), (0,1), (0,0)   is  
1

2
|
1 0 0
0 1 0

| =
1

2
 

A2: It is clear that multiplying a single row by a constant 𝑐 means the dialation or 

contraction of one coordinate while keeping the other coordinate fixed and in this 

case new area equals |𝑐| times old area.  

A3: A Let 𝐴 a polygon with vertices (𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑛, 𝑦𝑛) such that 

𝑥𝑖  =  𝑢𝑖  +  𝑣𝑖  , and 𝐵 a polygon with vertices (𝑢1, 𝑦1), (𝑢2, 𝑦2),… , (𝑢𝑛, 𝑦𝑛), and  

𝐶 a polygon with vertices (𝑣1, 𝑦1), (𝑣2, 𝑦2),… , (𝑣𝑛, 𝑦𝑛) 

Suppose that,  area of a polygon 𝐴 = [𝐴1, … , 𝐴𝑛] =  [
𝑢1  +  𝑣1 𝑢2  +  𝑣2 ⋯
𝑦1 𝑦2 ⋯   

𝑢𝑛  +  𝑣𝑛
𝑦𝑛

],  
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but,   area of a polygon  𝐵 = [𝐵1, … , 𝐵𝑛] =  [
𝑢1 𝑢2 ⋯
𝑦1 𝑦2 ⋯   

𝑢𝑛 
𝑦𝑛
],   

 area of a polygon  𝐶 = [𝐶1, … , 𝐶𝑛] =  [
 𝑣1 𝑣2 ⋯
𝑦1 𝑦2 ⋯   

𝑣𝑛 
𝑦𝑛
], 

that is, area of 𝐴1…𝐴𝑛 =
1

2
(|𝐴1, 𝐴2| + |𝐴2, 𝐴3| + ⋯+ |𝐴𝑛−1, 𝐴𝑛| + |𝐴𝑛, 𝐴1|)  

        =  
1

2
( |
𝑥1 𝑥2
𝑦1 𝑦2

| + |
𝑥2 𝑥3
𝑦2 𝑦3

| + ⋯+ |
𝑥𝑛 𝑥1
𝑦𝑛 𝑦1

|) 

= 
1

2
( |
𝑢1  +  𝑣1 𝑢2  +  𝑣2
𝑦1 𝑦2

| + |
𝑢2  +  𝑣2 𝑢3  +  𝑣3
𝑦2 𝑦3

| + ⋯+ |
𝑢𝑛  +  𝑣𝑛 𝑢1  +  𝑣1
𝑦𝑛 𝑦1

|) 

(use theorem 3.1.1) 

= 
1

2
( |
𝑢1 𝑢2 
𝑦1 𝑦2

| + |
𝑣1 𝑣2 
𝑦1 𝑦2

| + |
𝑢2 𝑢3 
𝑦2 𝑦3

| + |
𝑣2 𝑣3 
𝑦2 𝑦3

| + ⋯+ |
𝑢𝑛 𝑢1 
𝑦𝑛 𝑦1

| + |
𝑣𝑛 𝑣1 
𝑦𝑛 𝑦1

|)    

= 
1

2
( |
𝑢1 𝑢2 
𝑦1 𝑦2

| + |
𝑢2 𝑢3 
𝑦2 𝑦3

| + ⋯+ |
𝑢𝑛 𝑢1 
𝑦𝑛 𝑦1

|) +
1

2
(|
𝑣1 𝑣2 
𝑦1 𝑦2

| + |
𝑣2 𝑣3 
𝑦2 𝑦3

| +

|
𝑣𝑛 𝑣1 
𝑦𝑛 𝑦1

|)    

area of  𝐴1…𝐴𝑛 

=
1

2
(|𝐵1, 𝐵2| + |𝐵2, 𝐵3| + ⋯+ |𝐵𝑛, 𝐵1|) +

1

2
(|𝐶1, 𝐶2| + |𝐶2, 𝐶3| + ⋯+ |𝐶𝑛, 𝐶1|) 

area of  𝐴1…𝐴𝑛 =  area of  𝐵1…𝐵𝑛 + area of  𝐶1…𝐶𝑛 

A4: Exchanging two rows geometrically means the reflection of the heads of the 

polygon about in the straight line 𝑦 =  𝑥, That is, the image of each point (𝑥, 𝑦) 

under the transformation is [
0 1
1 0

] [
𝑥
𝑦] = [

𝑦
𝑥
], which keeps the area fixed. 

 

Since the area of a polygon is a determinant function, which is unique by 

Theorem 2.1.4, we obtain that the area equals the previously defined determinant  

( the cofactor definition and Radic definition ).   
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Example 4.1.4 Use matrices to find the area of triangle with vertices:  

(4, 0), (7, 2), (2, 3) 

 area of triangle = 
1

2
|
4 7 2
0 2 3

 | =
13

2
 

 

 

 

4.2  Some properties of the determinant and their geometric interpretation 

Theorem 4.2.1 [13 ].   Let   𝐴1…𝐴𝑛 be a polygon in 𝑅2.    Then 

area of 𝐴1…𝐴𝑛  =  
1

2
 |𝐴1 + 𝐴2, 𝐴2 + 𝐴3, … , 𝐴𝑛−1 + 𝐴𝑛, 𝐴𝑛 + 𝐴1| 

Proof: We need to show that  

 |𝐴1 + 𝐴2, 𝐴2 + 𝐴3, … , 𝐴𝑛−1 + 𝐴𝑛, 𝐴𝑛 + 𝐴1| = 

|𝐴1 , 𝐴2| + |𝐴2 , 𝐴3| + ⋯+ |𝐴𝑛−1 , 𝐴𝑛| + |𝐴𝑛 , 𝐴1|  

The proof will use the method of mathematical induction.    

First, we have the theorem holds for 𝑛 = 3, that is  

 

 

From the adjacent figure it appears that the triangular shape resulted from the vertices shift 

process and therefore,                   

area of 𝐴1𝐴2𝐴3  =  
1

2
|𝐴1 + 𝐴2, 𝐴2 + 𝐴3, 𝐴3 + 𝐴1|            

                            =
1

2
(|𝐴1 + 𝐴2 , 𝐴2 + 𝐴3| + |𝐴2 + 𝐴3 , 𝐴3 + 𝐴1| + |𝐴3 + 𝐴1 , 𝐴1 + 𝐴2|)  
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Applying Theorem 3.1.10 with  𝑋1 = −𝐴2, 𝑋2 = −𝐴3, 𝑋3 = −𝐴1 on the 

determinants in order 

area of 𝐴1𝐴2𝐴3 =
1

2
(|𝐴1 , 𝐴3| + |𝐴2 , 𝐴1| + |𝐴3 , 𝐴2|) 

                             =
1

2
(|𝐴1 , 𝐴2| + |𝐴2 , 𝐴3| + |𝐴3 , 𝐴1|) 

Second, for   𝑛 ≥ 3 . Assume that is true for 𝑛 = 𝑘,  by theorem 2.5.7 

|𝐴1 + 𝐴2 , 𝐴2 + 𝐴3 , … , 𝐴𝐾−1 + 𝐴𝐾  , 𝐴𝑘 + 𝐴1|  

= |𝐴1 + 𝐴2 , 𝐴2 + 𝐴3 , … , 𝐴𝑘−1 + 𝐴𝑘| + (−1)
𝑘|𝐴1 + (−1)

𝑘𝐴𝑘 , 𝐴𝑘 + 𝐴1| 

            = |𝐴1 + 𝐴2  , 𝐴2 + 𝐴3 , … , 𝐴𝑘−1 + 𝐴𝑘| + (−1)
𝑘|𝐴1, 𝐴𝑘| + |𝐴𝑘 , 𝐴1| 

    = |𝐴1 , 𝐴2| + |𝐴2 , 𝐴3| + ⋯+ |𝐴𝑘−1 , 𝐴𝑘| + |𝐴𝑘 , 𝐴1| + (−1)
𝑘|𝐴1, 𝐴𝑘| + |𝐴𝑘 , 𝐴1| 

We shall prove the result holds for    𝑘 + 1 

𝑑𝑒𝑡[𝐴1 + 𝐴2, 𝐴2 + 𝐴3, … , 𝐴𝑘−1 + 𝐴𝑘 , 𝐴𝑘 + 𝐴𝑘+1 , 𝐴𝑘+1 + 𝐴1]

= det[𝐴1 + 𝐴2, 𝐴2 + 𝐴3, … , 𝐴𝑘−1 + 𝐴𝑘]  

+ (−1)𝑘det[𝐴1 + (−1)
𝑘𝐴𝑘 , 𝐴𝑘 + 𝐴1] + det[𝐴𝑘 + 𝐴𝑘+1, 𝐴𝑘+1 + 𝐴1] 

                          = det[𝐴1 + 𝐴2, 𝐴2 + 𝐴3, … , 𝐴𝑘−1 + 𝐴𝑘] + (−1)
𝑘det[𝐴1, 𝐴𝑘] − det[𝐴𝑘 , 𝐴1]

+ det[𝐴𝑘 , 𝐴𝑘+1] + det[𝐴𝑘 , 𝐴1] + det[𝐴𝑘+1 , 𝐴1] 

             = det[𝐴1 + 𝐴2, 𝐴2 + 𝐴3, … , 𝐴𝑘−1 + 𝐴𝑘] + (−1)
𝑘det[𝐴1, 𝐴𝑘] + det[𝐴𝑘 , 𝐴𝑘+1]

+ det[𝐴𝑘+1 , 𝐴1] 

= det[𝐴1, 𝐴2] + det[𝐴2, 𝐴3] + ⋯+ det[𝐴𝑘  , 𝐴𝑘+1] + det[𝐴𝑘+1 , 𝐴1] 
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Example 4.2.2 Use Theorem 4.2.1 to compute the area of the polygon in 𝑅2 with 

vertices   (0, 0), (1, 0), (1, 1), (0 ,1)    

 

  

 

 

 

Now,    Area 𝐴1 𝐴2 𝐴3 𝐴4 =
1

2
 |𝐴1 + 𝐴2, 𝐴2 + 𝐴3, 𝐴3 + 𝐴4, 𝐴4 + 𝐴1| 

                                                 =    
1

2
|
1 2 1
0 1 2

    
0
1
| = 1         

Corollary 4.2.3 [13 ].   If  𝑛  is odd, then for every point  𝑋  in 𝑅2 it holds 

      |𝐴1 + 𝑋,… , 𝐴𝑛 + 𝑋| =  |𝐴1, … , 𝐴𝑛| 

Proof: Since 𝑚 = 2, if  𝑛 is odd, then   𝑚 + 𝑛  is odd,  by theorem 3.1.10 it holds 

     that is, the area of the polygon 𝐴1𝐴2… 𝐴𝑛 will not be changed when a fixed 

vector   𝑋 = (𝑥, 𝑦)  is subtracted from all the vertices (heads) of the polygon. 

Example 4.2.4  The area of a polygon with vertices  

 (1 , 3), (2 , 0), (7 , 1), (4 , −1), (3 , 2)  

when all the heads are shifted by an amount   𝑋 = (1,3) 

|
1 2 7
3 0 1

   
4
−1
    
3
2
| = |

2 3 8
6 3 4

   
5 4
2 5

| = −3    

area of a polygon = 3 
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Theorem 4.2.5 [13].    Let  𝐴1…𝐴𝑛   be a polygon in   𝑅2  with odd   𝑛.  

 Then 

|𝐴1, … , 𝐴𝑛| =  |𝐴𝑛, 𝐴1, … , 𝐴𝑛−1| 

Proof:  Since 𝑚 = 2 ,  if  𝑛 is odd, then   𝑚 + 𝑛   is odd. 

 by Cyclic theorem,    (−1)(𝑖+1)𝑚𝑑𝑒𝑡[𝐴𝑖  , … , 𝐴𝑛 , … , 𝐴𝑖−1] = 𝑑𝑒𝑡[𝐴1 , … , 𝐴𝑛] 

When   𝑖 = 𝑛,  then (𝑖 + 1)𝑚  is even  

So,  |𝐴1, … , 𝐴𝑛| =  |𝐴𝑛 , 𝐴1, … , 𝐴𝑛−1|. 

 

Example 4.2.6   Use Theorem 4.2.5 to find the area of a polygon with vertices:  

𝐴1 = (3,2),   𝐴2 = (5,1),    𝐴3 = (7,4)    

Then, area of a polygon 𝐴1𝐴2 𝐴3 = 

 |
3 5 7
2 1 4

| = |
7 3 5
4 2 1

| = 8 

 

Note, we can calculate the area by starting 

from any vertex of the polygon paying attention to the direction and arrangement 

of the vertices. 

Area of a polygon 𝐴1𝐴2 𝐴3 = det(𝐴1, 𝐴2, 𝐴3) = det(𝐴2, 𝐴3, 𝐴1) = det(𝐴3, 𝐴1, 𝐴2)  

 

Theorem 4.2.7 [13 ]. Let 𝐴1…𝐴𝑛 be a polygon in 𝑅2and let 𝑛 be an even integer.  

Then for any point    𝑋   in  𝑅2   it holds  

      |𝐴1 + 𝑋,… , 𝐴𝑛 + 𝑋| =  |𝐴1, … , 𝐴𝑛| 

Only if     ∑ (−1)𝑖𝑛
𝑖=1 𝐴𝑖 = 0. 

Proof:  This theorem is incompatible with the theorem 3.1.10 and the reason is 

𝑚 = 2, if 𝑛 is even,  then   𝑚 + 𝑛   is even, This does not meet the theorem 3.1.10 

requirement 
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Now, by Theorem  2.5.7,   it is clear that for any point  𝑝  in  𝑅2   holds  

|𝐴1, 𝐴2, … , 𝐴𝑛, 𝑝| = |𝐴1, 𝐴2, … , 𝐴𝑛| + (−1)
𝑛+1|𝐴1 − 𝐴2 +⋯+ (−1)

𝑛+1 𝐴𝑛, 𝑝|            

= |𝐴1, 𝐴2, … , 𝐴𝑛|                                        (1) 

Only if     𝐴1 − 𝐴2 +⋯− 𝐴𝑛 = 0.  

Now, by theorem 3.1.10, since  𝑚+ 𝑛 + 1 is odd, taking  𝑋 = −𝑝,  we can write  

|𝐴1, 𝐴2, … , 𝐴𝑛, 𝑝| = |𝐴1 + (−𝑝), 𝐴2 + (−𝑝),… , 𝐴𝑛 + (−𝑝), 𝑝 + (−𝑝)| 

                 = |𝐴1 + (−𝑝), 𝐴2 + (−𝑝),… , 𝐴𝑛 + (−𝑝), 02| 

By Lemma 3.1.8 

               = |𝐴1 + (−𝑝), 𝐴2 + (−𝑝),… , 𝐴𝑛 + (−𝑝)| 

Putting   𝑋 = −𝑝,  we get 

            |𝐴1, 𝐴2, … , 𝐴𝑛, 𝑝|  = |𝐴1 + 𝑋, 𝐴2 + 𝑋,… , 𝐴𝑛 + 𝑋| 

since   |𝐴1, 𝐴2, … , 𝐴𝑛, 𝑝| = |𝐴1, 𝐴2, … , 𝐴𝑛|        ( from 1 ) 

We get,         

                        |𝐴1, 𝐴2, … , 𝐴𝑛|  = |𝐴1 + 𝑋, 𝐴2 + 𝑋,… , 𝐴𝑛 + 𝑋|            

 

That is,  the area of the polygon 𝐴1𝐴2… 𝐴𝑛 will not be changed when a fixed 

vector 𝑋 = (𝑥, 𝑦) is subtracted from all the vertices (heads) of the polygon. 

When for example  𝑋 = −𝐴1, we obtain  

 |𝐴1, 𝐴2, … , 𝐴𝑛| = |0, 𝐴2 − 𝐴1, … , 𝐴𝑛 − 𝐴1| 

                               = |𝐴1 − 𝐴2, … , 𝐴1 − 𝐴𝑛| 

                               = |𝐵1, 𝐵2, … , 𝐵𝑛−1| 

                              =
1

2
 |𝐵1, 𝐵2| + |𝐵2, 𝐵3| + ⋯+ |𝐵𝑛−1, 𝐵1| 
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Example  4.2.8  Use Theorem 4.2.7  to find the area of a polygon with vertices: 

𝐴1 = (1,2),   𝐴2 = (3,5),    𝐴3 = (4,2),    𝐴4 = (2,−1) 

Since   −𝐴1 + 𝐴2 − 𝐴3 + 𝐴4 = 0 

area of a polygon 

𝐴1𝐴2 𝐴3𝐴4 = ||
1 3   
2 5   

4 2
2 −1

|| = |−9 | = 9 

 

      

     We note that when we move on the vertices of the polygon in opposite 

direction but in the same order, we obtain the same area but opposite value of the 

determinant.  

While the original space recedes itself, meaning 

area of a polygon  𝐴1𝐴4 𝐴3𝐴2 = |
1 2   
2 −1   

4 3
2 5

| = 9 

Now, by an amount   𝑋 = (1,2) 

area of a polygon  (𝐴1 + 𝑋)(𝐴2 + 𝑋) (𝐴3 + 𝑋)(𝐴4 + 𝑋) 

         =  ||
2 4   
4 7   

5 3
4 1

|| = |−9 | = 9  

Theorem 4.2.9 [13]. Let 𝐴1…𝐴𝑛 be a polygon in 𝑅2 with even 𝑛 and let  

∑ (−1)𝑖𝑛
𝑖=1 𝐴𝑖 = 0.  Then 

|𝐴1, … , 𝐴𝑛| =  |𝐴𝑛, 𝐴1, … , 𝐴𝑛−1| 

Proof:   If 𝑛 is even, by theorem 4.1.10,   taking  𝑋 = −𝐴𝑛,  we can write 

|𝐴1, … , 𝐴𝑛| = |𝐴1 − 𝐴𝑛, … , 𝐴𝑛−1 − 𝐴𝑛, 𝐴𝑛 − 𝐴𝑛| 

                     = |𝐴1 − 𝐴𝑛 , … , 𝐴𝑛−1 − 𝐴𝑛, 02|   (see lemma 3.1.8) 

                       = |02, 𝐴𝑛 − 𝐴1, … , 𝐴𝑛 − 𝐴𝑛−1| 
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Adding    −𝐴𝑛   to each column 

𝑑𝑒𝑡(𝐴1, … , 𝐴𝑛) = 𝑑𝑒𝑡(−𝐴𝑛, −𝐴1, … , −𝐴𝑛−1)  

Take out a common negative signal factor from the two rows 

𝑑𝑒𝑡(𝐴1, … , 𝐴𝑛) = 𝑑𝑒𝑡(𝐴𝑛, 𝐴1, … , 𝐴𝑛−1)       

Note that, this says that we can calculate the area by starting from any vertex of 

the polygon paying attention to the direction and arrangement of the vertices. 

Example 4.2.10  Use Theorem 4.2.9 to find the area of a polygon with vertices:  

𝐴1 = (1,2),   𝐴2 = (3,5),    𝐴3 = (4,2),  𝐴4 = (2,−1) 

Since −𝐴1 + 𝐴2 − 𝐴3 + 𝐴4 = 0 

||
1 3 4
2 5 2

   
2
−1
|| = ||

2
−1
   
1 3 4
2 5 2

||  = 9  

     We note that when we move on the vertices of the polygon in opposite 

direction but in the same order, we obtain the same area but opposite value of the 

determinant.  

Theorem 4.2.11 [13]. Let 𝐴1…𝐴𝑛 be a polygon in 𝑅2 with even 𝑛 and let   

∑ (−1)𝑖𝑛
𝑖=1 𝐴𝑖 = 0.    Then  

      |𝐴1, … , 𝐴𝑛| =  |𝐴1, … , 𝐴𝑛−1| 

Proof: By Theorem  2.5.7,    

|𝐴1, 𝐴2, … , 𝐴𝑛| = |𝐴1, 𝐴2, … , 𝐴𝑛−1| + (−1)
𝑛|𝐴1 − 𝐴2 +⋯+ 𝐴𝑛−1, 𝐴𝑛|

= |𝐴1, 𝐴2, … , 𝐴𝑛−1| 

since   ∑ (−1)𝑖𝑛
𝑖=1 𝐴𝑖 = 0,   we get    𝐴1 − 𝐴2 +⋯+ 𝐴𝑛−1 = 𝐴𝑛.        

That means,    |𝐴1, 𝐴2, … , 𝐴𝑛| =  |𝐴1, 𝐴2, … , 𝐴𝑛−1| 
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      We notice that if we displace the shape to the original point and calculate the 

area by dividing the shape into such based on the origin point, the area does not 

change. 

Example 4.2.12    If  𝐴1𝐴2𝐴3𝐴4  is parallelogram, then  

𝑑𝑒𝑡[ 𝐴1, 𝐴2, 𝐴3, 𝐴4] = 𝑑𝑒𝑡[ 𝐴1, 𝐴2, 𝐴3] 

Now, | 𝐴1, 𝐴2, 𝐴3| =  | 𝐴1, 𝐴2| − | 𝐴1, 𝐴3| + | 𝐴2, 𝐴3| 

                       =  | 𝐴1, 𝐴2| + |−𝐴1 +  𝐴2, 𝐴3|   

Since  𝑛   is even, we get  −𝐴1 + 𝐴2 − 𝐴3 + 𝐴4 = 0 

| 𝐴1, 𝐴2, 𝐴3| =  | 𝐴1, 𝐴2| + |𝐴3 −  𝐴4, 𝐴3| 

                        =  | 𝐴1, 𝐴2| + |− 𝐴4, 𝐴3| = | 𝐴1, 𝐴2| + | 𝐴3, 𝐴4| 

| 𝐴1, 𝐴2, 𝐴3, 𝐴4| = | 𝐴1, 𝐴2| + | 𝐴3, 𝐴4| 

Example 4.2.13   Use Theorem 4.2.11 to find the area of a polygon with vertices:  

𝐴1 = (1,2),   𝐴2 = (3,5),    𝐴3 = (4,2),    𝐴4 = (2,−1) 

Since   −𝐴1 + 𝐴2 − 𝐴3 + 𝐴4 = 0  

 |𝐴1, 𝐴2, 𝐴3,  𝐴4| =  |𝐴1 − 𝐴4, 𝐴2 − 𝐴4, 𝐴3 −  𝐴4,  𝐴4 −  𝐴4| 

= |𝐴1 − 𝐴4, 𝐴2 − 𝐴4, 𝐴3 −  𝐴4, 0| = |𝐴1 − 𝐴4, 𝐴2 − 𝐴4, 𝐴3 −  𝐴4| 

= |
−1 1 2
3 6 3

    
0
0
| = |

−1 1 2
3 6 3

 | = −9 

area of a polygon 𝐴1𝐴2 𝐴3𝐴4 = 9 
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 Note that the point can be considered as the center on which to divide triangles to 

calculate the area 

then,  

area of a polygon 𝐴1𝐴2 𝐴3𝐴4 =  ||
1 3 4
2 5 2

   
2
−1
|| = ||

1 3 4
2 5 2

||    = |−9| = 9 

 

Theorem 4.2.14 [13 ]. Let 𝐴1…𝐴𝑛 be a polygon in 𝑅2 with even 𝑛 and let   

∑ (−1)𝑖𝑛
𝑖=1 𝐴𝑖 = 0.  Then    

      |𝐴1, … , 𝐴𝑛| =  |𝐴1, … , 𝐴𝑘| + |𝐴𝑘+1, … , 𝐴𝑛|, 

Where  𝑘   may be any integer such that  1 < 𝑘 < 𝑛. 

Proof:  

area of 𝐴1…𝐴𝑛 

=
1

2
(|𝐴1, 𝐴2| + |𝐴2, 𝐴3| + ⋯+ |𝐴𝑘−1, 𝐴𝑘| + |𝐴𝑘, 𝐴𝑘+1| + |𝐴𝑘+1, 𝐴𝑘+2| + ⋯+

|𝐴𝑛−1, 𝐴𝑛| + |𝐴𝑛, 𝐴1|)  

=
1

2
(|𝐴1, 𝐴2| + |𝐴2, 𝐴3| + ⋯+ |𝐴𝑘−1, 𝐴𝑘| + |𝐴𝑘+1, 𝐴𝑘+2| + ⋯+ |𝐴𝑛−1, 𝐴𝑛|) +

1

2
(|𝐴𝑘, 𝐴𝑘+1| + |𝐴𝑛, 𝐴1|)  

|𝐴1, … , 𝐴𝑛| =  |𝐴1, … , 𝐴𝑘| + |𝐴𝑘+1, … , 𝐴𝑛| +
1

2
(|𝐴𝑘, 𝐴𝑘+1| + |𝐴𝑛, 𝐴1|) −

1

2
(|𝐴𝑘, 𝐴1| + |𝐴𝑛, 𝐴𝑘+1|)  

let    ∆ =
1

2
(|𝐴𝑘, 𝐴𝑘+1| + |𝐴𝑛, 𝐴1| − |𝐴𝑘, 𝐴1| − |𝐴𝑛, 𝐴𝑘+1|)  

|𝐴1, … , 𝐴𝑛| =  |𝐴1, … , 𝐴𝑘| + |𝐴𝑘+1, … , 𝐴𝑛| + ∆   

   But, if   ∑ (−1)𝑖𝑛
𝑖=1 𝐴𝑖 = 0,   then   ∆= 0   ( see figure) 

Then,     |𝐴1, … , 𝐴𝑛| =  |𝐴1, … , 𝐴𝑘| + |𝐴𝑘+1, … , 𝐴𝑛| 
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Example 4.2.15   Use Theorem 4.2.14 to find the area of a polygon with vertices:  

𝐴1 = (1,2),   𝐴2 = (0,1),   𝐴3 = (1,0),  𝐴4 = (2,−1),  𝐴5 = (3,−1),  𝐴6 = (3,1) 

 Since  

−𝐴1 + 𝐴2 − 𝐴3 + 𝐴4 +  𝐴5 −  𝐴6  = 0 

Then,  

area of a polygon 𝐴1𝐴2 𝐴3𝐴4 𝐴5 𝐴6 =

||
1 0 1
2 1 0

   
2
−1
   
3
−1
   
3
1
|| =  4 

take  𝑘 = 3  then 

area of a polygon 𝐴1𝐴2 𝐴3 + area of a polygon 𝐴4 𝐴5 𝐴6  

= ||
1 0 1
2 1 0

|| + ||
2 3 3
−1 −1 1

|| = 2 + 2 = 4  

 

take  𝑘 = 2  then 

area of a polygon 𝐴1𝐴2  + area of a polygon 𝐴3𝐴4 𝐴5 𝐴6  

= ||
1 0
2 1

||   +   ||
1 2 3
0 −1 −1

   
3
1
|| = 1 + 3 = 4 

 

Corollary 4.2.16 [13].   Let  𝐵1, … , 𝐵𝑛  be given by 

 𝐵1 =
𝐴1+𝐴2

2
  , 𝐵2 =

𝐴2+𝐴3

2
   , … .   , 𝐵𝑛 =

𝐴𝑛+𝐴1

2
 .  

Then 

4|𝐵1, … , 𝐵𝑛| = |𝐴1, 𝐴2| + |𝐴2, 𝐴3| + ⋯+ |𝐴𝑛, 𝐴1| 
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Proof:   4|𝐵1, … , 𝐵𝑛| = 4 |
𝐴1+𝐴2

2
,
𝐴2+𝐴3

2
 , … ,

𝐴𝑛+𝐴1

2
|. 

By theorem   4.2.1 

4|𝐵1, … , 𝐵𝑛| = 4 (
1

4
 |𝐴1, 𝐴2| +

1

4
|𝐴2, 𝐴3| + ⋯+

1

4
|𝐴𝑛, 𝐴1|) 

                      = |𝐴1, 𝐴2| + |𝐴2, 𝐴3| + ⋯+ |𝐴𝑛, 𝐴1|       

 

Example 4.2.17  From the adjacent figure we find that   

area of a polygon 𝐵1𝐵2 𝐵3𝐵4 = 
1

2
  area of a polygon 𝐴1 𝐴2 𝐴3 𝐴4   

Use Theorem 4.1.3  to find the area of a polygon with vertices:  

𝐴1 = (1,2), 𝐴2 = (3,5),   𝐴3 = (4,2), 𝐴4 = (2,−1) 

Since   −𝐴1 + 𝐴2 − 𝐴3 + 𝐴4 = 0 

Then,   area of a polygon 𝐴1𝐴2 𝐴3𝐴4 =   9 

 

 

area of a polygon with vertices 

 𝐵1 = (2,3.5),   𝐵2 = (3.5,3.5),    𝐵3 = (3,0.5),    𝐵4 = (1.5,0.5) 

Since   −𝐵1 + 𝐵2 − 𝐵3 + 𝐵4 = 0 

Then,   area of a polygon 𝐵1𝐵2 𝐵3𝐵4 =  ||
2 3.5 3
3.5 3.5 0.5

  
1.5
0.5
|| = 4.5 

That means, by Corollary 4.2.16 

 area of a polygon   𝐵1𝐵2 𝐵3𝐵4 = 
1

2
  area of a polygon 𝐴1 𝐴2 𝐴3 𝐴4 .  
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Chapter Five 

Inverse for non-square matrix 

     In linear algebra, the inverse of a matrix is defined only for square matrices, 

and if a matrix is singular, it does not have an inverse. 

     The aim of this chapter is the discussion of existence of inverses for non-

square matrices. We know that the fundamental idea for existence of inverse of 

matrix it must be nonsingular. (it has non-zero determinant). 

5.1 Right inverse or left inverse of a matrix  

      Although non-square matrices do not have inverses (both sides inverse),  

some of them have one side inverses. For this reason we introduce the concepts of  

"left inverse" and "right inverse"  

Definition 5.1.1 [3 , 𝑝. 397 ].  

(i)   A non-singular non-square matrix 𝐴 has a left inverse if there exists a matrix   

𝐴𝐿
−1   such that  𝐴𝐿

−1𝐴 = 𝐼,  where  𝐼  denote the identity matrix. 

(ii)  A non-singular non-square matrix 𝐴 has a right inverse if there exists a matrix   

𝐴𝑅
−1   such that  𝐴 𝐴𝑅

−1 = 𝐼,  where  𝐼  denote the identity matrix. 

     We note here a right inverse of 𝐴𝑚×𝑛  (𝑚 < 𝑛) is an 𝐴𝑅
−1 matrix, where a left 

inverse of  𝐴𝑚×𝑛  (𝑚 > 𝑛)   is an  𝐴𝐿
−1  matrix. 

Example 5.1.2   Let  A =  [
1 3 0
2 2 1

]  Find   a right inverse of  A  

Solution:  Let  𝐴𝑅
−1 be a a right inverse of 𝐴, then      

  𝐴 𝐴𝑅
−1 = [

1 3 0
2 2 1

]  [

𝑥1 𝑦1
𝑥2 𝑦2
𝑥3 𝑦3

] = [
1 0
0 1

] 

[
𝑥1 + 3𝑥2 𝑦1 + 3𝑦2

2𝑥1 + 2𝑥2 + 𝑥3 2𝑦1 + 2𝑦2 + 𝑦3
] = [

1 0
0 1

] 
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Gauss-Jordan reduction Using we obtain the following  

𝑥1 +
3

4
  𝑥3 =

−1

2
       ,        𝑥2 −

1

4
  𝑥3 =

1

2
          ,     𝑦1 +

3

4
  𝑦3 =

3

4
      ,  𝑦2 −

1

4
  𝑦3 =

−1

4
         (*) 

This system has infinitely many solutions, one solution gives the following  

𝐴𝑅
−1 =  [

1 1

0 −1
3⁄

−2 −1
3⁄

] ,   another solution is   𝐴𝑅
−1 =  [

0 0
13
32⁄ 0

−3
8⁄ 1

] 

     Computing a right inverse of horizontal matrix always can be transformed to 

finding a solution of a linear system with 𝑚 equations and  𝑛 variable  (𝑚 < 𝑛). 

Note: When a right inverse or a left inverse for a non-singular non-square matrix 

exists, it is not unique. 

Remark 5.1.3 For any non-singular square matrix 𝐴, left inverse and right inverse 

exists and it is equal to inverse of 𝐴, that is   

𝐴𝑅
−1 = 𝐴𝐿

−1 = 𝐴−1 =
1

det(𝐴)
𝑎𝑑𝑗(𝐴). 

 

The following theorem is from  [3],  but we give here another proof   

Theorem 5.1.4   Every non-singular horizontal matrix  𝐴   has a right inverse   𝐴𝑅
−1   given 

by 

𝐴𝑅
−1 =

1

det(𝐴)
𝑎𝑑𝑗(𝐴) 

Proof:   

Let  𝐴 =  

[
 
 
 
 
 
𝑎11 𝑎12 ⋯
𝑎21 𝑎22 ⋯
⋮
𝑎𝑖1
⋮
𝑎𝑚1

⋮
𝑎𝑖2
⋮
𝑎𝑚2

⋱
⋯
⋱
⋯

     

𝑎1𝑛
𝑎2𝑛
⋮
𝑎𝑖𝑛
⋮
𝑎𝑚𝑛]

 
 
 
 
 

,       𝑎𝑑𝑗(𝐴) = [

𝑀11 𝑀21 ⋯
𝑀12 𝑀22 …
⋮
𝑀1𝑛

⋮
𝑀2𝑛

⋱
…

    

𝑀𝑗1 ⋯ 𝑀𝑚1
𝑀𝑗2 ⋯ 𝑀𝑚2
⋮     ⋱    ⋮     
𝑀𝑗𝑛 ⋯ 𝑀𝑚𝑛

  ]  

Since 𝐴 is non-singular, 𝑑𝑒𝑡(𝐴) is non-zero the matrix 
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𝐵 =
1

det(𝐴)
𝑎𝑑𝑗(𝐴) =

1

det(𝐴)
[

𝑀11 𝑀21 ⋯
𝑀12 𝑀22 …
⋮
𝑀1𝑛

⋮
𝑀2𝑛

⋱
…

    

𝑀𝑗1 ⋯ 𝑀𝑚1
𝑀𝑗2 ⋯ 𝑀𝑚2
⋮     ⋱    ⋮     
𝑀𝑗𝑛 ⋯ 𝑀𝑚𝑛

  ] 

satisfies 

𝐴 𝐵 =
1

det(𝐴)

[
 
 
 
 
 
𝑎11 𝑎12 ⋯
𝑎21 𝑎22 ⋯
⋮
𝑎𝑖1
⋮
𝑎𝑚1

⋮
𝑎𝑖2
⋮
𝑎𝑚2

⋱
⋯
⋱
⋯

     

𝑎1𝑛
𝑎2𝑛
⋮
𝑎𝑖𝑛
⋮
𝑎𝑚𝑛]

 
 
 
 
 

[

𝑀11 𝑀21 ⋯
𝑀12 𝑀22 …
⋮
𝑀1𝑛

⋮
𝑀2𝑛

⋱
…

    

𝑀𝑗1 ⋯ 𝑀𝑚1
𝑀𝑗2 ⋯ 𝑀𝑚2
⋮     ⋱    ⋮     
𝑀𝑗𝑛 ⋯ 𝑀𝑚𝑛

  ] 

The   (𝑖 , 𝑗  )𝑡ℎ   element in the product matrix  𝐴 𝐵  is    (**) 

                𝑖𝑓   𝑖 = 𝑗,         𝑎𝑖1 𝑀𝑗1 + 𝑎𝑖2𝑀𝑗2 +⋯+ 𝑎𝑖𝑛𝑀𝑗𝑛 = det(𝐴)      ( theorem 2.3.2) 

and,       𝑖𝑓   𝑖 ≠ 𝑗,      we need to show that       𝑎𝑖1 𝑀𝑗1 + 𝑎𝑖2𝑀𝑗2 +⋯+ 𝑎𝑖𝑛𝑀𝑗𝑛 = 0 

Consider the matrix  𝐵  obtained from  𝐴  by replacing the  𝑘𝑡ℎ  row of  𝐴  by  its  

𝑖𝑡ℎ row.  Thus 𝐵 is a matrix having two identical rows the 𝑖𝑡ℎ and 𝑘𝑡ℎ rows.  Then 

𝑑𝑒𝑡(𝐵) =  0. Now expand 𝑑𝑒𝑡(𝐵) about the 𝑘𝑡ℎ row, the elements of the 𝑘𝑡ℎ row 

of  𝐵  are 𝑎𝑖1 , 𝑎𝑖2 , … ,  𝑎𝑖𝑛.  The cofactors of the  𝑘𝑡ℎ row are  𝑀𝑘1, 𝑀𝑘2 , … ,𝑀𝑘𝑛 .   

We have,      0 = det(𝐵) =   𝑎𝑖1 𝑀𝑘1 + 𝑎𝑖2𝑀𝑘2 +⋯+ 𝑎𝑖𝑛𝑀𝑘𝑛  

This means that    

𝐴 𝐵 =
1

det(𝐴)
  [

det(𝐴) 0 ⋯
0 det(𝐴) ⋯
⋮
0

⋮
0

⋱
⋯

   

0
0
⋮

det(𝐴)

] = 𝐼𝑚 

Hence, the matrix   𝐵   is a right inverse of  𝐴.              

In example 5.1.2 we have seen that a right inverse for   A = [
1 3 0
2 2 1

]  is  

𝐴𝑅
−1 =  [

1 1

0 −1
3⁄

−2 −1
3⁄

] here we compute an inverse of the same 𝐴 by theorem 5.1.4 

which is 𝐴𝑅
−1 =  [

−1
2⁄

3
2⁄

1
2⁄

−1
2⁄

0 1

] . it is easy to see that the resulting inverse is 

another solution to the system (*).   
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Example 5.1.5   Let 𝐴 = [ 
1 1 2
1 2 1
3 4 1

    
0
2
2
]       

to find a right inverse of 𝐴, 𝐴𝑅
−1, by applying theorem 5.1.4 we first compute 

cofactors of  𝐴  ,   det(A) =  −4  and the result is  

𝐴𝑅
−1 =

1

det(𝐴)
𝑎𝑑𝑗(𝐴) =

1

−4
[

2 5 −1
−2 −3 −1
−2
2

−1
−1

1
1

 ] =

[
 
 
 
 
 
−1

2⁄
−5

4⁄   1 4⁄

   1 2⁄    3 4⁄     1 4⁄

   1 2⁄

−1
2⁄

   
1
4⁄

1
4⁄

−1
4⁄

−1
4⁄

 

]
 
 
 
 
 

 

Theorem 5.1.6 [3 ]   Every non-singular vertical matrix  𝐴   has a left inverse   𝐴𝐿
−1,   such 

that  

𝐴𝐿
−1 =

1

det(𝐴)
𝑎𝑑𝑗(𝐴) 

Proof: similar to  the proof of theorem 5.1.4                        

     

The following theorem describes the case that  𝐴 has both a right inverse and a left inverse.  

Theorem 5.1.7 If  𝐴 is an 𝑚 × 𝑛 matrix such that both  𝐴𝑅
−1  and  𝐴𝐿

−1  exist, then   

𝑚 = 𝑛  (so 𝐴 is square). Moreover,  𝐴 is invertible and  𝐴 −1 = 𝐴𝑅
−1 = 𝐴𝐿

−1. 

Proof:  Let  𝐴  be an  𝑚 × 𝑛  matrix 

If  𝐴 𝐴𝑅
−1 = 𝐼𝑚,  then the equation  𝑨𝒙 = 𝒃  has a solution for every possible 𝒃 in 𝑅𝑚  

(given b,  just  let  𝒙 = 𝐴𝑅
−1𝒃,   then  𝑨𝒙 = 𝑨(𝐴𝑅

−1𝒃) = 𝐼𝑚𝒃 = 𝒃.  

Since b is arbitrary, in particular, for all   𝑖 = 1,… ,𝑚,   the system  𝑨𝒙 = 𝑒𝑖   

 (where  𝑒𝑖 = (0,… ,1, … ,0)
𝑇 ,  the 1 in the  𝑖th component) has a solution, 

say  𝑟𝑖  for every  𝑖,  that is, 

𝐴𝑟1 = 𝑒1  , 𝐴𝑟2 = 𝑒2 , … , 𝐴𝑟𝑚 = 𝑒𝑚. 

Let   𝐴𝑅
−1= [𝑟1   ⋯  𝑟𝑚].  Then 

𝐴𝐴𝑅
−1 = 𝐴 ⋅ [𝑟1   ⋯  𝑟𝑚] = [𝐴 𝑟1   ⋯  𝐴 𝑟𝑚] = [𝑒1⋯ 𝑒𝑚] = 𝐼𝑚. 
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Therefore 𝐴 has a pivot position in every row. This force 𝑚 ≤ 𝑛, since every 

pivot position must be in a different column.  

If   𝐴𝐿
−1𝐴 = 𝐼𝑛,   consider the equation  𝑨𝒙 = 0.   Then   𝐴𝐿

−1𝑨 𝒙 = 𝐴𝐿
−1 0 = 0. 

But 𝐴𝐿
−1𝑨 𝒙 = 𝐼𝑛 𝒙 = 𝒙,  so 𝒙 = 𝟎. In other words, 𝑨𝒙 = 𝟎  has a unique solution 

and therefore the columns of 𝐴 must be linearly independent (see definition 1.9.3) 

and therefore each column must be a pivot position column. Since each pivot 

position must be in a different row, these forces  𝑛 ≤ 𝑚. 

So, combining the two paragraphs gives that 𝑚 = 𝑛. Since 𝐴 is now known to be 

square,  𝐴 is invertible and  𝐴 −1 = 𝐴𝑅
−1 = 𝐴𝐿

−1  .                           

5.2     Properties for   inverse and adjoint of non- square matrices.  

       In Chapter one we have known that taking inverse and transposing a matrix 

commute. (theorem 1.5.2).  Here we write an example that asserts this fact for a 

non-square matrix.   

Example 5.2.1   Let   A = [
1 3 0
2 2 1

],    a right inverse of  A is    A𝑅
−1  =  [

−1
2⁄

3
2⁄

1
2⁄

−1
2⁄

0 −1

],  

 (A𝑅
−1 )𝑇 = [

−1
2⁄

1
2⁄ 0

3
2⁄

−1
2⁄ −1

],      also      AT = [
1 2
3 2
0 1

] ,   

  (AT)𝐿
−1 = [

−1
2⁄

1
2⁄ 0

3
2⁄

−1
2⁄ −1

] = (A𝑅
−1 )𝑇  

The following Corollaries says that this is true in general. 

Corollary 5.2.2  If  𝐴 = (𝑎𝑖𝑗)  is non-singular   𝑚 × 𝑛  matrix, then  

                                 (AT)𝐿
−1 = (A𝑅

−1)𝑇      and      (AT)𝑅
−1 = (A𝐿

−1)𝑇 

Proof:   If   𝑚 < 𝑛,  then  𝐴𝑇 is an  𝑛 ×  𝑚  

A𝑅
−1 is a right inverse of A, we have   𝐴 𝐴𝑅

−1 = I𝑚      
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Taking transposes, we obtain 

(𝐴 𝐴𝑅
−1)𝑇 = (I𝑚)

𝑇   

(A𝑅
−1)𝑇 𝐴𝑇 = I𝑚   

These equations imply that  

(AT)𝐿
−1 = (A𝑅

−1)𝑇  

The proof for the case    𝑛 < 𝑚  is similar. 

Corollary 5.2.3 Let 𝐴 be a non-singular 𝑚 ×𝑚 matrix, and 𝐵 be non-singular     

𝑚 × 𝑛   matrix, then  

(A B)𝑅
−1 = B𝑅

−1𝐴−1    and    (A B)𝐿
−1 = B𝐿

−1𝐴−1 

Proof: If   𝑚 < 𝑛, since  𝐴  is an   𝑚 ×𝑚  matrix  and  𝐵   is an   𝑚 × 𝑛   matrix, 

we have  𝐴−1  is an   𝑚 ×𝑚  matrix  and  B𝑅
−1   is an   𝑛 × 𝑚   matrix 

Now, 

(A B)(B𝑅
−1𝐴−1) = A(B B𝑅

−1)A−1 = A I𝑚  A
−1 = A   A−1 = I𝑚              

When  𝑛 < 𝑚  we obtain 

(B𝐿
−1𝐴−1)(A B) = B𝐿

−1( A −1 𝐴)B = B𝐿
−1 I𝑚B = B𝐿

−1 B = I𝑛   

Therefore,  (A B)𝑅
−1 = B𝑅

−1𝐴−1    and    (A B)𝐿
−1 = B𝐿

−1𝐴−1 

Example 5.2.4  Prove theorem 5.2.3 for the matrices   𝐴 =  [
1 3
2 1

]   ,     𝐵 =  [
1 3 0
2 2 1

]   

Then,  𝐵 = [ 
7 9 3
4 8 1

],        𝑎𝑑𝑗( 𝐴 𝐵 ) =  [
7 −6
−3 4
−4 2

]  

 (A B)𝑅
−1 =

[
 
 
 
7
10⁄

−6
10⁄

−3
10⁄

4
10⁄

−4
10⁄

2
10⁄ ]
 
 
 

      and     A−1 = [
−1

5⁄
3
5⁄

2
5⁄

−1
5⁄
]  

𝑎𝑑𝑗(𝐵) = [
1 −3
−1 1
0 2

],         B𝑅
−1 = [

−1
2⁄

3
2⁄

1
2⁄

−1
2⁄

0 −1

] 
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  B𝑅
−1  𝐴−1 =

[
 
 
 
7
10⁄

−6
10⁄

−3
10⁄

4
10⁄

−4
10⁄

2
10⁄ ]
 
 
 

= (A B)𝑅
−1 

Corollary 5.2.5 If k is nonzero real number and 𝐴 = (𝑎𝑖𝑗) is a non-singular 

𝑚 × 𝑛  matrix,    then  

(k A)−1 =
1

𝑘
 A−1 

where the inverse is a right or a left inverse according to  𝑚 ≤ 𝑛  or  𝑚 > 𝑛 

Proof:  If  𝑚 ≤ 𝑛,   since   𝐴  is an   𝑚 × 𝑛  matrix,  𝐴𝑅
−1  is  an   𝑛 × 𝑚  matrix 

and  we have 

(k A) (
1

𝑘
 𝐴𝑅
−1) = A  𝐴𝑅

−1 = 𝐼𝑚, which gives     

(k A)𝑅
−1 =

1

𝑘
 𝐴𝑅
−1 

Also, if     𝑛 < 𝑚,      (
1

𝑘
 𝐴𝐿
−1) (k A) =   𝐴𝐿

−1  A = 𝐼𝑛     which gives                    

(k A)𝐿
−1 =

1

𝑘
 𝐴𝐿
−1    

      We notice here that the properties of the inverse that are satisfied in square 

matrices (see theorem 1.5.2.b-c-d) are also satisfied in non-square matrices (see 

theorem 5.2.2, 5.2.3, 5.2.5) 

The following theorem is given in  [8], but we are providing our own proof.  

Theorem 5.2.6   If 𝐴 = (𝑎𝑖𝑗) is an  𝑚 × 𝑛 ( 𝑚 < 𝑛)  matrix, then  

A adj(A) = det(𝐴) 𝐼𝑚 

Proof:  Let   𝐴 =  

[
 
 
 
 
 
𝑎11 𝑎12 ⋯
𝑎21 𝑎22 ⋯
⋮
𝑎𝑖1
⋮
𝑎𝑚1

⋮
𝑎𝑖2
⋮
𝑎𝑚2

⋱
⋯
⋱
⋯

     

𝑎1𝑛
𝑎2𝑛
⋮
𝑎𝑖𝑛
⋮
𝑎𝑚𝑛]

 
 
 
 
 

,   𝑑𝑗(𝐴) =

[
 
 
 
𝑀11 𝑀21 ⋯
𝑀12 𝑀22 …
⋮
𝑀1𝑛

⋮
𝑀2𝑛

⋱
…

    

𝑀𝑗1
𝑀𝑗2
⋮
𝑀𝑗𝑛

     

⋯
⋯
⋱
⋯

     

𝑀𝑚1
𝑀𝑚2
⋮

𝑀𝑚𝑛

 

]
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𝐴 𝑎𝑑𝑗(𝐴)  =

[
 
 
 
 
 
𝑎11 𝑎12 ⋯
𝑎21 𝑎22 ⋯
⋮
𝑎𝑖1
⋮
𝑎𝑚1

⋮
𝑎𝑖2
⋮
𝑎𝑚2

⋱
⋯
⋱
⋯

     

𝑎1𝑛
𝑎2𝑛
⋮
𝑎𝑖𝑛
⋮
𝑎𝑚𝑛]

 
 
 
 
 

[
 
 
 
𝑀11 𝑀21 ⋯
𝑀12 𝑀22 …
⋮
𝑀1𝑛

⋮
𝑀2𝑛

⋱
…

    

𝑀𝑗1
𝑀𝑗2
⋮
𝑀𝑗𝑛

     

⋯
⋯
⋱
⋯

     

𝑀𝑚1
𝑀𝑚2
⋮

𝑀𝑚𝑛

 

]
 
 
 

 

The   (𝑖 , 𝑗  )𝑡ℎ   element in the product matrix  𝐴 𝑎𝑑𝑗(𝐴)  is     

              𝑖𝑓   𝑖 = 𝑗,         𝑎𝑖1 𝑀𝑗1 + 𝑎𝑖2𝑀𝑗2 +⋯+ 𝑎𝑖𝑛𝑀𝑗𝑛 = det(𝐴)      

and,       𝑖𝑓   𝑖 ≠ 𝑗,       𝑎𝑖1 𝑀𝑗1 + 𝑎𝑖2𝑀𝑗2 +⋯+ 𝑎𝑖𝑛𝑀𝑗𝑛 = 0  )It was pre-established in 

theorem  5.1.4 **) 

Hence,   𝐴  𝑎𝑑𝑗(𝐴) =   [

det(𝐴) 0 ⋯
0 det(𝐴) ⋯
⋮
0

⋮
0

⋱
⋯

   

0
0
⋮

det(𝐴)

] = det(𝐴) 𝐼𝑚 

      We note that this property is valid for  square matrices except that the switch 

here is not permissible. (see theorem 1.4.4.a). 

i.e,   𝐴  𝑎𝑑𝑗(𝐴) = det(𝐴) 𝐼𝑚 ≠ (𝑎𝑑𝑗(𝐴))𝐴  

Example 5.2.7   Prove theorem 5.2.6 for the matrices   𝐴 =  [
1 3 0
2 1 −1

]   

Then,   𝑎𝑑𝑗(𝐴) = [
2 3
3 1
1 −2

] ,  and    𝑑𝑒𝑡(𝐴) = −7  

so,  𝐴  𝑎𝑑𝑗(𝐴) =  −7 𝐼2   but    (𝑎𝑑𝑗(𝐴))𝐴 ≠  −7 𝐼2 

All of the following corollaries in this section are proved by using  theorem 5.2.6 

as follows: 

Corollary  5.2.8   If 𝐴 = (𝑎𝑖𝑗) is singular   𝑚 × 𝑛   matrix, then  𝑎𝑑𝑗(𝐴) is singular    

Proof:  by theorem 5.2.6,   A adj(A) = det(𝐴) 𝐼𝑚 

Since,  𝐴  is singular, then  det(𝐴) = 0     

So,  A adj(A) = 0,  

If  𝐴 = 0 (null and singular), then 𝑎𝑑𝑗(𝐴) = 0 and hence  𝑎𝑑𝑗(𝐴) is singular too. 
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If 𝐴 ≠ 0 (non-null and singular), then 𝐴 contains a non-null row, say the 𝑖𝑡ℎ row 

𝑎 𝑖
′  it follows that 𝑎 𝑖

′  𝑎𝑑𝑗(𝐴) = 0 

Which implies that the rows of 𝑎𝑑𝑗(𝐴) are linearly dependent (see definition 

1.9.3),  and hence 𝑎𝑑𝑗(𝐴) is singular.    

      This property is satisfied in the case of square matrices. 

Example 5.2.9   Prove theorem 5.2.8 for the matrices   𝐴 =  [
1 1 1
2 3 4

]  

then    𝑎𝑑𝑗(𝐴) = [
−1 0
2 0
−1 0

] ,  and    𝑑𝑒𝑡(𝐴) = 0,     det (𝑎𝑑𝑗(𝐴)) =  0 

Corollary 5.2.10   If 𝐴 = (𝑎𝑖𝑗) is an   𝑚 × 𝑛 (𝑚 < 𝑛) non-singular matrix, then  

(adj(A))T = adj(AT) 

Proof: By theorem 5.1.4,  if   𝑚 < 𝑛,  , then    adj(A) = det(𝐴) 𝐴𝑅
−1   

Taking transposes, we obtain 

 ( adj(A))
𝑇
= (det(𝐴) 𝐴𝑅

−1 )𝑇 

(adj(A))T  =  det(𝐴) (𝐴𝑅
−1)𝑇             (1) 

And,      adj(A𝑇) = det(𝐴) (𝐴𝑇)𝐿
−1   

adj(A𝑇) = det(𝐴) (𝐴𝑅
−1)𝑇                    (2) 

From (1) and (2), we obtain 

(adj(A))T = adj(AT) 

       This property  is valid for singular matrices of all size ( square  or non-square) 

Example 5.2.11   Let 𝐴 =  [
1 3 0
2 1 −1

]  

then     𝑎𝑑𝑗(𝐴) = [
2 3
3 1
1 −2

] ,      (𝑎𝑑𝑗(𝐴) )𝑇 = [
2 3 1
3 1 −2

] 
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A𝑇 = [
1 2
3 1
0 −1

],     𝑎𝑑𝑗(A𝑇) = [
2 3 1
3 1 −2

] = (𝑎𝑑𝑗(𝐴) )𝑇 

Corollary 5.2.12  If k is a scalar and 𝐴 = (𝑎𝑖𝑗) is non-singular 𝑚 × 𝑛 matrix, 

then  

adj(k A) = k 𝑚−1 adj(A) 

Proof:  By theorem 5.1.4,  if  𝑚 ≤ 𝑛 

(from  corollaries 2.4.4, 5.2.5) 

adj(k A) = 𝑑𝑒𝑡(k A)(𝑘 𝐴)𝑅
−1 = 𝑘𝑚 det(𝐴) 

1

𝑘
 𝐴𝑅
−1 

          = 𝑘𝑚−1 det(𝐴)  𝐴𝑅
−1 = 𝑘𝑚−1adj(A) 

Similarly, if     𝑛 < 𝑚  .    

       This property  is valid for singular matrices of all size ( square  or non-square) 

Corollary 5.2.13 Let 𝐴 be an 𝑚 ×𝑚 non-singular matrix, and 𝐵 be an 𝑚 × 𝑛  

non-singular matrix, then    

𝑎𝑑𝑗(𝐴 𝐵) = adj(B) adj(A) 

Proof: By theorem 5.1.4 ,  if  𝑚 ≤ 𝑛 

𝑎𝑑𝑗(𝐴 𝐵) = det( A B)( A B)R
−1 

                  = det(𝐴) . det(𝐵) .  𝐵𝑅
−1𝐴−1        (from theorem 3.1.2 , corollary 5.2.3)        

               = det(𝐵) .  𝐵𝑅
−1. det(𝐴) . 𝐴−1 

                 = adj(B). adj(A) 

Similarly, if     𝑛 < 𝑚   

Example 5.2.14   Let 𝐴 =  [
1 3
2 1

]   ,   𝐵 =  [
1 3 0
2 2 1

] 



 

84 
 

then  𝐴 𝐵 = [ 
7 9 3
4 8 1

],       𝑎𝑑𝑗( 𝐴 𝐵 ) =  [
7 −6
−3 4
−4 2

] 

𝑎𝑑𝑗(𝐵) = [
1 −3
−1 1
0 2

],         𝑎𝑑𝑗(𝐴) = [
1 −3
−2 1

] 

𝑎𝑑𝑗(𝐵)  𝑎𝑑𝑗(𝐴) = [
1 −3
−1 1
0 2

] [
1 −3
−2 1

] = [
7 −6
−3 4
−4 2

] = 𝑎𝑑𝑗( 𝐴 𝐵) 

  Example 5.2.15   Let    𝐴 =  [
1 2
2 4

]  ,   𝐵 =  [
2 5 8
3 2 1

] 

Then,  det(𝐴) = 0,       𝑑𝑒𝑡(𝐵) = 0,      𝐴 𝐵 = [ 
8 9 10
16 18 20

],     det(𝐴𝐵) = −4, 

    𝑎𝑑𝑗( 𝐴 𝐵 ) =  [
−2 1
4 −2
−2 −1

],      𝑎𝑑𝑗(𝐵) = [
1 3
−2 −6
1 3

],        𝑎𝑑𝑗(𝐴) = [
4 −2
−2 1

] 

det(𝑎𝑑𝑗(𝐵)) = 0,       𝑑𝑒𝑡(𝑎𝑑𝑗(𝐴)) = 0,       𝑑𝑒𝑡(𝑎𝑑𝑗(𝐴𝐵)) = −12,      

𝑎𝑑𝑗(𝐵)  𝑎𝑑𝑗(𝐴) = [
−2 1
4 −2
−2 −1

] = 𝑎𝑑𝑗( 𝐴 𝐵) 

      We notice here that the properties of the adjoint of a matrix that are satisfied 

in square matrices (see theorem 1.4.4.d-e-f) are also satisfied in non-square 

matrices (see theorem 5.2.10, 5.2.12, 5.2.13). 

5.3     Pseudo inverse of non-square matrices.  

       In section 5.2 we compute an inverse of a rectangular matrix using solution 

of a linear system and an adjoint of 𝐴, here we discuss another method which 

gives an inverse of 𝐴 .  

 

Theorem 5.3.1 [11, 𝑝. 216 ] Let 𝐴 be an 𝑚 × 𝑛  matrix, the null space of 𝐴 is 

denoted by Ɲ(𝐴). The dimension of the null space of  𝐴 is called the nullity of  𝐴.  
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(1)  Ɲ(𝐴) = Ɲ(𝐴𝑇𝐴) 

(2) 𝑟𝑎𝑛𝑘(𝐴) =  𝑟𝑎𝑛𝑘(𝐴𝑇𝐴) 

Proof: (1) show  Ɲ(𝐴) ⊂ Ɲ(𝐴𝑇𝐴) 

Consider any  𝑥 ∈ Ɲ(𝐴),  Then we have  𝑨𝒙 = 𝟎 ( see theorem 1.9.6) 

Multiplying it by  𝐴𝑇  from the left, we obtain 

 𝐴𝑇𝑨𝒙 = 𝐴𝑇0 = 0 

Thus  𝑥 ∈ Ɲ(𝐴𝑇𝐴)  

and hence   Ɲ(𝐴) ⊂ Ɲ(𝐴𝑇𝐴)        (𝑖) 

show  Ɲ(𝐴𝑇𝐴) ⊂ Ɲ(𝐴) 

let  𝑥 ∈ Ɲ(𝐴𝑇𝐴),  thus we have   𝐴𝑇𝑨𝒙 = 0 

Multiplying it by  𝑥𝑇  from the left, we obtain 

𝑥𝑇𝐴𝑇𝑨𝒙 = 𝑥𝑇0 = 0 

This implies that we have    0 = (𝑨𝒙)𝑇𝑨𝒙 = ‖𝑨𝒙‖2 

and the length of the vector 𝑨𝒙  is zero, thus the vector  𝑨𝒙 = 𝟎. Hence 𝑥 ∈ Ɲ(𝐴) 

hence   Ɲ(𝐴𝑇𝐴) ⊂ Ɲ(𝐴)        (𝑖𝑖) 

from (𝑖) and (𝑖𝑖)  

Hence,  Ɲ(𝐴) = Ɲ(𝐴𝑇𝐴) 

(2) We use the rank-nullity theorem and obtain (see theorem 1.9.8) 

𝑟𝑎𝑛𝑘(𝐴) = 𝑛 − 𝑑𝑖𝑚(Ɲ(𝐴)) 

                =  𝑛 − 𝑑𝑖𝑚(Ɲ(𝐴𝑇𝐴)) 

                = 𝑟𝑎𝑛𝑘(𝐴𝑇𝐴) 

(Note that the size of the matrix 𝐴𝑇𝐴  is 𝑛 × 𝑛)  
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 Definition 5.3.2 [4]  The matrix   𝐴𝑅
+ = 𝐴𝑇(𝐴 𝐴𝑇 )−1, when  𝐴  is  𝑚 × 𝑛 (𝑚 ≤ 𝑛) 

and  (𝐴 𝐴𝑇 )−1 exists,  and  𝑟𝑎𝑛𝑘 (𝐴) =  𝑚,  is called the right Pseudo  inverse of  𝐴.  

Definition 5.3.3 [4 ] The matrix   𝐴𝐿
+ = ( 𝐴𝑇 𝐴)−1𝐴𝑇 ,  when  𝐴  is   𝑚 × 𝑛 (𝑚 > 𝑛) 

and  ( 𝐴𝑇 𝐴)−1 exists,  and  𝑟𝑎𝑛𝑘 (𝐴) =  𝑛,  is called the left Pseudo  inverse  of  𝐴  

Remark 5.3.4 The matrix 𝐴𝑚×𝑛 ( 𝑚 > 𝑛)  has 𝑟𝑎𝑛𝑘 =  𝑛, and therefore 𝐴𝑇 also 

has 𝑟𝑎𝑛𝑘 =  𝑚, 𝐴𝑇𝐴 is also of 𝑟𝑎𝑛𝑘 =  𝑛 ,(see theorem 5.3.1) since 𝐴𝑇𝐴 is a 

𝑛 × 𝑛 matrix. it therefore has full rank and its inverse exists. (see theorem 1.9.14) 

Note that  𝐴 𝐴𝑇 is a 𝑚 ×𝑚  matrix but its inverse does not exist. 

Example 5.3.5   Let  A =  [
1 1 1
3 −1 1

],     𝑟𝑎𝑛𝑘 (𝐴) = 2 =  𝑚 = 𝑟𝑎𝑛𝑘 (𝐴𝐴𝑇)  

𝐴𝐴𝑇 is invertible,  |𝐴 𝐴𝑇| = 33 − 9 = 24,    and  (𝐴 𝐴𝑇)−1 = 1

24
 [
11 −3
−3 3

] 

 𝐴𝑅
−1 = 𝐴𝑅

+ = 𝐴𝑇(𝐴 𝐴𝑇 )−1 =
1

24
[
1 3
1 −1
1 1

] [
11 −3
−3 3

] =
1

24
 [
2 6
14 −6
8 0

] 

𝐴 𝐴𝑅
−1 =

1

24
[
1 1 1
3 −1 1

] [
2 6
14 −6
8 0

] =  𝐼2 

Since  det(𝐴 ) = 0,  we cannot use adjoint method   

Example 5.3.6   Let  A =  [
1 −2
−2 1
1 1

],     𝑟𝑎𝑛𝑘 (𝐴) = 2 =  𝑛 = 𝑟𝑎𝑛𝑘 (𝐴𝑇 𝐴)  

𝐴𝑇 𝐴  is invertible,  | 𝐴𝑇𝐴 | = 36 − 9 = 27,     and     ( 𝐴𝑇𝐴)−1 = 1

27
 [
6 3
3 6

] 

 𝐴𝐿
−1 = 𝐴𝐿

+ = ( 𝐴𝑇 𝐴)−1𝐴𝑇 =
1

27
[
6 3
3 6

] [
1 −2 1
−2 1 1

] [
0

−1

3

1

3
−1

3
0

1

3

] 

  𝐴𝐿
−1𝐴 = [

0
−1

3

1

3
−1

3
0

1

3

] [
1 −2
−2 1
1 1

] = 𝐼2  
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Chapter Six 

Applications to linear systems of equations  𝑨 𝑿 = 𝑩 

        In this chapter we discuss some results concerning the solutions of a linear 

system 𝑨𝒙 = 𝒃 using inverses as well as the pseudo-inverse and adjoint of a 

rectangular  𝑚×  𝑛  matrix  𝐴. 

      The solution of the system can be expressed as  𝒙 =  𝐴−1 𝒃  where  𝐴−1 is the 

inverse of  𝐴. when matrix 𝐴 is of order 𝑚 × 𝑛 (𝑚 < 𝑛) because if 𝐴𝑅
−1 is the 

right inverse of 𝐴 then we have 𝑨𝐴𝑅
−1𝒙 = 𝒃𝐴𝑅

−1 which yields 𝐼𝑚𝒙 = 𝒃𝐴𝑅
−1 

implies that 𝒙 =  𝒃𝐴𝑅
−1 but  𝒃𝐴𝑅

−1 is not defined. Since we can't find an actual 

solution to the system, we will now try to find solution to the system.  

6.1  Solving a linear system Using pseudo inverse  

            If  𝐴 is an 𝑚 × 𝑛 matrix, then the linear system 𝑨 𝒙 = 𝒃 is a system of  𝑚  

equations  in  𝑛  unknowns.  

Theorem 6.1.1[5 ]   Let 𝑨 𝒙 = 𝒃  be a linear system with   𝐴  an  𝑚 × 𝑛 ( 𝑚 > 𝑛)  matrix. 

 If   𝐴𝑇𝐴   is invertible, then the solution can be given by   𝑥 =  𝑨𝑳
−𝟏𝒃  where   𝐴𝐿

−1  is a left 

pseudo-inverse of  𝐴   

Proof:  Let  𝐴  be an  𝑚 × 𝑛 ( 𝑚 > 𝑛)  and   𝐴𝑇𝐴   is invertible, then  (𝐴𝑇𝐴)−1   exists, 

and we can multiply  𝑨 𝒙 = 𝒃   by  𝐴𝑇 on both sides. Obtaining  𝐴𝑇𝑨 𝒙 = 𝐴𝑇𝒃 

So, multiply  AT𝐀 𝐱 = AT𝐛   by  ( AT A)−1 on the both sides, 

 (𝐴𝑇𝐴)−1 (𝐴𝑇𝑨 𝒙)
𝐼𝑛 𝒙 

=
=
(𝐴𝑇𝐴)−1 (𝐴𝑇 𝒃)

(𝐴𝑇𝐴)−1 (𝐴𝑇 𝒃)
 

𝒙 = 𝐴𝐿
−1( 𝐴𝑇)−1𝐴𝑇 𝒃

𝒙 =  𝐴𝐿
−1 𝒃
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Example 6.1.2   Find a solution to the system  

  

𝑥1
3 𝑥1
2 𝑥1

 
+
−
+
 
3𝑥2
𝑥2
2 𝑥2

  
=
=
=
   
−2
4
0

 

Solution:   Let 𝒙  be a solution to   𝑨𝒙 =  𝒃, (if exists)  

  𝑨 = [ 
1 3
3 −1
2 2

]  is the coefficient matrix, and  𝒃 = [
−2
4
0
]  is the constant vector 

𝒙 = ( 𝐴𝑇 𝐴)−1𝐴𝑇𝐛 

  𝐴𝑇 𝐴 =  [
1 3 2
3 −1 2

] [ 
1 3
3 −1
2 2

] =  [
14 4
4 14

]  

So,  (𝐴𝑇𝐴)−1 =
1

90
  [
7 −2
−2 7

]   

 ( 𝐴𝑇 𝐴)−1𝐴𝑇 =
1

90
  [
7 −2
−2 7

] [
1 3 2
3 −1 2

] =
1

90
 [
2 23 10
19 −13 10

] 

𝒙 = ( 𝐴𝑇 𝐴)−1𝐴𝑇 𝐛 =  
1

90
 [
2 23 10
19 −13 10

] [
−2
4
0
] =  

1

90
[
90
−90

] =  [
1
−1
] 

Note that   x = ( 1  , −1)  represents  the intersection point of the three straight lines 

shown in the graph. 

 

We note that 𝑟𝑎𝑛𝑘(𝐴) = 2, which means that there 

is a unique solution to the original system occurs at 

the intersection of these three lines 

 

Note that :  if   𝐴𝑇𝐴 is invertble, then the only possibility for  𝑨𝒙 = 𝒃  are either unique 

solution or no solution. 
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Example 6.1.3   Find a solution to the system 

𝑥1
𝑥1
𝑥1
  
+
−
+
  
3 𝑥2
𝑥2
𝑥2

  
=
=
=
   
5
1
0

 

Solution:   Let x be a solution to   𝑨𝒙 =  𝒃, (if exists)  

    𝐴 = [ 
1 3
1 −1
1 1

]  is the coefficient matrix and  𝒃 = [
5
1
0
]  is the constant vector 

𝒙 = ( 𝐴𝑇 𝐴)−1𝐴𝑇𝐛 

We calculate  𝐴𝑇 𝐴 =  [
1 1 1
3 −1 1

] [ 
1 3
1 −1
1 1

] =  [
3 3
3 11

]  

Next,  (𝐴𝑇𝐴)−1 =
1

24
  [
11 −3
−3 3

]   

( 𝐴𝑇 𝐴)−1𝐴𝑇 =
1

24
  [
11 −3
−3 3

] [
1 1 1
3 −1 1

] =
1

24
 [
2 14 8
6 −6 0

] 

  𝒙 = ( 𝐴𝑇 𝐴)−1𝐴𝑇𝐛 = 
1

24
 [
2 14 8
6 −6 0

] [
5
1
0
] =  

1

24
[
24
24
] =  [

1
1
] 

Note that   x = (1 , 1)    doesn’t   satisfy the three 

equations, that is, it doesn’t represent the intersection 

point of the three straight lines. This coincides with the 

second case in the note. 

Theorem 6.1.4 [5]  Let  𝑨 𝒙 = 𝒃  be a linear system with   𝐴  an  𝑚 × 𝑛 ( 𝑚 < 𝑛)  matrix. 

 If   𝐴 𝐴𝑇   is invertible, then the solution can be given by   𝒙 =  𝐴𝑅
−1𝒃  where   𝐴𝑅

−1  is 

aright pseudo-inverse of  𝐴   

Proof:  Let  𝐴  be  an  𝑚 × 𝑛 ( 𝑚 < 𝑛)  and   𝐴 𝐴𝑇   is invertible, then  ( 𝐴 𝐴𝑇)−1   exists, 
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and we can multiply  𝑨 𝒙 = 𝒃   by  (𝐴 𝐴𝑇 )−1 on both sides, obtaining 

(𝐴 𝐴𝑇 )−1𝑨 𝒙

(𝐴𝑇)𝑅
−1 𝐴𝐿

−1𝑨 𝒙

      (𝐴𝑇)𝑅
−1 𝐼𝑛 𝒙

   
=
=
=
   

(𝐴 𝐴𝑇  )−1 𝒃

(𝐴 𝐴𝑇  )−1 𝒃

(𝐴 𝐴𝑇  )−1 𝒃

           
(1)

 

So, multiply (1) by 𝐴𝑇 on both sides, we obtain 

        𝒙 = 𝐴𝑇(𝐴 𝐴𝑇 )−1 𝐛 

Example 6.1.5   Find a solution to the system  

2𝑥1
−6 𝑥1

  
+
−
  
3 𝑥2
8 𝑥2

   
−
+  
2𝑥3
6𝑥3
  
=
=
  
4
1

 

Solution:  Let x be a solution to   𝑨𝒙 =  𝒃, (if exists)  

𝒙 = ( 𝐴𝑇 𝐴)−1𝐴𝑇𝐛 

We calculate   𝐴 𝐴𝑇 = [
2 3 −2
−6 −8 6

] [ 
2 −6
3 −8
−2 6

] =  [
17 −48
−48 136

]  

Next,  (𝐴𝑇𝐴)−1 =
1

8
  [
136 48
48 17

]   

𝐴𝑇(𝐴 𝐴𝑇 )−1 =
1

8
  [ 
2 −6
3 −8
−2 6

] [
136 48
48 17

] =
1

8
 [
−16 −6
24 8
16 6

] 

   𝒙 = 𝐴𝑇(𝐴 𝐴𝑇 )−1 𝐛 =
1

8
 [
−16 −6
24 8
16 6

] [
4
1
] =  

1

8
[
−70
104
70
] = [

−70

8

13
70

8

]    is a solution  

The general solution in vector form as      [ 

𝑥1
𝑥2
𝑥3
]  =  [

−35

4

13
35

4

]   +  𝑡  [
1
0
1
] 

      This is a parameter vector equation of the line of intersection   𝐿  of the three lines. The 

coordinates of each of  𝐿′𝑠  points make one of the infinitely many solutions of the system. 
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 Theorem 6.1.6 [6 ]. (General solution) 

Let 𝑨 𝒙 = 𝒃 be a full rank underdetermined system (𝐴 an 𝑚 × 𝑛 ( 𝑚 < 𝑛)  

matrix.). then the solution set is given by  

𝒙 = 𝐴𝑇(𝐴 𝐴𝑇)−1𝒃 + (𝐼 − 𝐴𝑇(𝐴 𝐴𝑇)−1𝐴)𝑦 

                                       𝒙 = 𝐴𝑅
−1𝒃 + (𝐼𝑛 − 𝐴𝑅

−1𝐴)𝑦,             (1)  

 where 𝑦 is an arbitrary vector in 𝑅𝑛×1. 

Proof: To verify that (1) is a solution, pre-multiply by 𝐴 

 𝑨𝒙 =  𝐴 𝐴𝑅
−1 𝒃 +  𝐴 (𝐼 − 𝐴𝑅

−1𝐴)𝑦 

         = 𝐼𝑚 𝒃 +  (𝐴 −  𝐴 𝐴𝑅
−1 𝐴)𝑦         by hypothesis 

        =    𝒃  ,           since   𝐴 𝐴𝑅
−1 𝐴 = 𝐼𝑚 𝐴𝑚×𝑛 = 𝐴    

That all solutions are of this form can be seen as follows.  

Let  𝒛  be an arbitrary solution of   𝑨 𝒙 = 𝒃 ,   i.e., 𝑨 𝒛 =  𝒃.   Then we can write 

𝑧 = 𝐴𝑅
−1𝑨 𝒛 + (𝐼 − 𝐴𝑅

−1𝐴)𝑧 = 𝐴𝑅
−1𝑨 𝒛 + 𝑧 − 𝐴𝑅

−1𝑨 𝒛   

So that any  solution  𝒙 of  𝑨 𝒙 = 𝒃  is  given by (1) with  𝒚 = 𝒛  

 

Remark: When 𝐴 is square and nonsingular,  𝐴𝑅
−1 = 𝐴−1 and so (𝐼 − 𝐴𝑅

−1𝐴) = 0  

Thus, there is no “arbitrary” component, leaving only the unique solution  

𝑥 = 𝐴−1𝑏  

Note that:  when  𝐴 is not full rank, then the above theorem cannot be  used. 

6.2    Using adjoint to solve a system of linear equations  

      Let 𝐴 be a non-singular  𝑚 × 𝑛 matrix. In this section we use adjoint of 𝐴 is 

find a solution for  𝑨𝒙 = 𝒃.  
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Let 𝐴𝑚×𝑛 , 𝑚 ≤ 𝑛,  be nonsingular, then 𝐴𝑅
−1 exists and we can multiply 𝑨 𝒙 = 𝒃   

by  𝐴𝑅
−1  on  both sides, obtaining   𝑨 𝐴𝑅

−1𝒙 =  𝐴𝑅
−1𝒃 

Then   𝐼𝑚 𝒙 =  𝐴𝑅
−1𝒃 ,   but    𝐴𝑅

−1 =
1

det(𝐴)
𝑎𝑑𝑗(𝐴) ( see theorem 5.1.4) 

So,  𝒙 =   
1

det(𝐴)
𝑎𝑑𝑗(𝐴) 𝒃 

assume 𝑚 > 𝑛, and 𝐴 is nonsingular, then 𝐴𝐿
−1 exists and we can multiply both 

sides of    𝑨 𝒙 = 𝒃   by  𝐴𝐿
−1, obtaining     𝐴𝐿

−1𝑨 𝒙 = 𝐴𝐿
−1𝒃 

 That is     𝐼𝑛 𝒙 = 𝐴𝐿
−1𝒃,     but      𝐴𝐿

−1 =
1

det(𝐴)
𝑎𝑑𝑗(𝐴)     (see theorem 5.1.6) 

So,  𝒙 =   
1

det(𝐴)
𝑎𝑑𝑗(𝐴) 𝒃 

 Example 6.2.1    Find a solution to the system  

𝑥1
3 𝑥1
2 𝑥1

  
+
−
+
  
3 𝑥2
 𝑥2
2 𝑥2

  
=
=
=
  
−2
4
0

 

Solution:  Let 𝒙  be a solution to   𝑨𝒙 =  𝒃 , (if exists)  

𝐴 = [ 
1 3
3 −1
2 2

]  is the coefficient matrix, and  𝒃 = [
−2
4
0
]  is the constant vector 

𝑑𝑒𝑡(𝐴) = 2,   since 𝐴  is 3 × 2,   𝐴𝐿
−1 exists,  𝒙 =   

1

det(𝐴)
𝑎𝑑𝑗(𝐴) 𝒃  

So, we calculate   𝑎𝑑𝑗(𝐴) = [ 
−3 −1 4
−1 −1 2

] 

Next,  𝐴𝐿
−1 =

1

det(𝐴)
𝑎𝑑𝑗(𝐴) =

1

2
 [ 
−3 −1 4
−1 −1 2

]  

𝒙 = 𝐴𝐿
−1𝒃 =

1

2
 [ 
−3 −1 4
−1 −1 2

] [
−2
4
0
] =  

1

2
 [
2
−2
] = [

1
−1
] 
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      We note that in this example, adjoint method and pseudo method give the same 

solution (see example 6.1.2).     

Example 6.2.2    Find a solution to the system  

2𝑥1
−6𝑥1

  
+
−
  
3 𝑥2
8 𝑥2

  
−
+  
2𝑥3
6𝑥3
  
=
=
  
4
1
   

Solution:  Let 𝒙  be a solution to   𝑨𝒙 =  𝒃 , (if exists)  

Hold by    𝐴 = [
2 3 −2
−6 −8 6

]    is the coefficient matrix, and  𝒃 = [
4
1
]  is the constant 

vector.  𝑑𝑒𝑡(𝐴) = 4,   since 𝐴  is 2 × 3,   𝐴𝑅
−1 exists,  𝒙 =   

1

det(𝐴)
𝑎𝑑𝑗(𝐴) 𝒃  

But,     𝑎𝑑𝑗(𝐴) = [
−14 −5
12 4
2 1

]  

Next,  𝐴𝑅
−1 =

1

det(𝐴)
𝑎𝑑𝑗(𝐴) =

1

4
 [
−14 −5
12 4
2 1

]  

 𝒙 =   
1

det(𝐴)
𝑎𝑑𝑗(𝐴) 𝒃 =

1

4
 [
−14 −5
12 4
2 1

] [
4
1
] =

1

4
[
−61
52
9
] 

That is,    x =  (
−71

4
 ,
52

4
  ,   

9

4
) 

      Here the solution we have obtained using adjoint method is different from the 

pseudo method solution (see example 6.1.5) and both of them are members from 

the general solution given by  

 𝑥 = 𝐴𝑇(𝐴 𝐴𝑇)−1𝑏 + (𝐼 − 𝐴𝑇(𝐴 𝐴𝑇)−1𝐴)𝑦 = 𝐴𝑅
−1𝑏 + (𝐼 − 𝐴𝑅

−1𝐴)𝑦 

𝑥 = [

−35

4

13
35

4

] + ([
1 0 0
0 1 0
0 0 1

] −
1

8
 [
−16 −6
24 8
16 6

] [
2 3 −2
−6 −8 6

]) [

𝑡1
𝑡2
𝑡3

]  

 𝑥    = [

−35

4

13
35

4

] +
1

2
𝑡 [  
1
0
1
],      Choose   𝑡 = −13,      x =  (

−71

4
 ,
52

4
  ,   

9

4
) . 
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6.3    Cramer's rule for nonsingular 𝒎×𝒏 matrices  

         In linear algebra, Cramer's rule (see theorem 1.7.4) gives an explicit formula for the 

solution of a system of linear equations with as many equations as unknowns. That is, for 

the solution of a system with a square matrix and provided that the coefficient matrix is 

invertible, Cramer’s rule offers a simple and a convenient formula for the solution. In this 

section we want to generalize this method for an  𝑚 <  𝑛  system of linear equations. As in 

the usual method of Cramer's, the result for rectangular matrices uses the minors of a 

matrix.  We also use the results in order to solve a matrix equation. in the case of systems 

with an infinite number of solutions, get the final formula for calculating the unknowns by 

the minors of the augmented matrix of the system.    

     The key to Cramer’s Rule is replacing the variable column of interest with the 

constant column and calculating the determinants.  

Theorem 6.3.1  Consider the following linear system of  𝑚 equations in  𝑛   unknowns  

𝑎11𝑥1
𝑎21𝑥1
⋮

𝑎𝑚1𝑥1

+
+

+

 

𝑎12𝑥2
𝑎22𝑥2
⋮

𝑎𝑚2𝑥2

 

+
+

+

 

…
…
⋱
…

  

+
+

+

 

𝑎1𝑛𝑥𝑛
𝑎2𝑛𝑥𝑛
⋮

𝑎𝑚𝑛𝑥𝑛

 

=
=

=

 

𝑏1
𝑏2
⋮
𝑏𝑚

 

  𝐴 =  [𝑎𝑖𝑗]   be the coefficient matrix,  𝑏 =  [

𝑏1
𝑏2
⋮
𝑏𝑚

] .  If   det(𝐴) ≠ 0.  Then  

𝑥1 =
det (𝐴1)

det (𝐴)
   ,    𝑥2 =

det (𝐴2)

det (𝐴)
    , ….    ,   𝑥𝑛 =

det (𝐴𝑛)

det (𝐴)
. 

Is a solution for the system  𝑨𝒙 = 𝒃, where   𝐴𝑗  is the matrix obtained from  𝐴  by 

replacing the  𝑗𝑡ℎ  column of   𝐴  by  𝒃. 
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proof:  We look at the linear system  𝑨𝒙 = 𝒃.   

𝒙 = 𝐴−1 𝒃 

           [

𝑥1
𝑥2
⋮
𝑥𝑛

] =
1

det(𝐴)
 (𝑎𝑑𝑗 𝐴) 𝒃 

               [

𝑥1
𝑥2
⋮
𝑥𝑛

] =
1

det (𝐴)
[ 
𝐴11 𝐴21 ⋯
⋮ ⋮ ⋱
𝐴1𝑛 𝐴2𝑛 ⋯

     
𝐴𝑚1
⋮
𝐴𝑚𝑛

]   𝒃 

                           

[
 
 
 
 
𝑥1
⋮
𝑥𝑗
⋮
𝑥𝑛]
 
 
 
 

=  

[
 
 
 
 
 
 
 

 

𝐴11

det (𝐴)

𝐴21

det (𝐴)
⋯

⋮ ⋮ ⋱
𝐴1𝑗

det (𝐴)
⋮
𝐴1𝑛

det (𝐴)

𝐴2𝑗

det (𝐴)
⋮
𝐴2𝑛

det (𝐴)

⋯

⋱

…

     

𝐴𝑚1

det (𝐴)
⋮
𝐴𝑚𝑗

det (𝐴)
⋮
𝐴𝑚𝑛

det (𝐴)]
 
 
 
 
 
 
 

 [

𝑏1
𝑏2
⋮

𝑏𝑚

] 

This means that  

𝑥𝑗 =
𝐴1𝑗

det (𝐴)
𝑏1 +

𝐴2𝑗

det (𝐴)
𝑏2 +⋯+

𝐴𝑚𝑗

det(𝐴)
𝑏𝑚     (1 ≤ 𝑗 ≤ n) 

Where  

𝐴𝑗 = 

[
 
 
 
𝑎11 𝑎12 …
𝑎21 𝑎22 …
⋮
𝑎𝑚1

⋮
𝑎𝑚2

⋱
…

   

𝑎1𝑗−1 𝑏1 𝑎1𝑗+1
𝑎2𝑗−1 𝑏2 𝑎2𝑗+1
⋮

𝑎𝑚𝑗−1

⋮
𝑏𝑚

⋮
𝑎𝑛𝑗+1

   

… 𝑎1𝑛
… 𝑎2𝑛
⋱
…

⋮
𝑎𝑚𝑛]

 
 
 
 

If we evaluate   det (𝐴𝑗)  be expanding about the   𝑗𝑡ℎ   column, we find that  

det (𝐴𝑗) = 𝐴1𝑗𝑏1 + 𝐴2𝑗𝑏2 +⋯+ 𝐴𝑚𝑗𝑏𝑚 

Hence  

𝑥𝑗 =
det (𝐴𝑗)

det (𝐴)
. 
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For   𝑗 = 1, 2, … , 𝑛.   In this expression for   𝑥𝑗  , the determinant of  𝐴𝑗  , det (𝐴𝑗),  can be 

calculated by any method. It was only in the derivation of the expression for  𝑥𝑗 that we 

had to evaluate it by expanding about the  𝑗𝑡ℎ   column.                  

Example 6.3.2.   Find a solution to the system  

2𝑥1
−6𝑥1

  
+
−
  
3 𝑥2
8 𝑥2

  
−
+  
2𝑥3
6𝑥3
  
=
=
  
4
1
   

Solution:  Let 𝒙  be a solution to   𝑨𝒙 =  𝒃 , (if exists)  

Here the coefficient matrix is    𝐴 = [
2 3 −2
−6 −8 6

],    𝑑𝑒𝑡(𝐴) = 4,  and  𝒃 = [
4
1
]  is the 

constant vector.     

𝐴1 = [
4 3 −2
1 −8 6

] ,  det(𝐴1) = −59           𝑥1 =
det (𝐴1)

det (𝐴)
= −59 4⁄   

𝐴2 = [
2 4 −2
−6 1 6

] , det(𝐴2) = 52            𝑥2 =
det (𝐴2)

det (𝐴)
= 52 4⁄  

𝐴3 = [
2 3 4
−6 −8 1

] ,   det(𝐴3) = 11            𝑥3 =
det (𝐴3)

det (𝐴)
= 11 4⁄  

  A solution given by Cramer's rule is   𝑥 = (−59 4⁄ , 13 , 11 4⁄ )  

     We note that the general solution for this example given by Theorem 6.1.6  is 

 𝑥 = 𝐴𝑇(𝐴 𝐴𝑇)−1𝑏 + (𝐼 − 𝐴𝑇(𝐴 𝐴𝑇)−1𝐴)𝑦 = 𝐴𝑅
−1𝑏 + (𝐼 − 𝐴𝑅

−1𝐴)𝑦 

𝑥 =

[
 
 
 
 
−35

4
13
35

4 ]
 
 
 
 

+
1

2
𝑡 [  
1
0
1
] 

Choose   𝑡 = −12,      𝑥 = (−59 4⁄ , 13 ,  11 4⁄ )  
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Theorem 6.3.3 [10 ]. (Generalization of Cramer's rule ) 

  For all 𝑏 ∈ 𝑅𝑛 and 𝐴  an 𝑚 × 𝑛 the system 𝑨𝒙 = 𝒃 is solvable if and only if   

𝑑𝑒𝑡(𝐴𝐴𝑇) ≠ 0. 

Moreover, one solution for this equation is given by 𝑥 = 𝐴𝑇(𝐴 𝐴𝑇)−1𝑏 , where 𝐴𝑇  

is the transpose of 𝐴. 

  Also, this solution coincides with the Cramer's rule formula when  𝑛 = 𝑚. In 

fact, this formula is given as follows:  

𝑥𝑗 =∑𝑎𝑖𝑗

𝑚

𝑖=1

𝑑𝑒𝑡((𝐴 𝐴𝑇))
𝑖

𝑑𝑒𝑡(𝐴 𝐴𝑇)
  , 𝑗 = 1, 2, 3 , … , 𝑛, 

where (𝐴 𝐴𝑇)𝑖 is the matrix obtained by replacing the entries in the  𝑗𝑡ℎ column of  

𝐴 𝐴𝑇   by the entries in the matrix  [

𝑏1
𝑏2
⋮
𝑏𝑚

] 

Proof: The matrix 𝐴 gives a linear transformation 𝑇𝐴 ∶  𝑅
𝑚 → 𝑅𝑛 (see definition 

1.9.11) and its transpose 𝐴𝑇 gives the linear transformation, adjoint operator, such 

that    𝑇𝐴𝑇: 𝑅
𝑛 → 𝑅𝑚. 

The system 𝑨𝒙 = 𝒃 is solvable for all 𝑏 ∈ 𝑅𝑚, if and only if, the operator 𝐴 is  

onto (see theorem 1.9.15). 

i.e, 𝑅𝑎𝑛𝑔𝑒(𝐴) = 𝑅𝑛 Hence, from the lemma 1.8.15 there exists 𝛾 > 0 such that      

‖𝐴𝑇𝑧‖𝑅𝑚 ≥  𝛾 ‖𝑧‖𝑅𝑛  , 𝑧 ∈ 𝑅
𝑛. 

Therefore,  

   〈𝐴 𝐴𝑇 𝑧 , 𝑧〉 ≥  𝛾2 ‖𝑧‖2𝑅𝑛  , 𝑧 ∈ 𝑅
𝑛. 

 This implies that   𝑇𝐴 𝐴𝑇: 𝑅
𝑛 → 𝑅𝑛, and  𝑅𝑎𝑛𝑔(𝐴 𝐴𝑇) = 𝑅𝑛 and  𝐾𝑒𝑟 (𝐴𝐴𝑇) =  {0}  

 From the Theorem 1.9.15, lemma 1.9.16  then   𝐴 𝐴𝑇   is one to one.     

Since 𝐴 𝐴𝑇  is a  𝑛 × 𝑛  matrix, from the Theorem 1.9.14 then  𝑑𝑒𝑡(𝐴 𝐴𝑇) ≠ 0. 
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Suppose now that  𝑑𝑒𝑡(𝐴 𝐴𝑇) ≠ 0. Then  (𝐴 𝐴𝑇)−1  exists and given  𝑏 ∈ 𝑅𝑛  we 

can see  that  𝑥 = 𝐴𝑇 (𝐴 𝐴𝑇)−1𝑏   is a solution  of  𝑨 𝒙 = 𝒃.   

Now, since  𝑧 = (𝐴 𝐴𝑇)−1𝑏   is the only solution of the  equation (𝐴 𝐴𝑇) 𝑧 = 𝑏,  

then from theorem 6.3.1 (Cramer's rule ) we obtain that : 

                𝑧1 =
det ((𝐴 𝐴𝑇)1)

det(𝐴 𝐴𝑇)
   ,    𝑧2 =

det ((𝐴 𝐴𝑇)2)

det(𝐴 𝐴𝑇)
    , ….    ,   𝑧𝑛 =

det ((𝐴 𝐴𝑇)𝑛)

det(𝐴 𝐴𝑇)
. 

Where (𝐴 𝐴𝑇)𝑖  is the matrix obtained by replacing the entries in the 𝑗𝑡ℎ column 

of  𝐴 𝐴𝑇  by the entries in the matrix   [

𝑏1
𝑏2
⋮
𝑏𝑚

]. 

Then, the solution 𝑥 = 𝐴𝑇(𝐴 𝐴𝑇)−1 𝑏 = 𝐴𝑇𝑧  of 𝑨 𝒙 = 𝒃 can be written as 

follows  

𝑥𝑗 = [

𝑎11 𝑎21 ⋯
𝑎12 𝑎22 ⋯
⋮
𝑎1𝑚

⋮
𝑎21

⋱
…

   

𝑎𝑛1
𝑎𝑛2
⋮
𝑎𝑛𝑚

]

[
 
 
 
 
 
 
det ((𝐴 𝐴𝑇)1)

det (𝐴 𝐴𝑇)

det ((𝐴 𝐴𝑇)2)

det (𝐴 𝐴𝑇)

⋮
det ((𝐴 𝐴𝑇)𝑚)

det (𝐴 𝐴𝑇) ]
 
 
 
 
 
 

=  

[
 
 
 
 
 
 
 ∑ 𝑎𝑗,1

𝑛
𝑗=1

𝑑𝑒𝑡((𝐴 𝐴𝑇)
𝑗
)

𝑑𝑒𝑡(𝐴 𝐴𝑇)

∑ 𝑎𝑗,2
𝑛
𝑗=1

𝑑𝑒𝑡((𝐴 𝐴𝑇)
𝑗
)

𝑑𝑒𝑡(𝐴 𝐴𝑇)

⋮

∑ 𝑎𝑗,𝑚
𝑛
𝑗=1

𝑑𝑒𝑡((𝐴 𝐴𝑇)
𝑗
)

𝑑𝑒𝑡(𝐴 𝐴𝑇) ]
 
 
 
 
 
 
 

  

Example 6.3.4   Find a solution to the system  

2𝑥1
−6𝑥1

  
+
−
  
3 𝑥2
8 𝑥2

  
−
+  
2𝑥3
6𝑥3
  
=
=
  
4
1
   

Solution:  Let 𝑥  be a solution to   𝑨𝒙 =  𝒃 , (if exists)  

Here the coefficient matrix is    𝐴 = [
2 3 −2
−6 −8 6

],    𝑑𝑒𝑡(𝐴) = 4,  and  𝑏 = [
4
1
]  is the 

constant vector.     

𝐴 𝐴𝑇 = [
2 3 −2
−6 −8 6

] [
2 −6
3 −8
−2 6

] =  [
17 −48
−48 136

]     →    𝑑𝑒𝑡(𝐴 𝐴𝑇) = 8 
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(𝐴 𝐴𝑇)1 = [
4 −48
1 136

]      →     𝑑𝑒𝑡(𝐴 𝐴𝑇)1 = 592 

(𝐴 𝐴𝑇)2 = [
17 4
−48 1

]      →     𝑑𝑒𝑡(𝐴 𝐴𝑇)2 = 209 

𝑥1 = 
𝑎11𝑑𝑒𝑡(𝐴 𝐴

𝑇)1
𝑑𝑒𝑡(𝐴 𝐴𝑇)

+ 
𝑎21𝑑𝑒𝑡(𝐴 𝐴

𝑇)2
𝑑𝑒𝑡(𝐴 𝐴𝑇)

=
2 × 592

8
+ 
−6 × 209

8
=  
−70

8
 

𝑥2 = 
𝑎12𝑑𝑒𝑡(𝐴 𝐴

𝑇)1
𝑑𝑒𝑡(𝐴 𝐴𝑇)

+ 
𝑎22𝑑𝑒𝑡(𝐴 𝐴

𝑇)2
𝑑𝑒𝑡(𝐴 𝐴𝑇)

=
3 × 592

8
+ 
−8 × 209

8
=  
104

8
= 13 

𝑥3 = 
𝑎13𝑑𝑒𝑡(𝐴 𝐴

𝑇)1
𝑑𝑒𝑡(𝐴 𝐴𝑇)

+ 
𝑎23𝑑𝑒𝑡(𝐴 𝐴

𝑇)2
𝑑𝑒𝑡(𝐴 𝐴𝑇)

=
−2 × 592

8
+ 
6 × 209

8
=  
70

8
 

       We  find that the solution of the system in this way is the same as pseudo 

solution given in example 6.2.2 which comes from the general solution (see 

theorem 6.1.6 )  

  𝑥 = [

−35

4

13
35

4

] +
1

2
𝑡 [  
1
0
1
],     at     𝑡 = 0 

      That is both a Generalization of Cramer's rule and pseudo method give the 

same solution. 

6.4   Particular Cases and Examples 

      In this section we shall consider some particular cases and examples to 

illustrate the results of what we have done in the previous sections especially in 

applying pseudo inverse (theorem 6.1.1) to some certain examples.  

Example 6.4.1 [10 ]. Consider the following particular case of the system  𝑨𝒙 = 𝒃 

𝑎11𝑥1 + 𝑎12𝑥2 +⋯ .+𝑎1𝑛𝑥𝑛 = 𝑏.          (1) 

In this case  𝑚 = 1  and    𝐴 = [𝑎11, 𝑎12, … . , 𝑎1𝑛].  



 

100 
 

Then, if we define the column vector     𝐼1 = [

𝑎11
𝑎12
⋮
𝑎1𝑛

],   

𝐴 𝐴𝑇 = [𝑎11 𝑎12 … 𝑎1𝑛] [

𝑎11
𝑎12
⋮
𝑎1𝑛

] = ‖𝐼1‖
2.    (see definition 1.8.2) 

Then,  (𝐴 𝐴𝑇 )−1𝒃 =  
1

‖𝐼1‖2
 𝒃    and    

𝒙 = 𝐴𝑇 (𝐴 𝐴𝑇 )−1𝒃 =
1

‖𝐼1‖2
 𝒃 [

𝑎11
𝑎12
⋮
𝑎1𝑛

] =  

[
 
 
 
𝑎11 𝑏 ‖𝐼1‖

−2

𝑎12𝑏 ‖𝐼1‖
−2

⋮
𝑎1𝑛𝑏 ‖𝐼1‖

−2 ]
 
 
 
. 

Therefore, a solution of the system (1) is given by: 

𝑥𝑗 = 
𝑎1𝑗 𝑏

‖𝐼1‖2
= 

𝑎1𝑗 𝑏

∑ 𝑎1𝑗
2𝑛

𝑗=1

 ,     𝑗 = 1,2, … , 𝑛 

Example 6.4.2 [10 ].  

Here we apply pseudo inverse to the case 𝑚 = 2, for any natural 𝑛  in  𝑨𝒙 = 𝒃 

𝑎11𝑥1 + 𝑎12𝑥2 +⋯ .+𝑎1𝑛𝑥𝑛 = 𝑏1
𝑎21𝑥1 + 𝑎22𝑥2 +⋯ .+𝑎2𝑛𝑥𝑛 = 𝑏2

         (2) 

  𝐴 = [
𝑎11 𝑎12 ⋯
𝑎21 𝑎22 ⋯   

𝑎1𝑛
𝑎2𝑛
]  

Then, let   𝐼1 ,   𝐼2  be the column vectors 

𝐼1 = [

𝑎11
𝑎12
⋮
𝑎1𝑛

],    𝐼2 = [

𝑎21
𝑎22
⋮
𝑎2𝑛

]. 

Then,   

𝐴 𝐴𝑇 = [
𝑎11 𝑎12 ⋯
𝑎21 𝑎22 ⋯   

𝑎1𝑛
𝑎2𝑛
]  [

𝑎11 𝑎21
𝑎12 𝑎22
⋮
𝑎1𝑛

⋮
𝑎2𝑛

] =  [
‖𝐼1‖

2 〈𝐼1, 𝐼2〉

〈𝐼2, 𝐼1〉 ‖𝐼2‖
2 ]. 
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(𝐴 𝐴𝑇)−1 =
1

‖𝐼1‖2‖𝐼2‖2 − |〈𝐼1, 𝐼2〉|2
 [
‖𝐼2‖

2 −〈𝐼1, 𝐼2〉

−〈𝐼2, 𝐼1〉 ‖𝐼1‖
2 ]. 

Hence, from the formula    𝒙𝒋 = 𝐴
𝑇 (𝐴 𝐴𝑇 )−1𝒃    we obtain that: 

[

𝑥1
𝑥2
⋮
𝑥𝑛

] =
1

‖𝐼1‖2‖𝐼2‖2 − |〈𝐼1, 𝐼2〉|2
[

𝑎11 𝑎21
𝑎12 𝑎22
⋮
𝑎1𝑛

⋮
𝑎2𝑛

] [
‖𝐼2‖

2 −〈𝐼1, 𝐼2〉

−〈𝐼2, 𝐼1〉 ‖𝐼1‖
2 ] [

𝑏1
𝑏2
]. 

Therefore, a solution of the system (2) is given by : 

𝑥1 = 𝑎11
𝑏1‖𝐼2‖

2 − 𝑏2〈𝐼1, 𝐼2〉

‖𝐼1‖2‖𝐼2‖2 − |〈𝐼1, 𝐼2〉|2
+ 𝑎21

𝑏2‖𝐼1‖
2 − 𝑏1〈𝐼2, 𝐼1〉

‖𝐼1‖2‖𝐼2‖2 − |〈𝐼1, 𝐼2〉|2
 

𝑥2 = 𝑎12
𝑏1‖𝐼2‖

2 − 𝑏2〈𝐼1, 𝐼2〉

‖𝐼1‖2‖𝐼2‖2 − |〈𝐼1, 𝐼2〉|2
+ 𝑎22

𝑏2‖𝐼1‖
2 − 𝑏1〈𝐼2, 𝐼1〉

‖𝐼1‖2‖𝐼2‖2 − |〈𝐼1, 𝐼2〉|2
 

⋮ 

𝑥𝑛 = 𝑎1𝑛
𝑏1‖𝐼2‖

2 − 𝑏2〈𝐼1, 𝐼2〉

‖𝐼1‖2‖𝐼2‖2 − |〈𝐼1, 𝐼2〉|2
+ 𝑎2𝑛

𝑏2‖𝐼1‖
2 − 𝑏1〈𝐼2, 𝐼1〉

‖𝐼1‖2‖𝐼2‖2 − |〈𝐼1, 𝐼2〉|2
 

 

Example 6.4.3.   Find a solution of the following system  

𝑥1
−𝑥1

  
+
+
 
𝑥2
𝑥2
 
+
 
𝑥3
 
=
=
 
1
−1

 

Solution: With the above notations 

𝐼1 = [
1
1
0
] ,     𝐼2 = [

−1
1
1
] ,       𝑏 = [

1
−1
]  

Then,  ‖𝐼1‖
2 = 1 + 1 = 2 ,      ‖𝐼2‖

2 = 1 + 1 + 1 = 3,     |〈𝐼1, 𝐼2〉| = −1 + 1 + 0 = 0      

    𝑑𝑒𝑡(𝐴 𝐴𝑇) = ‖𝐼1‖
2 ‖𝐼2‖

2 − |〈𝐼1, 𝐼2〉|
2 = 2 × 3 − 0 = 6 
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𝑥1 = 𝑎11
𝑏1‖𝐼2‖

2 − 𝑏2〈𝐼1, 𝐼2〉

‖𝐼1‖2‖𝐼2‖2 − |〈𝐼1, 𝐼2〉|2
+ 𝑎21

𝑏2‖𝐼1‖
2 − 𝑏1〈𝐼2, 𝐼1〉

‖𝐼1‖2‖𝐼2‖2 − |〈𝐼1, 𝐼2〉|2

=
1(1 × 3 − −1 × 0)

6
+
(−1)(−1 × 2 − 1 × 0)

6
=
3

6
+
2

6
=
5

6
 

𝑥2 = 𝑎12
𝑏1‖𝐼2‖

2 − 𝑏2〈𝐼1, 𝐼2〉

‖𝐼1‖2‖𝐼2‖2 − |〈𝐼1, 𝐼2〉|2
+ 𝑎22

𝑏2‖𝐼1‖
2 − 𝑏1〈𝐼2, 𝐼1〉

‖𝐼1‖2‖𝐼2‖2 − |〈𝐼1, 𝐼2〉|2

= 
1(3 − 0)

6
+
(1)(−2 − 0)

6
=
3

6
+
−2

6
=
1

6
 

𝑥3 = 𝑎13
𝑏1‖𝐼2‖

2 − 𝑏2〈𝐼1, 𝐼2〉

‖𝐼1‖2‖𝐼2‖2 − |〈𝐼1, 𝐼2〉|2
+ 𝑎23

𝑏2‖𝐼1‖
2 − 𝑏1〈𝐼2, 𝐼1〉

‖𝐼1‖2‖𝐼2‖2 − |〈𝐼1, 𝐼2〉|2
                

=
(0)(3)

6
+
(1)(−2)

6
=
−2

6
 

      We note that if ‖𝐼1‖
2 ‖𝐼2‖

2 = |〈𝐼1, 𝐼2〉|
2 this means that the angle between   

𝐼1,   𝐼2  the equals zero and this indicates that the system of equations are identical, 

meaning that  there is an infinite number of solutions and in this case it is the 

same as in example 6.4.1. 

      But if the angle between 𝐼1,   𝐼2 is not equal to zero, then this means that the 

solution of the system has an infinite number of solutions. 

We note that the general solution for this example given by Theorem 6.1.6  is 

 𝑥 = 𝐴𝑇(𝐴 𝐴𝑇)−1𝑏 + (𝐼 − 𝐴𝑇(𝐴 𝐴𝑇)−1𝐴)𝑦 = 𝐴𝑅
−1𝑏 + (𝐼 − 𝐴𝑅

−1𝐴)𝑦 

𝑥 =
1

6
[
5
1
−2
] +

1

6
𝑡 [  

1
−1
2
] 

Choose   𝑡 = 0,      𝑥 = (5 6⁄ , 1 6⁄  ,
−2

6⁄ )  
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Example 6.4.4 [10 ]. Consider the following general case of system  𝑨𝒙 = 𝒃 

𝑎11𝑥1
𝑎21𝑥1
⋮

𝑎𝑚1𝑥1

+
+

+

 

𝑎12𝑥2
𝑎22𝑥2
⋮

𝑎𝑚2𝑥2

 

+
+

+

 

…
…
⋱
…

  

+
+

+

 

𝑎1𝑛𝑥𝑛
𝑎2𝑛𝑥𝑛
⋮

𝑎𝑚𝑛𝑥𝑛

 

=
=

=

 

𝑏1
𝑏2
⋮
𝑏𝑛

      (3) 

Then, if    {𝐼1, 𝐼2, … , 𝐼𝑚}   is an orthogonal set in   𝑅𝑛, (see definition 1.9.4) we obtain 

𝐴 𝐴𝑇 = [

‖𝐼1‖
2 0 0

0 ‖𝐼2‖
2 0

⋮
0

⋮
0

⋮
0

     

⋯ 0
⋯ 0
⋱
⋯

⋮
‖𝐼𝑛‖

2

] 

The solution of the system 𝑨 𝒙 = 𝒃  is simple and is given by: 

𝑥𝑗 =∑𝑎𝑖𝑗

𝑚

𝑖=1

 𝑏𝑗𝑖 ‖𝐼𝑖‖
−2 ,     𝑗 = 1,2, … , 𝑛 

Example 6.4.5.  Find the solution of the following system  

−𝑥1
−𝑥1
𝑥1
  

−
+
−
  

𝑥2
𝑥2
𝑥2
  
+
−
−
  

𝑥3
𝑥3
𝑥3
  
+
+
+
  

𝑥4
𝑥4
𝑥4
  
=
=
=
   
1
1
1
   

Solution: 

𝐼1 = [

−1
−1
1
1

] ,     𝐼2 = [

−1
1
−1
1

],     𝐼3 = [

1
−1
−1
1

] , 𝑏 = [
1
1
1
]  

Then,  ‖𝐼1‖
2 = 4 ,      ‖𝐼2‖

2 = 4,      ‖𝐼3‖
2 = 4       

    𝑑𝑒𝑡(𝐴 𝐴𝑇) = ‖𝐼1‖
2 ‖𝐼2‖

2  ‖𝐼3‖
2 = 4 × 4 × 4 = 64 

𝑥1 =
𝑎11𝑏1
 ‖𝐼1‖2

+
𝑎21𝑏2
 ‖𝐼2‖2

+
𝑎31𝑏3
 ‖𝐼3‖2

=
(−1)(1)

4
+
(−1)(1)

4
+
(1)(1)

4
=
−1

4
 

𝑥2 =
𝑎12𝑏1
 ‖𝐼1‖2

+
𝑎22𝑏2
 ‖𝐼2‖2

+
𝑎32𝑏3
 ‖𝐼3‖2

=
(−1)(1)

4
+
(1)(1)

4
+
(−1)(1)

4
=
−1

4
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𝑥3 =
𝑎13𝑏1
 ‖𝐼1‖2

+
𝑎23𝑏2
 ‖𝐼2‖2

+
𝑎33𝑏3
 ‖𝐼3‖2

=
(1)(1)

4
+
(−1)(1)

4
+
(−1)(1)

4
=
−1

4
 

𝑥4 =
𝑎14𝑏1
 ‖𝐼1‖2

+
𝑎24𝑏2
 ‖𝐼2‖2

+
𝑎34𝑏3
 ‖𝐼3‖2

=
(1)(1)

4
+
(1)(1)

4
+
(1)(1)

4
=
3

4
 

       We note that the general solution for this example given by Theorem 6.1.6  is 

 𝑥 = 𝐴𝑇(𝐴 𝐴𝑇)−1𝑏 + (𝐼 − 𝐴𝑇(𝐴 𝐴𝑇)−1𝐴)𝑦 = 𝐴𝑅
−1𝑏 + (𝐼 − 𝐴𝑅

−1𝐴)𝑦 

𝑥 =
1

4
[

−1
−1
−1
3

] +
1

4
𝑡 [  

1
1
1
1

] 

Choose   𝑡 = 0,      𝑥 = (
−1

4
,   
−1

4
,   
−1

4
,
3

4
)  

      

  Finally we note that if a system of linear equations has an infinite number of 

solutions, then we can use a suitable method discussed in this chapter to find a 

fixed solution and construct the general solution mentioned in Theorem 6.1.6. 

Certainly, it will be the same general solution given by Gauss elimination(see 

definition 1.7.2). 
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