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Abstract

We study the definition of the determinant of a non-square matrix, using
cofactor definition and Radic definition, and we proved that they are identical by
proving the uniqueness of the determinant function that satisfies the four

characterizing properties of determinant function.

We also study the connection between the area of any polygon in the Cartesian
plane and determinant function for 2 x n matrices. We used several methods to
find the mathematical isotope and prove the properties for inverse and adjoint for

a matrix as well as solving systems of equations in several ways.
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Preface

In the books of a linear algebra we studied the concept of matrix and its types,
and we studied the definition of the determinant of the square matrix, its
properties and its applications. Here we will study the definition of the
determinant of the non-square matrix, its verified properties and its applications in
finding the area of polygons and finding solutions to the system of linear

equations.

My thesis consists of six chapters. Each chapter is divided into sections. A
number like 2.1.3 indicates item (definition, theorem, corollary or lemma) number
3 in section 1 of chapter 2. Each chapter begins with a clear statement of the
pertinent definition and theorems together with illustrative and descriptive

material. At the end of this thesis we present a collection of references.

In chapter (1) we introduce the basic results and definitions which shall be
needed in the following chapters. The topics include results about matrices and
matrix operations, properties of algebraic operations on matrices, Determinants of
Matrices, The Inverse of a Matrix, Cofactor Expansion, Adjoint of Matrix, Linear
Systems, Reduced Row-Echelon Form, Gauss-Jordan reduction, Cramer's rule,
Rank and Nullity and Vectors in the Euclidean space R"™. This chapter is
absolutely fundamental. The results have been stated without proofs, for theory
may be looked in any text book in linear algebra. A reader who is familiar with

these topics may this chapter and refer to it only when necessary.

Chapter (2) will be devoted to give a defined determinant of a non-square
matrix. we will start by introducing the define a determinant function of non-
square matrix in terms of characterizing properties that we want it to have. In
section (2) we define minors and cofactors. In section (3 and 4), we will study the
method for finding a determinant of a non-square matrix (m X n, m <n) using
cofactor expansion, also study the effect of elementary row operations on
determinant. In section (5) We will study the method for finding a determinant of
a non-square matrix (m X n, m<n) using Radic's definition. Finally, we can
proof the cofactor definition and Radic definition are determinant function, and

the cofactor definition and Radic definition are the same.



Chapter (3) we study Radic definition for determinant of a rectangular matrix
in more detailed way. We present new identities for the determinant of a
rectangular matrix. We develop some important properties of this determinant.
We generalize several classical important determinant identities, and description
how the determinant is affected by operation on columns, such as interchanging

columns, reversing columns or decomposing a single column.

Chapter (4) we will study an application for determinants of non-square
matrices in calculating the area of polygons in R* and proof the area of a polygon
is the determinant function, the area equals the determinant (the cofactor

definition and Radic definition).

Chapter (5) we will study existence of inverses for non-square matrices. Also,
we compute an inverse of a rectangular matrix using solution of a linear system
and an adjoint of matrices. In section (2) we study some important properties for
inverse and adjoint of non-square matrices. In section (3) we discuss Pseudo

inverse method which gives an inverse of matrices.

Chapter (6) we will discuss some results concerning the solutions of a linear
system Ax =b using inverses as well as the pseudo-inverse and adjoint of a
rectangular m x n matrix A, and General solution theorem. In section (3) we
study want to generalize this method of Cramer's for an m < n  system of linear
equations. Finally in section (4) we study shall consider some particular cases and
examples to illustrate the results of what we have done in the previous sections

especially in applying pseudo inverse to some certain examples.



Chapter One

Preliminaries

This chapter contains some definitions and basic results about matrices and
matrix operations, properties of algebraic operations on matrices, Determinants of
Matrices, The Inverse of a Matrix, Cofactor Expansion, Adjoint of Matrix, Linear
Systems, Reduced Row-Echelon Form, Gauss-Jordan reduction, Cramer's rule,

Rank and Nullity and Vectors in the Euclidean space R".

1.1 Matrices and matrix operations

Definition 1.1.1 [9,p.11]. An m Xn matrix A is a rectangular array of mn real

(or complex) numbers arranged in m horizontal rows and n vertical columns:

a;;  ag Ain
a21 a22 e az
A= : : . :n (1)
Am1 Ami1 ... Amn
The i™ rowof A is [an G2 a3 = Q) 1<i<m),

al]'
|

The j™ column of A is [asj‘ (1<j <n).
amj

We shall say that A is m by n (written as m x n). If m =n, we say that A is a
square matrix of order n, and the numbers aqq,ayy, ..., a,, form the main

" row and ™ column

diagonal of A. We refer to the number a;; which is in the it
of A, as the i,jth element of A, or the (i,j) entry of A, and we often write the

matrix as A = (a;;).

Definition 1.1.2 [9,p.16]. (The Transpose of a Matrix) If A= (a;;) is an

m x n matrix, then the n x m matrix A" = (al}), where af, = a;;
(1<i<m, 1<j<n), is called the transpose of A. Thus the transpose of A is

obtained by interchanging the rows and columns of A. Before operations.



Definition 1.1.3 [2,p.27]. Two matrices are defined to be equal if they have the

same size and their corresponding entries are equal.

Definition 1.1.4 [9,p.12]. (Diagonal Matrix) a square matrix A= (a;;) for
which every term off the main diagonal is zero, that is, a; =0 for i #j, is called

a diagonal matrix.

Definition 1.1.5[2,p. 14 ].
a. (Matrix Addition) If A= (a;) and B = (b;;) are mxn matrices, then the

sumof A and B isthem x n matrix C = (c;;), defined by c;; = a;; + by;
(1<i<m, 1<j<n).
That is, C is obtained by adding corresponding elements of A and B.

b. (Scalar Multiplication) If A= (a;;) is an mXn matrix, and r is a real
number, then the scalar multiple of A by r, r4, is the mxn matrix B = (b;;),

where b =ra (1<i<m, 1<j<n).

iy
That is, B is obtained by multiplying each element of A by r.

c. (Matrix Multiplication) If A= (a;;) is an m X p matrix, and B = (b;;)is a
p Xn matrix, then the product of A and B, denoted A B, is the m Xn matrix
C = (cij), defined by

Cij = ailblj + aizsz + -+ aipbpj = Zizl aikbk]’ , I1<i<m, 1 S] <n).

The following proprieties for operations on matrices will be stated without proof.

1.2 Properties of algebraic operations on matrices

Theorem 1.2.1[9,p.35].

Let A,B,C and D beanm x n matrices. and r and s are real numbers, then

(1) A+ B=B+A.

2 A+(B+C)=(A+B)+C.

(3) There isaunique m Xn matrix O suchthat A+ 0 =A forany mxn
matrix A. The matrix O is called the m X n additive identity or zero matrix.

(4) Foreach m xn matrix A, thereisaunique m X n matrix D such that

A+D=0. (1)



We shall write D as —A, so that (1) can be written as
A+ (-A)=0.

The matrix - A is called the additive inverse or the negative of A.
(5) If A,Band C are of the appropriate sizes, then A(BC)=(AB)C.
(6) If A,B and C are of the appropriate sizes, then A(B+C)=AB+AC.
(7)If A,B and C are of the appropriate sizes, then (A+B)C=AC+BC.
(8)r(s A) = (r s)A.
Q) (r+s)A=rA+sA.
(10) r(A+B)=rA+rB.
(11)A(rB)=r(AB)=(rA)B.

For a proof for these properties [9].

Theorem 1.2.2[9,p.41]. (Properties of Transposing a matrix)

If r isascalar, A and B are matrices, then
T T
(@ (4") = A
() (A+B) = A" +B" and (4- B) = 4A"- B
c) (AB) = B"A".
d) (ra)’ =ra’.

For a proof for these properties [9].

1.3 Determinants of Matrices

Definition 1.3.1 [8]. (Determinant function) A determinant function assigns to
each square matrix A a scalar associated to the matrix, denoted by det(A) or |A]
such that:

(1) The determinant of an n X n identity matrix "I" is 1. |I| = 1.

(2) If the matrix Bis identical to the matrix A except the entries in one of the
rows of B are each equal to the corresponding entries of A multiplied by the
same scalar ¢, then |B| = c |A]|.

(3) If the matrices A,B and C are identical except for the entries in one row, and
for that row an entry in A is found by adding the corresponding entries in B
and C, then |A| = |B| + |C|.



(4) If the matrix B is the result of exchanging two rows of A, then the

determinant of B is the negation of the determinant of A. (|B| = —|Al)

Theorem 1.3.2 [ 8]. A determinant function has the following four properties.
(a) The determinant of any matrix with an entire row of 0'sis 0.
(b) The determinant of any matrix with two identical rows is 0.
(c) If one row of a matrix is a scalar multiple of another row, then its
determinant is 0.

(d) If a scalar multiple of one row of a matrix is added to another row, then the
resulting matrix has the same determinant as the original matrix.

Theorem 1.3.3[ 8]. There is at most one determinant function.

Definition 1.3.4 [9,p.92]. Let A= (a;;) be an nxn matrix. The determinant
of A (written det(A) or |A|) is defined by

det(4) = 4| = Z(i) @y, Qyj, - Qo

where the summation ranges over all permutations j, j, ... j,, of the set

S={1,2,..,n}. The sign is taken as +or - according to whether the

permutation j,j, ... j, iseven orodd.

Theorem 1.3.5 [9,p.95]. (Properties of Determinants of Matrices)

(a) If Ais asquare matrix. then det(4) = det(4")

(b) If matrix B results from matrix A by interchanging two rows (columns) of A,
then det(B) = — det(A)

(c) If two rows (columns) of A are equal, then det(A) =0

(d) If B is obtained from A by multiplying a row (column) of A by real number c,
then det(B) = c det(A).

(e) If B = (b;;) is obtained from A = (a;;) by adding to each element of the
rt" row (column) of A4 a corresponding element of the st* row (column)
r#sof A, then det(B) = det(A).

() The determinant of a product of two matrices is the product of their
determinants, that is, det( A B) = det (A)det(B).



(g) If A has a row (column) consisting of all zeros, then det(4) = 0

For proofs of these properties [9].

Theorem 1.3.6 [9,p.93].
1. Let A,B and C be an nxn matrices that differ only in a single row, say the
r™ row, and assume that the rt" row of C can be obtained by adding
corresponding entries in the r* rows of A and B. Then

det(C) = det(A) + det(B)

The same result holds for columns.

2. (Decomposing a column). If a column K in a square matrix A is a sum of two
columns (eg. K =K; +K;), then the determinant |A| is a sum of tow
determinants of matrices obtained from A Dby replacing K by K;and K,

respectively.

1.4 Cofactor Expansion and Adjoint

Definition 1.4.1 [9,p.103]. (Minor and Cofactor) Let A= (a;;) be an nXxn

matrix. Let M; be the (n—1)x (n—1) submatrix of A obtained by deleting the

i™ row and j® column of A. The determinant det(M;;) is called the minor of a;;.

The cofactor A;; of a;; is definedas  A;; = (=1)"Ydet(M; ).

Theorem 1.4.2[9,p.104].
Let A= (a;;) bean nxn matrix. Then foreach 1 <i <n,
det(A) = a;1 A + aplip + -+ apmln
(expansion of det(A) about the i** row).
Andforeach1 <j <mn,
det(A) = ayjA;j + azjAzj + -+ apjAy;

(expansion of det(A) about the j** column).

Definition 1.4.3 [9,p.108]. (Adjoint of Matrix) Let A= (a;) be an nXxn
matrix. Then nxn matrix adj A, called the adjoint of A, is the matrix whose

(i,j)th element is the cofactor A; of a;

;i (The transpose of the matrix of

cofactors), thus



A;; Ay o Am
adjiay = |12 A A,

Aln AZn Ann

Theorem 1.4.4[9,p.108]. (Properties of the Adjoint)
(@) If A= (a;)isannxn matrix. Then A(adjA) = (adjA)A = det(A)l,
(b) If A= (a;;) is invertible n x n matrix. then det(adj A) = det(4)" ™"
(c) If A= (a;;) isinvertible n x n matrix. then adj(adj A) = (detA)*2 A
(d) adj(A B) = adj(B) adj(A4)
(e) (adj(4))" = adj(4")
(f) adj(kA) = k" tadj(A), where k is any scalar

For proofs of these properties [9].
1.5 The Inverse of a Matrix

Definition 1.5.1 [9,p.19]. (Inverse of a Matrix) An nxn matrix A is called

non-singular (or invertible) if there exists an n x n matrix B such that
AB = BA = I,.

The matrix B is called an inverse of A. If there exists no such matrix B, then A4 is called

singular (or noninvertible).

It is easy to show that an inverse of a matrix is unique, if it exists, and so it is legitimate

to say the inverse of A and writeitas A%, thus AA™ = A4 = I,.

Theorem 1.5.2[9,p.71]. (Properties of the Inverse of a matrix)

(a) If A isanonsingular matrix, then A~ is a nonsingular and (A_l)_1 =A

(b) If A and B are nonsingular matrices, then A B is nonsingular and
AB)t=Btat

(c) If A isanonsingular matrix, then (AT)_1 = (A_l)T

A—l

(d) For any nonzero scalar k, then (kA)~! = %

For proofs of these properties [9].



Corollary 1.5.3[9,p.100]. If A is nonsingular, then det(4) # 0 and

det (A_l) - detl(A)

Theorem 1.5.4[9,p.100]. A square matrix A is nonsingular if and only if
det(A) # 0

Theorem 1.5.5[9,p.107 . If A= (a;;) isann x n matrix. Then

ainAgr + apliy + -+ adp, =0 for i+k
alelk + aszzk + -+ anjAnk =0 fOTj *k

Corollary 1.5.6 [ 2,p.106 ] If A isan n x n matrix and det(A) # 0, then

[ Aqg Ay An ]
det(4) det(A) det(4)
» 1 . A1, A Aw
A =mad1(z4)= det(4) det(4) det(A) |
Ay Ay A
[det(A) det(4d) =~ det(4)

1.6 Linear Systems

A linear system (A system of linear equations) with m-equations and n-unknowns
consists of m simultaneous equations each one is an equation in n-variables. That is, it
has the form:

a11X1 4+ A12X2 + ... + A1pXy = by
a21%1 + A22X2 + ... + QopXn = by M

Am1X1+ Am2X2 + = + AmpXn = b,
A solution for the linear system is a sequence of n real numbers S;, Sy, ..., Sy

which when substituted in the equations of the linear system all become true statements.

The principal question for this kind of systems is to find the set of solutions to this

system, that is to find all n-tuple (xl,xz,..., xn) that satisfy (1)

A general system of linear equations lies in one and only one of the following
categories

I. The system has no solution.



i The system has exactly one solution.
Iii. The system has infinitely many solutions.

If there are fewer equations than variables in a linear system, then the system

either has no solution or it has infinitely many solutions.

Definition 1.6.1 [ 9,p.3]. (Consistent and Inconsistent) A system of equations that has

at least one solution is called consistent. Otherwise, it is called inconsistent.

The key idea in finding the solution of a linear system is to apply elementary

row operations

Theorem 1.6.2 [9,p.7 ]. If any finitely many operations of the following is (are) applied

to the linear system (1)
1. Interchange two equations.
2. Multiply an equation by a nonzero constant.
3. Add a multiple of one equation to another.
To get a new system. Then both systems have the same solution.
The operations listed in Theorem 1.6.2 are called elementary row operations.
Definition 1.6.3 [ 9,p.49 ]. (Row equivalent) Let A and B be two m X n matrices.

We say that Ais row equivalent to B if B can be obtained by applying a finite

sequence of elementary row operations to A.

Now define the following matrices:

i1 Q12 = Qin X1 by
A= a:21 a:22 a?n , x = Ile , p— b.2
Am1  Am2 Amn Xn bm
Then
i1 Q12 - AQp][X1 a11X1 4+ A12X2 4 ... + QinXn
Ax = azq agz . am\ Ixz _ az%xl + aZ%xz + o + aZY}xn
Am1  Am2 Amnl L Xn Am1X1+ AmaX2 + = + QpunXp

10



The entries in the product Ax are merely the left sides of the equations in (1).
Hence the linear system (1) can be written in matrix formas Ax =b.

The matrix A is called the coefficient matrix of the linear system (1), and the

matrix
ap; Qi - Qi | by
az1 Az -+ Ay |by
. . . H . ]
Am1 QAmz -+ Qmn bm

obtained by adjoining b to A, is called the augmented matrix of the linear system
(1). The augmented matrix of (1) will be written as [A|b]. Conversely, any matrix
with more than one column can be thought of as the augmented matrix of a linear
system. The coefficient and augmented matrices play key roles in solving linear

systems.

Definition 1.6.4 [9,p.59]. (Homogenous Systems) A system of linear equations
is said to be homogenous if the constant terms are all zero. That is, the system has

form Ax = 0.
We note here that a homogenous system is always consistent,

in fact x; = x, = -+ = x,, = 0 is a solution which is called the trivial solution.

1.7 Gaussian Elimination, Cramer’s rule

Definition 1.7.1 [2,p.8]. (Reduced Row-Echelon Form) A matrix having the
following properties 1, 2 and 3 (but not necessarily 4) is said to be in row echelon
form (r.e.f). A matrix that satisfies all the 4 conditions is said to be in reduced row

echelon form (r.r.e.f)

1- If a row does not consist entirely of zeros, then the first nonzero number in
the row is a 1. (We call this a leading 1.)

2- Any row that consists entirely of zeros is placed at the bottom of the matrix.

3- In any two successive rows that do not consist entirely of zeros, the leading 1
in the lower row occurs farther to the right than the leading 1 in the higher row.

4- Each column that contains a leading 1 has zeros everywhere else.

11



Any m X n matrix A can be transformed into a reduced row echelon form A

which is row equivalent to A, and this Ais unique .

Definition 1.7.2 [9,p.54] (Gauss-Jordan reduction) The Gauss-Jordan reduction

procedure for solving the linear system Ax = b is as follows.
Stepl. Form the augmented matrix [A|b].

Step 2. Transform the augmented matrix to reduced row-echelon form by using

elementary row operations.

Step 3. The linear system that corresponds to the matrix in reduced row-echelon
form that has been obtained in step 2 has exactly the same solutions as the given
linear system. For each nonzero row of the matrix in reduced row-echelon form,
solve the corresponding equation for the unknown that corresponds to the leading
entry of the row. The rows consisting entirely of zeros can be ignored, since the
corresponding equation will be satisfied for any values of the unknowns.

Definition 1.7.3 [2,p.50]. ( Elementary matrix ) An n xXn matrix is called an
elementary matrix if can be obtained from the n Xxn identity matrix I, by

preforming a single elementary row operations.

Theorem 1.7.4 [2,p.19]. A homogeneous system of linear equations with more

unknowns than equations has infinitely many solutions.

Theorem 1.75 [2,p.109]. (Cramer's rule). If Ax=b is a system of n linear
equations in n unknowns such that det(A) # 0, then the system has the unique

solution, given as follows:

oo det(d) - det(4y) . det(4,)
7 det(4) 727 det(4d) 7 T det(A)”

th

Where A; is the matrix obtained by replacing the entries in the ;= column of A

by
by the entries in the matrix b = lbzl :
bn

12



1.8 Vectors in the Euclidean space R"

In this section we state some basic definitions regarding the vector space R"

Definition 1.8.1 [2,p.167]. (Vectors in n-space) If n is a positive integer, then
an ordered n-tuple is a sequence of n real numbers (a;,a,,...,a,;). The set of all
ordered n-tuples is called n-space and is denoted by R™ and an element

(aq,a;, ..., ay) is called a vector.

: . X
A vector in the plane is a 2-vector u = [yﬂ where x; and y, are real

numbers, called the components of u.

Definition 1.8.2 [9,p.148]. (Norm of a vector) The length (also called magnitude or

norm) of the vector u = (uy, uy, ..., u,) in R™ is |lul| =\/u§+u§+---+u%.

Definition 1.8.3 [9,p. 148 ]. (Inner product) If u = (uy, u,, ...,u,) and

v = (vy,Vy, ...,v,) are vectors in R", then their dot product is defined by
UV = U Vg + UpVy + -+ U,v,. The dot product in R"™ is also called the

standard inner product

Definition 1.8.4 [2,p.174]. (orthogonality) Two vectors u and v in R" are

called orthogonal if u.v = 0.
Definition 1.8.5 [2,p. 136 ]. (orthogonal projection)

The vector u is the sum of w; and w,, where wy is parallel to v
W

and w, is perpendicular to wv. the vector w; is called the

orthogonal projection of u on v or sometimes the vector

13



component of u along v. It is denoted by proj u.

The vector w, is called the vector component of u orthogonal to v. Since we have

w; = u — wy, thus the vector can be written w, = u — proj u.

Theorem 1.8.6 [2,p.136]. If wu and v are vectors in 2-space or 3-space and if

u.v

T (vector component of u along v).

v # 0, then proj u =

u.v
llvl|?

u—proju=u-— v (vector component of u orthogonal to v).

1.9 Rank and Nullity

Definition 1.9.1 [2,p.222]. (subspace) A subset W of a vector space V is called
a subspace of V if W is itself a vector space under the addition and scalar

multiplication defined on V..

Definition 1.9.2 [9,p.207]. (Linear combination) Let v,,v,,..,v, be vectors
in a vector space V. A vector v in V is called a linear combination of v,,v,,...,v,

if v=kivi+ky,vy,+-+k,v, forsomenumbers ky ky, .., ky.

Definition 1.9.3 [2,p.233].(Linear independence) If S ={v,,v,, ..,v,} is a
nonempty set of vectors, then the vector equation k; vy +k, v, +--+k,v, =0
has at least one solution, namely k; =0, k, =0,..,k, =0. If this is the only
solution, then S is called a linearly independent set. If there are other solutions,

then S is called a linearly dependent set.

Definition 1.9.4 [9,p. 213 ]. ( Span ) The vector v,, v,, ..., v, in a vector space V are said
to span V if every vector in V is a linear combination of vy, v,, ..., v,. Moreover, if these
vectors are distinct and we denote them as a set S = {v,, v,, ..., 1.}, then we also say that

the set S spans V, or that v;, v,, ..., v, spans V, or that VV is spanned by S, or span § = V.
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Definition 1.9.5 [2,p.259]. (row space and column space) If A an mXxXn
matrix, then the subspace of R" spanned by the row vectors of A is called the row
space of A, and the subspace of R™ spanned by column vectors is called the

column space of A.

Definition 1.9.6 [2,p.273]. (Rank and nullity) The common dimension of the
row space and column space of a matrix A is called the rank of A and is denoted
by rank(A), the dimension of the null space which is the solution space of

Ax = 0 of Ais called the nullity of A and is denoted by nullity(A).
Theorem 1.9.7 [2,p.275]. If Aisann X n matrix, then

(@) rank(A)=the number of leading variables in the solution of Ax = 0.

(b)nullity(A) = the number of parameters in the solution of Ax = 0.

Theorem 1.9.8 [9,p. 249 ]. (Rank-Nullity Theorem) If A isan m X n matrix, Then
rank(A) + nullity (4A) =n

Theorem 1.9.9[2,p.275]. If A is any n X m matrix, then rank(A4) = rank(AT)

Theorem 1.9.10 [9,p.250]. if A is an nXxXn matrix, then rank(4) =n if and

only if det(4A) # 0

Definition 1.9.11 [9,p. 327 ] (Linear transformation from R" to R™)

A linear transformation T from R"™ into R™ is a function assigning a unique

vector T(x) in R™ to each x in R" such that:

(@) T(x+y) =T(x)+T(y), forevery xandy in R".
(b) T(k x) = k T(x) forevery x in R"™ and every scalar k.

If n = m, the linear transformation T:R™ — R™ is called a linear operator on R".
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The matrix Ap,x, = [T(e1):T(ez):...:T(e,)] is called the standard matrix for the linear

transformation and T: R™ — R™ is a multiplication by 4, that is T4(x) = Ax.

Definition 1.9.12 [2,p.395]. (Kernel and Range) If T:V->W is a linear
transformation, then the set of vectors in V that T maps into O is called the kernel
of T; it is denoted by ker(T). The set of all vectors in W that are images under T

of at least one vector in V is called the range of T; it is denoted by R(T).

Theorem 1.9.13 [2,p.397]. If A is an mxn matrix, and T4:R" > R™ is

multiplication by A and define
rank(T,) = dim(R(TA)), nullity (T,) = dim(ker(T,)), then

(i) nullity (T4) = nullity (A4)
(ii) rank(T,) = rank(A)

Theorem 1.9.14 [2,p.281 ]. (Invertible matrix theorem) If A is an n X n matrix, and
if T,:R" > R™ is multiplication by A4, then the following are equivalent.

(@) A isinvertible

(b) Ax = 0 has only the trivial solution.

(c) The reduced row-echelon form of A is 1,

(d) A is expressible as a product of elementary matrices.
(e) Ax = b is consistent for every n X 1 matrix b.

(f) Ax = b has exactly one solution for every n X 1 matrix b.
(g) det(4) # 0

(h) The range of T, is R"

(i) T4 is one—to—one.

() A has rank n.

(k) A has nullity 0.

For proofs of these properties [2].
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Theorem 1.9.15 [9,p.365]. Let T:R™ - R™ be a linear transformation defined by
T(x) = Ax, x inR™, where Aisan m X n matrix.
(1) T is one-to-one if and only if rank(4) = n

(2) T isonto if and only if rank(A) = m

Lemma 1.9.16 [10]. Consider the vector spaces R™ and R",andlet T4 : R™ - R" and

T, R" > R™ the adjoint operator, then the following statement holds

(1) Rang(A) =R™ & 3y >0 suchthat ”ATZ”Rm > y||zllp,z € R

(2) Rang(A) =R" & Ker (A")= {0} o A" is 1—1 (see theorem 1.9.15)
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Chapter Two

Determinant

In the history of matrices, mathematicians are interested in finding the value
of the determinant for square matrices only, actually the definition of determinant
and its properties are discussed only for square matrices. To break this we
generalize the concept of determinant from a square matrix to a non-square
matrix, and we also study their properties, methods of computation and some
application.

2.1 Determinant function

There are many ways that general m x n determinants can be defined. Well
first define a determinant function in terms of characterizing properties that we
want it to have. Then well use the construction of a determinant following the
method given in the section, and through it we will prove that cofactor expansion

definition of the determinant and radic definition are the same.

We generalize the idea given in [8] for the case of rectangular matrices:

Definition 2.1.1 An m xn matrix A= (a;;) where m<n is said to have form

[ if i) Entriesof Aare 0 or 1

i) Eeach row have exactly one non-zero entry

Thatis, I ,,4, consists of all matrices of the form [4; A, - A,] where
0
Aj€f{er,ez,..., ey} U O , {eq,e,,.., ey} isthe standard basis for R™
0
Such a matrix is called a permutation matrix in literature.
01 00O 3
Example, A=|0 0 1 0 0]isanexampleof anelementin/
0 0 001

Definition 2.1.2 A determinant function assigns to each m xn (m <n) matrix

A a scalar associated to the matrix, denoted det(A) or |A| such that
Al: The determinantofan mxn (m <n)in I,,y, is (—1)P*4
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where p=14+2+--+mandq=j; +j, + -+ j, ( ji,j2 -, jn) represent columns

that contain 1’s.

A2: If the matrix Bis identical to the matrix A except the entries in one of the
rows of B are each equal to the corresponding entries of multiplied by the same

scalar c, then |B| = c|A].

A3: If the matrices A,B and C are identical except for the entries in one row, and
for that row an entry in A is found by adding the corresponding entries in B
and C, then |A| = |B|+ |C|.

A4: If the matrix B is the result of exchanging two rows of A, then the determinant

of B is the negation of the determinant of A.

These conditions are enough to characterize the determinant, but they don’t
show such a determinant function exists and is unique. We'll show both existence
and uniqueness, but start with uniqueness. First, we'll note a couple of properties

that determinant functions have that follow from the definition.

Theorem 2.1.3 A determinant function has the following four properties.

(@) The determinant of any matrix A,,x, (m < n) with an entire row of 0'sisO0.
(b) The determinant of any matrix 4,,x, ( m < n) with two identical rows is 0.

(c) If one row of a matrix A,x, (m<n) is a scalar multiple of another row, then
its determinant is 0.
(d) If a multiple of one row of a matrix A,,x, (m<n) is added to another row,

then the resulting matrix has the same determinant as the original matrix.

Proof: Property (a) follows from the second statement (A2) in the definition.

If A has a whole row of 0's, then using that row and ¢ =0 in the second
statement (A2) of the definition, then B = A.
So, |A| = 0|B|. Therefore, det(A) = 0.

Property (b) follows from the fourth statement (A4) in the definition.
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If you exchange the two identical rows, the result is the original matrix, but its
determinant is negated. The only scalar which is its own negation is 0.

Therefore, the determinant of the matrix is 0.

Property (c) follows from the second statement (A2) in the definition and Property (b).
Property (d) follows from the third statement (A3) in the definition and Property (c). 1B

Now we can show the uniqueness of determinant function.

Theorem 2.1.4 There is at most one determinant function.

Proof: The four properties that determinants are enough to find the value of the
determinant of a matrix.

Suppose a matrix A,,x, (m <n) has more than one nonzero entry in a row. Then
using the third statement (A3) in definition 2.1.2.

Now, det(4) = det(A;) + det(4;,) + --- + det(4,)

Where A; is the matrix that looks just like A except in that row, all the entries are
0 expect the j™ one which is the j*" entry of that row in A.

That means we can reduce the question of evaluating determinants of general
matrices to evaluating determinants of matrices that have at most one nonzero
entry in each row.

By Property (a) in the theorem 2.1.3, if the matrix has a row of all 0's, its
determinant is 0. Thus, we only need to consider matrices that have exactly one
nonzero entry in each row.

Using the second statement (A2) in definition 2.1.2, we can further assume that
the nonzero entry in that row is 1.

Now, we're down to evaluating determinants that only have entries of 0s and 1's
with exactly one 1 in each row.

If two of those rows have the 1's in the same column, then by Property (b) in the
theorem 2.1.3, that matrix has determinant O.

Now the only matrices left to consider are matrices from 1.

Using alternation, the fourth condition (A4) in definition 2.1.2, the rows can be

interchanged until the 1's only lie on the entry a;;
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Finally, we're left with a matrix in I, but by the first condition (A1) in definition
2.1.2, its determinant is (—1)P*4,
Thus, the value of the determinant of every matrix is determinant by the

definition. There can be only one determinant function.
|

We need some way to construct a function with those properties, and well do

that with a "cofactor construction" and " radic construction".
2.2 Minors and cofactors.

To every non-square matrix A = (al-j) of order mXxn, we can associate a
number (real or complex) called determinant of the non-square matrix A, where

a;; = (i, /)™ element of A.

This may be thought of as a function which associates to each non-square
matrix over a field F a unique number from F (real or complex). If M is the set of
non-square matrices, K is the set of real numbers and f:M — K is defined by
f(A) =k, where A €M and k € K, then f(A) is called the determinant of A. It
is also denoted by |A| or det( A).

The determinant can also be viewed as a function of the columns of the matrix.

Let these columns be A, ,A4,,..,A,, then we write the determinant as
|4, Az,.., An|l OF  det(Ay,Ay..,Ap)

Definition 2.2.1 [3] (Determinants of order 1 X n )

If A= [ai11 a2 a3 - Qqp], thenthe determinant of A is
|Al=a;—a;+ a;z— -+ (DM ag,
n
=D (D ay
i=1

Example222 |1 5 9]=1-54+9=5

For larger matrices, we use cofactor expansion to find the determinant of A.

First of all, let’s define a few terms.
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Definition 2.2.3 [3] (Minor) Let A= (a;;) be an m x n matrix. for each entry

a;; of A, we define the minor M;; of a; to be the determinant of the

h th

(m—1)x (n—1) matrix which remains when the i** row and j** column are

deleted from A.

135]

Example 2.2.4 LetA:[2 46

To find My, look at element a;; =1, delete the entries from column 1 and row 1

that corresponding to a;; = 1, see the image below.
1 - =
I
Then M, is the determinant of remaining matrix, i.e.,
M,;=14 6|=4—-6= =2

Similarly, M,, can be found by looking at the element a,, =4 and delete the
same row and column where this element is found, i.e., deleting the second row,

second column:
]
Then, M,, = |1 5/=1-5= —4
It is easy to see that for the matrix A the minors of ramming elements are
z 2%
2 — 6
Mi;=12 6|=2—-6= -4

PR

- 3 5
L 22

1 3 -
=25

My; =11 3|=1-3= =2
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Definition 2.2.5 [3] (Cofactor). Let A= (a;) be an mxn matrix. for each

entry a; of A, we define the cofactor of a;;, which is denoted by C;; as
Cy = (=DM

The matrix of cofactors of A is C with ¢; is cofactor of a; and the adjoint of

A isadj(A) isthe transpose of C.

Basically, the cofactor is either M;;, or —M; where the sign depends on the

ij
location of the element in the matrix. For that reason, it is easier to know the
pattern of cofactor instead of actually remembering the formula. If you start in the
position corresponding to a;; with a positive sign, the sign of the cofactor has an
alternating pattern. you can see this by looking at a matrix containing the sign of

the cofactors:

The element 1 in matrix A (example 2.2.4) has place sign + and minor -2  so its
cofactoris  +(-2) =-2

The element 4 in matrix A (example 2.2.4) has place sign + and minor -4  so its
cofactor is +(-4)=-4

Proceeding in this way we can find all the cofactors.

The original matrix, its matrix of minors and its matrix of cofactors are:

a=f 5 d w=[75 73 3l
-2 2
c=[3 4 ) a@= A

2.3 Determinant Using Cofactor Expansion

In this section we shall deal with matrices of size mxn where n <m or
n = m. A matrix Apx, With n=#m is called a rectangular matrix. When
m<mn, A is said to be a horizontal matrix, otherwise A is said to be a vertical

matrix.
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Definition 2.3.1 [3] Let A= (a;;) be an m Xn matrix with m <n. (horizontal

matrix). The determinant of A is defined as

n

det(A) = ayq Ciy + a1 Cip +ag3 Ciz + -+ Ay Cip = Z a,j Cyj
=1

This is called cofactor expansion along the first row.

The determinant of a vertical matrix A is defined to be the determinant of the

horizontal matrix A”.

The following theorem asserts that we can evaluate the determinant of a larger
horizontal matrix by selecting any row, multiplying each element in that row by
its corresponding cofactor, and summing the result, a result which is true in the

case of square matrices (Theorem 1.4.2).

The following theorem is from [7] but we give here another proof
Theorem 2.3.2 (The cofactor expansion theorem)

Let A= (a;;) bean m xn matrix. If m <n, the determinant of A is

det(A) = a;; Ciy +aj3 Ciz + a3 Ciz + -+ ajp Cipy

n

= z aij Cij

Jj=1

This is called the determinant using cofactor expansion along the i** row.

The proof of this theorem will be given after proving Theorem 2.4.1

1 3 5

Example 2.3.3. Evaluate the determinant of A = [2 16

] by cofactor expansion

1) along the first row

i) along the second row
Solution:

1 3 5

det(A) = |2 Y

=114 6|—312 6|+5]2 4]
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=1(-2)-3(-4)+5(-2)=0

1 3 5|_

> 6_—2|3 5/+4[1 5/—-6]1 3|

det(A) = |

= —2(-2)+4(-4)—-6(-2)=0

Note that : when A is an m X n matrix with m =3 or n >3, the cofactors C;
are determinants of (m—1) X (n—1) matrices. To compute these determinants,
we apply cofactor expansion again, and obtain determinants of (m—2)xn—2)
matrices. We keep applying cofactor expansion until we hit 1 xn determinants,

which we know how to compute (see definition 2.2.1).

2 3 4 1
Example 2.3.4 Evaluate the determinant of A = [1 5 0 2] using Theorem 2.3.2
2 4 1 3

Solution: Since m < n, expanding a long any row, say first row

2 3 41
1 5 0 2
2 4 1 3

1 0 2 5

=2 |i (1) §|_3 2 1 5l*¢ B 4 §|—1 B 451 2|

= 2(5(=2) — 0 + 2(3)) — 3(1(=2) — 0 + 2(1))
+4(1(1) — 5(=1) + 2(=2)) — 1(1(3) = 5(1) + 0)
= 2(—4) — 3(0) + 4(2) — 1(—-2) = 2

In calculating a determinant using cofactor expansion, it is usually a good idea

to choose a row or column containing as many zeros as possible.

Theorem 2.3.5 [3] If A is a horizontal matrix with a row of zeros, then
det(4) =0

Proof: Since the determinant of A can be found by a cofactor expansion along
any row, we can use the row of zeros
det(A) =0C;; +0Cip + -+ (1) 0 Cp,
=0 B
This theorem represents property (a) in the theorem 2.1.3
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2.4  Effect of elementary row operations on determinates
The evaluation of the determinant of an mXxn (m <n) matrix using the
definition 2.3.1 involves the summation of ,p -1y, €ach term being a product

of m factors. As m,n increases, this computation becomes too cumbersome and
so another technique has been devised to evaluate the determinant which works
quite efficiently. This technique uses row operations to put a matrix into a form in
which the determinant is easily calculated, keeping track of the row operations
used, and how they affect the determinant, we can backtrack, and determine what
the original determinant was.

We will look at the effect of each elementary row operation on the

determinant.

The following theorem is from [3],[7], but we give here another proof

Theorem 2.4.1. If A and B are m xn matrices with m <n, and B is obtained

from A by interchanging two rows of A, then det (A) = — det (B)
) _ _ [@11 Q12 - Qun
Proof: Basecase: Let A= [a21 Gyy oo a2n]’ and let

a21 a22 e azn

B = [
a11 a12 'Tr) aln

]. Then B is the only matrix that can be obtained from
A by swapping rows. And we see that
det(B) = az (a2 —aiz+ -+ (—1)"ag,) — axn(a;; — a3+ +

1
(D" ain)+ azz(a;; — app+- +(=Day) + ... + (-1 ay, (a1 —

app + -+ (1" ajn-1)

=(az1 412 — A A3+ + (=D"ay ag,) — (ap a,; — axp a3+
ot (=D "ag a1n) + (azzapn —ax agp + - + (—Daxg a) + .. +

(D™ (azn ay; — agn A1z + -+ (=D"az, A1n—1) (D
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Also ,
det(4) = ay1 (azz —ax+ - +(—D"az,) — az (a1 — a3+ +
(—D"az,) + ai3 (az1 — ag + -+ -n" Ap) + . + (—1)1+n ar, (a1 —

az+ -+ (=1)" az1)

= (a1 a2 —aggaz+- + (—1)na11a2n) — (apa,;, — ajzaz3 +
~+(=D"agp az) + (azaz; —apzagn+-+ (D a3 az) + ... +
(=DM (a1a21 — a1y azz + -+ (=D"ay, az,—1) (2)

From (1) and (2) , clearly
det (A) = —det (B)

Induction hypothesis: For all kxn with (k<n) matrices A, if B is obtained
from A by swapping two rows, then det (A) = — det (B)

Induction step : Let A be a (k+ 1) X (n) with (k+ 1 <n) matrix, and let B be
a matrix obtained from A by swapping two rows. Say row r and r+ 1 of A were

swapped when making B.

[ a11 a2 aln -| aqq a, Ain
| arq ayy Ayn | Ar+1)1 Ar+1)2 -+ A@r+n
A= aein Arsne e Grn b B=| a, O A
Ll(k+1)1 a(k+1)2 T A(k+)n Ak+1)1 Ak+1)2 7 A(k+Dn

We may evaluate det (B) by cofactor expansion along its first row.

det(B) = by1By1 + b13B1; + bi3Bis + -+ bipBiy
To compute det(B), we will need to look at the submatrices B(i,j). Our choice
of i =1 means that B(1,j) can be obtained from A(1,j) by swapping the rows
r and r+ 1, as we swapped to get B from A. This means that B(1,j) iS a kXn
matrix that is obtained from A(1,j) by swapping two rows, and thus, by our

inductive hypothesis, detB(1,j) = —detA(1,)).

27



Now,
det (B) = bll(_1)1+1det B(l ) 1 ) + + bln(_1)1+n det B(l ,n)

= a;;(—D"detB(1,1) + -+ a;, (-1 detB(1,n)
= a;, (D (=1DdetA(1,1) + -+ a;,(—1)*"(—1) detA(1,n)
= —(a; (D' detA(1,1) + -+ a;p (-1 detA(1,n))

det(B) = —det(4)
This proves the result for the interchange of two adjacent rows in an mXxn
matrix. To see that this result holds for arbitrary row interchanges, we note that
the interchange of two rows, say row r and s where r < s can be performed by
2(s —r) —1 interchanges of adjacent rows. As the number of interchanges is odd
and each one changes the sign of the determinant, the net effect is a change of

sign as desired.

We are now able to prove the cofactor expansion theorem 2.3.2

h

Proof: Let B be the matrix obtained by moving the i** row of A to the top, using

i—1 interchanges of adjacent rows. Thus det (B) = (—1)"*det(4), but

bij=a; and By;=A; for j€([l,n] andso
aq aij i,
ai e (11]- a1n
det (B) = | ag-11 e Q1)) . Qgim)n
Ag+nr 7 Aa+nj T Aa+Dn
am1 amj Amn
Hence,

det(4) = (-1 det(B) = (- 1) Z(—1)1+fb1jdet(31j)
=1
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n n

= (-D Y (~DMaydet(4y) = Y (D aydet(4;)

j=1 j=1

Giving the formula for cofactor expansion along the i*" row.

Corollary 2.4.2 [3] If any two rows of a horizontal matrix are identical, then the

value of its determinant is zero.

Proof: Let |A| be the determinant of the horizontal matrix A. Assume that row i
and row j in A are identical. By Theorem 2.4.1 interchange row i and row j, the
determinant of the resulting matrix is —|A|. But the original matrix and the

resulting matrix are the same

Thatis |A| = —|A|. Hence, we obtain |A| = 0. ]

This theorem represents property (b) in the theorem 2.1.3

The following theorem is from [3],[7 ], but we give here another proof

Theorem 2.4.3 Let A and B be m X n matrices with m <n, and B is obtained
from A by multiplying all the entries of some row of A by ascalar k. Then

det (B) = k det (4)

h

Proof: If we expand along the i** row of B to calculate its determinant, we get

det(B) = b;1Byy + -+ (=1)"*"b;, By, .

But the reason we have chosen the i* row of B is that we know that bj =ka

ij
for j=1,..,n. Moreover, since the submatrices B(i,j) will all have row i
removed, and since this is the only place where B differs from A, we see that

A(i,j) =B(i,j). Thus, the cofactor B; for b is the same as the cofactor A;

for a;; . So we have that
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det(B) = ka;;B;; + -+ (-1 "k a;, By,
=k (ailAil + -+ (D" ay, Ain)

= k det(A4) n

If we know the determinant of matrix A, we can use this information to calculate the

determinant of the matrix k A, where Kk is a constant.

Corollary 2.4.4 Let A and B be an m X n matrices with m <n, and B is obtained

from A by multiplying all the entries of rows of A by ascalar k. Then

det(k A) = k™det(A)

Proof: Since all m rows of A are multiplied by the scalar k to get k A, using the

above theorem m times gives
det(k A) = (k) (k) ... (k) det(4)

— m

The following theorem is from [3 ], but we give here another proof
Theorem 2.45 Let A and B be an m X n matrices with m <n, and B is obtained
from A by adding a multiple of one row of A to another row of A. Then

det (B) = det (4)

a1 Q12 Ain
Qs Qas2 QAsn
Proof: Let A=| * : " ¢ | and suppose that B is the matrix obtained from
arq A o Oy
Am1  Am2 Amn

A byadding k times row s torow r,

ai 25V) A1n
as1 ) Asp
B = : : - :
kas; +ary kas; +ar, -+ kag +am
Am1 Am2 Amn
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Then we can compute the determinant of B by expanding along row r, getting
det(B) = by1Crq 4+ + (=1)"" by Cry
Our choice of r gets us that br,-=kasj+arj for all j=1,..,n. So, now let's
consider the submatrices B(r,j) and A(r,j) are the cofactor of A and B. This
means that B(r,j) can obtained from A(r,j) by adding k times row s to row r.
Andsince B(r,j)and A(r,j)are (m—1)x (n—1) matrices, we get
det B(r,j) = detA(r,j). Thatis,
det (B) = b (—=1)"*1detB(r,1) + -+ by (—1)" ™ detB(r,n)
= (kag; + a,)(—1)"* tdetA(r,1) + - +

+(kas, + a)(—1)" " detA(r,n)

det(B) = kag (=) tdetA(r,1) + aq (=) detA(r,1) + -

+ kag,(—1)"detA(r ,n) + a,(—1)" detA(r ,n)

= (kas; (—1)™"1detA(r,1) + - + k ag,(=1)""detA(r ,n))

+ a (=) detA(r, 1) + -+ + a,n (=) detA(r ,n)

aix iz ot Qin aix Q2 0 QAn
asy ago eee Qsp as1 as2 ... Qgsp
det(B) =| : HE S : : N
kasl kasZ v kasZ ar1 a2 v Arn
am1 Am2 " Omn Am1 Am2 7 Amn

any matrix in which one row is a multiple of another has determinant
zero, thus, det(B) = 0+ det(A)
det(B) = det(4) m

This theorem represents property (d) in the theorem 2.1.3

31



Since we know how elementary row operations affect the determinant, we can
compute the determinant of a given matrix by computing the determinant of its
rref (see definition 1.7.1) and taking into account the effect of the row
operations. The same procedure that we used in books of linear algebra for
determinant of square matrices.

The following table describes the effect of applying row operations on

computing the determinant of a horizontal matrix.

Type of ERO Effect on determinant
1 | Add a multiple of one row to another row No effect
2 | Multiply a row by a constant k Determinate is multiplied by k
3 | Interchange two rows Determinant changes sign

We mention here that these properties correspond to their counter parts for

determinants of square matrices (See Theorem 1.3.5)

2 4 6

Example 2.4.6 Find the determinant of A = 1 3 =

Solution: We use row reduction until 4 is in reduced row echelon form. At each

step we keep track of the effect on the determinant.

2 4 6 R1<—>R2 detx(—1) 1 3 5§
1 3 5 12 4 6

R2 det

Ry—2R1 —Ry:detunchanged 1 3 §

|0 -2 —4| o1 2

Ri— 3R, —»Ry:detunchanged 1 1 0 -1
200 1 z|

11 0 -1 _1 _

1
= (D= (D) =0
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Note that, the definition of the determinant (see theorem 2.4.1, 2.4.3, 3.1.1) satisfies the

axioms of determinant function 2.1.2  (*).

Also, the cofactor definition of the determinant (see theorem 2.3.5, 2.4.2, 2.4.5) satisfies

the properties of determinant function 2.1.3.

2.5 Radic's determinant

Many definitions have been proposed for the determinant of non-square
matrices. Earlier works have been mainly focused on utilizing the determinant of
square blocks to define the determinant of the non-square matrix. They studied
many useful properties of this determinant. Radic (1969) proposed the following
efficient definition that has some of the major properties of the determinants of

square matrices.

Definition 25.1 [14]. Let A= (a;;) be an mXxn matrix with m <n. The

determinant of A is defined as

aljl e al]m]
(2.5.1)

det(4) = Z (—1)T+Sdetl3

1<), <<, <n Amj, - Amj,,

Where j,j,ij,, EN, T=14+2++mand s= ji+j,+ -+ jn.
If m>n, then det(4) = det(AT).

The determinant of a square matrix and the determinant 2.5.1 of a m X n matrix,

where m < n, have several common standard properties, including the following:

(1) If a row of matrix A is a linear combination of some other rows, then
det(4A) =0

(2) If a row of A is multiplied by a number k, then the determinant of the
resulting matrix is equal to k.det(A).

(3) Interchanging two rows of A results in changing the sign of the
determinant.

(4) If the matrix A has two identical rows, then det(A) = 0.
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Proof: Let A be an m X n matrix with m < n, by Radic's definition

aljl
det(A) = Z (—1)™*S det

1<), <+ <j,<n Amj,

aljm

am im

Where j,,j, j, EN, T=1+2+--+mand s= ji+j,+ -+ jm.

(1) If a row of matrix A is a linear combination of some other rows, then all

Ayj, A1 jm
det[ : : ‘ contains a row is a linear combination of some other rows, and
Amj, " Amjm
Aij, " Qi

therefore, all det[
Amj, 7 Amjm

hence det(A) =0

] =0, where ji,j,, ...,jm € N, are square matrices,

[f Gz 7
(2) Let Azia:il a:iz a:in‘l, and suppose that B is the matrix obtained
Gmi ma - G
L
from A by multiplying row i by k , B :[kf%u kU:tiz .' kG:tJ then,
ar.nl ar.nz aT;ln
Aqj, Gy, v Gy
det® = Y (Ddet kay, kag, .. ka;
1<), < <), <n : : . :
lam, mj, = Gy ]
Qijy Q1j, 7 Ay
Since all det ka:ijl ka:ijz ka:ijm where j,,j,, ..,j,, €N aresquare matrices,
Amj;  Amj, 7 Amjp
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A1, Aij, 0 Ay Qijy  Gjp, o Qg
det kaijl kaijz kaijm = kdetl aijl aijZ aijm |; jl'jzx---’jm EN

lamjl amjz ces am]mJ amjl amjz ces amjm
can be taken k out from all determinant square in common to produce det(B) = kdet(A).

rd11 A1z 0 Qqp

ar1 Arz v Qrp

(3) Let A= : : ~. i |, and suppose that B is the matrix
as1  Gs2 Asn

LAm1 Qmz 77 Amnd

rd11 Q2 A1n

as1 Qs Asn
obtained Interchanging two rows of A, B = :

ar1 Ay Arn

LAm1 AQmz 7" Gmpd

then,

_a1]1 aljz cee aljm_
Asjy  Gsj, ... Qs
det(B) = Z (—D*Sdet| : i .t |

a,; a,; e Qg
1<), <+<j,<n TJq Ly N TIm

amjl amjz amjm_
Gy, Gy, Qg ]
Asj, Asj, oo Qsjm

Since all det where j,j,,...,j,, € N aresquare matrices,

arj1 aT‘jZ . arjm

[Amj,  Amj, " Qmjiy,

[A1j; Qaj, 0 Qe A1, A1y, v Qe
asj, Qsj, ... Qgj., Arj,  Arj, ... Qrjy
det a:. a:. ., a5' = —det a:' a:. . a:. ) jlljZ’---rjm EN
Tj1 rjy o Yrjm Sj1 Sj2 7t Sim
[Amj,  Amj, Am jip, | [Amj;  Amj, Am jip, |
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can be taken sign negative out from all determinant square in common to produce

det(B) = —det(A).

rdy11 A1 0 Qqp

a;”l a'rz a;'n
(4) LetA=]| : : ~ i |, then

Ar1  App -+ Qpp

lAm1 Amz 77 O
_aljl aljz eee aljm_
arjl arfz arjm
det(4) = Z (—1)+S det| : ' =

1<), <<, < Arjy Gy Arj,,

amjl amjz amjm_
[ A1j; Arj, 7 Q1T

arj1 arjz arjm

Since all det where j,,j,, ...,j,, €N aresquare matrices,

arh arjz arjm

[Amjy,  Amj, 7 Qmjiy, ]

Gy i, Qe
arj1 arj2 arjm

then all det| : ~, i |=0, hencedet(A)=0
arjl arjz arjm

[Amj,  Amj, " Amjiy, ]

(5) We need to show that radic definition of the determinant satisfies the axioms

(A3) of determinant function

a1 Q2 vt Qip bi1 bz -+ by

Qz1 Qa2 -+ Uz a a eoa
Let A= : : ., S B = :21 ?2 . ?n ,

Qn1 Amz2  ** Amn Am1 Amz - Amn

a1 +byx A+ by o A+ by
a a cee a
C :21 :22 . ?n

Am1 Am2 o Amn
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Then,
[aljl + bljl aljz + bljz

[ ayi
det(@© = > (~D*Sdet| 2,
1<j,<<j_<n : :
1 m amjl amjz
[aljl tbyj,  @uj, t by, Ay, + by,
. az . a2 . cee az .
Since all det[ 1 2 . Jm J
Amjy Amj, Dmjm
square matrices,
[@1jy +Db1jy @y, + by, g, + by,
az . az . cee az .
Therefore, detll )1 2 . Jm |
Amjy Amj, Amjm
Qijy  Qij, v Gy, [Py bij
azj azj azj a; ayi
=det| ¢ 7* . . +det| g e
Amj,  Amj, - amjm lamj 1 Amj,
Hence, det(C) =
aljl aljz aljm‘l bljl bljz
(—1)r+5(det| A :m|+det Ju T
1<), << _<n B B Ny
1 m lamjl amjz cee am]mJ am]’1 amjz

= det(A4) + det(B)

Note that, the definition of the determinant (see properties

axioms of determinant function 2.1.2  (**).

|
Co ]
’ amjmJ

: aljm + bljm-l

azjm

am]'m

where  j,j,,.,j,, EN are

bijm
A2jm

b
ali-:])

. amjm

2,3,5) satisfies the

Also, the Radic definition of the determinant (see properties 1.4 ) satisfies the

properties of determinant function 2.1.3.
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Corollary 2.5.2 The determinant obtained by cofactor expansion and Radic
definition are the same.

Proof: the cofactor definition and Radic definition are determinant function, since
the four characterizing properties of determinant listed in definition 2.1.2 are
satisfied by the cofactor definition 2.3.1 and Radic definition 25.1 of
determinants, and because of uniqueness of determinant function (see theorem

2.1.4), the cofactor definition and Radic definition are the same. ( see * , **)
[ |

Example 2.5.3 Evaluate the determinantof A = [a1 a; az] using Radic definition
SO|UtI0n |A| - (—1)1+1a1 + (_1)1+2a2 + (_1)1+3a3
= a1 - a2 + a3
. a, a, das ) . .
Example 2.5.4 Evaluate the determinant of A = [b b b ] using Radic definition
1 2 3
Solution :

a; a, a; as a, as
|A|:(_1)(3)+(1+z)|b1 b2|+(_1)(3)+(1+3)|b1 b3|+(_1)(3)+(z+3)|b2 b3|

a, a; a, as a, das
= |b, b2|_|b1 b3|+b2 b3|

The evaluation of the determinant of an m X n matrix (m <n) using Radic's

definition reduces to evaluation of (') determinant of m X m matrices.
Note, Let A;,A;,...,A, becolumnsof the matrix A,,x, (m < n). Then Radic’s

determinant of A4 is a function in the columns of A and can be written in the form

det(A) = det(A1 T ,An) = |A1 T IATll

38



Theorem 25513 ] Let A = [A;,... ,A,,] be 2 X n matrix withn > 2. Then
det(Ay, .. , Ay) =det(A,,A, — A3+ A, ... + (-1)"A,) +
det(A,, A — Ag+ ..+ (D" 1A) + -+
det(An_y, Ap)

Proof: By principle of mathematical induction, (P.M.I)

Base case, n =3,

det(A;,A,,A;) =det(A,,A,) —det(A;,A3) +det(4,,A3)
Since det(A; ,A, ),det(A,, A3 ) are square then
det(A;,A, ) —det(A;,As;) =det(A;,A, — A3)
Then, det(A;,A,,A;) = det(A, , A, — A3) + det(A, ,A3)
Induction hypothesis: We assume that it is true for n = k
det(A;,... , Ay) =det(A;, A, — A3+ A4, ... + (—DFA) +

det(A, ,A; — A+ .. + (VDT A) + -+ det(Ap_1,Ar)

We will show that the identity holds for n=k+1

det(Ay, ... , Agsr) = (D)@ ®det(4;,4,) + (—1)P*Bdet(A4,,45) +
(—1)®*OCdet(A;,4,) + (—1)P*O det (4, ,As) + -+
(D@D get (A, Apyr ) + (=D det(4, , A3) +
(—1)®*©Odet(4,,4,) + (-1)®*Ddet(4,,A5) + -+ +

(—1D)@+CHADger(A,, Agyr ) + - + (1) @YK Dger (4, , Ay )
= det(Al ,Az - A3 +A4_ I (_1)k+1 Ak+1)

+ det(A2 ,A3 - A4 + e + (_1)k Ak+1) + o + det(Ak ,Ak+1)
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Theorem 2.5.5 converts the computations of the determinant of an 2Xxn
matrix according to Radic definition which needs computing () determinants to

computation of n — 1 determinants of size 2 x 2.
__n(n-1)
( (’;)——2 >n—1)

1 3 5

_— 6] using theorem 2.5.5

Example 2.5.6 Evaluate the determinant of A:[

11 o=2(, 13 5| _,_ oo
Then, det(A)—|2 _2|+|4 o] =(2+4)+(18-20)=0.

Theorem 2.5.7[13 ] Let A = [A,, ... ,A,,] be 2 X n matrix withn > 2. Then
det(Al y A2 y wen ,An_l 'ATL) = det(A1 y AZ y wn ,An_1 ) +
(—1)nd€t(A1 - AZ + e + (_1)7’1 An—l ,An)

Proof: By principle of mathematical induction, (P.M.I)

Base case: n = 3,
det(A,, A, ,A3;) =det(A;, A, ) — det(A,, A3 ) + det(4,,A3)
= det(4,, A, ) — det(A; — A, ,As3)
Induction hypothesis: We assume that it is true for n = k
det(Ay, ... ,Ay)
= (—1)3"3det(A;,4;,) + (—1)3**det(A;,A3) + (—1)3">det(A; ,AL)
+ o4 (=D**det(Ay, Ar ) + (—1)3%3det (4, , A3)
+ (—1)3*®det(4,, A, ) + (—1)3"det (A, , A5 ) + -

+ (=1)5**det(Ay, A ) + -+ (=12 det (A, , Ar)

=det(A;,45,4A5, ..., A_) + (=D det(A; — A, + ... + (=D* A,_1,4)
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We will show that the equality holds for n=k + 1

det(Ay, ... , A1) = (—1)373det(A,,4,) + (—1)3 det (4, ,43) +
(—1)3*5det(A;, Ay ) + -+ (D" *det(A, , Ax ) + (—1)3**det(Ay , Agyr ) +
+(—1)3*> det(4,,A5) + (—1)3*det(A4, , A, ) + (—1)3%7det(A, ,As ) +
ot (—1)5trdet(A, , Ar ) + (—1)0 *det(Ay , Agyr ) + - +

(—D)**?*det(Ax , Ars1)

= det(Al ,A2 ,A3 ) ""Ak—l) + (_1)k det(Al - A2 + e + (_1)k Ak—llAk)
+ (=1)**'det(Ay, Agsr) + (1) det(Ay, Agyr ) + -

+ det(Ay , Ags1)

= det(Al ,Az ,A3 ) ""Ak—l) + (_1)k det(Al - AZ + e + (_1)k Ak—l' Ak)

+ (—1)k+1d€t(A1 - AZ + e + (_1)k+1 Ak,Ak+1)

det(A1 PRI ,Ak+1) = det(A1 IAZ ,A3 , ...,Ak)
+(=1)"" det(Ay — Ay + . + (“1DF Ay, Ays) ]

Example 2.5.8. Evaluate the determinant of A = B i 2] using theorem 2.5.7

Solution :

11 3./ 1\®|=2 5| (4 _ay_ (. -
Al=|, 3+ |_2 2] =(4-6)-(12+10)=0
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Chapter Three
Properties for non-square determinant

In this chapter we study Radic definition for determinant of a rectangular
matrix in more detailed way. We present new identities for the determinant of a
rectangular matrix. We develop some important properties of this determinant.
We generalize several classical important determinant identities, and describe
how the determinant is affected by operation on columns such as interchanging

columns, reversing columns or decomposing a single column.

Although we present here properties of Radic determinant but we have proved
in chapter 2 that Radic determinant and the determinant by cofactor expansion
give the same value. So, we may use the term determinant to mean any of the

common values.

3.1 Properties for determinant of a rectangular matrix.

In this section we will be mainly concerned with the properties of the
determinants of square matrices (theorem 1.3.5) that are still valid when one goes

to rectangular matrices.
The following theorem is from [3 ], but we give here another proof

Theorem 3.1.1 If every element in any fixed row of a horizontal matrix can be
expressed as the sum of tow quantities then the given horizontal matrix
determinant can be expressed as the sum of tow horizontal matrix determinant of

the same order with the elements of the remaining rows of the both being the

same.
a+ay; BH+a;, .. 6+ag,
a a a
Proof : Let A = 21 2z an |,
am1 Am2 Amn

By cofactor expansion along first row of det(4)
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azr ... QAyn a1 ... Qon
|A|=(a+a11) : - (,8+a12) : +
Amz ... Omn Qm1 ... Omn
az1y .. Qp e azr - A2m-1)
: n : :
(y + a13) . + - +(—1) (6 + aln) :
Am1 v Qpn Am1 am(n—l)

det(4) =

asz» e Qop azq e Qop azq e Aoy

a|i i |=p +y P4+
Am2 ... Omn am1 . OGmn Am1 .. OAmp
azr .. A2tn-1) az; ... QAyy az (0579
A +(_1)1+Tl 6 : + all : . : - alZ E S +
Ap1 e Amn-1) Amz2 . Qmn Am1 Amn

azi .. A Azt - A2(n-1)
aiz| P+ (=DM ay, :

am1 Amn Am1 Am(n-1)

a B 6 aij; Qg2 A1n
_ azq (05Y) drn + azq az, Azn

a a a .
An1 Amz ... QAqun mil m2 e mn

Note: 1- is those axiom A3 in definition 2.1.2
2- This property is valid for square matrices as well ( see theorem 1.3.6)

Theorem 3.1.2[1]. Let 1<m<n, and A be an mXxm matrix, and B be

an m X n matrix, then det(4 B) = det(A) det(B)
Proof: Let B = [By,..., B,], then
det(A B) = det(A [By, ..., By] ) = det ([AB4,...,AB,])

By Radic definition

det(A B) = Z (—1)" ™ det ([A Bj, ., A Bjm])

1<), <<=

Where r=14+2+-4+m and s=j;+j,++jn
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det(A B) = Z (=1 det(A) det ([B, .., B |)

1<), << <

Since Radic definition gives square matrix (see theorem1.3.5.1)

= det(A) Z (-1 det([B,,,...,B, |)

) ]m
1<), < <), <n

= det(A)det(B)
[
_[2 2 _[3 5 7
Example 3.1.3 Prove theorem 3.1.2 for A = [_1 3l B—[z 1 4
10 12 22
Then, AB = [3 2 5

det(A) =8, det(B) =8, det(A.B) =64
det(A B) = det(A) det(B) = 8 X 8 = 64

A sufficient condition for the equation is that A is square and A B is defined.
We note here that B A is not defined.

In fact there is no determinant function that satisfies det(AB) = det(A)det(B) for all
matrices 4, B.
1 0 2

Example 3.1.4 Let A=[_1 1 1l B =

Then, AB = [i (3) _35]

det(A) = —4, det(B) =7, det(4B) =10
det(A) det(B) = —28 # det(A B)

We notice from this example that the determinant is not distributed in the case
that the first matrix is rectangular, so for the theorem to be true, the first matrix

must be the square.
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110 0 1
Example 3.1.5 Let A:[2 3 o]' B=|2 0
—4 2
2 3 0
Then, ABz[é %] BA=|2 2 o]
02 0

det(A) =1, det(B) =—2, det(AB)=—2, det(BA)=0
Now, det(4 B) = det(A) det(B) = det(B) det(A) # det(B A)
—2=MW(CE2)=C2)D)#0

Lemma 3.1.6 [1] LetA bean m xnmatrix, 1 <m <mn, and

m+n odd, then 15 [(a;)]=0, where a;;=1 forall j, 1<j<n.
1<j<n

Proof: by induction on even integer n for all odd integer numbers m,
1<m<n.

Basecase : If n=2, then m=1 wehave det([1,1)=1—-1=0
Induction hypothesis : We assume that it is true for even n and odd m,
1<m<n,

azlj

1 1 .. 1 .
: ], 1<j<n)

D = det[Al rAZI "'IATl] = det Bl BZ - Bn

where B;=
am,j

Expanding the determinant with respect to the first row yields
D= det[Bz ,B3, ...,Bn] - det[31 ,B3, ...,Bn] + .-+ (—1)n+1d6t[31 ,Bz, ""BTl—l] =0

Induction step : We will show that the identity holds for n+ 2
(which isevennumber) and allodd m, 1<m<n+2

1 1 1

1 1 ..
D =det[A,A,, ..., A, , Api1,Anso] = det [31 B, .. B, Bpi By

Expanding the determinant with respect to the first row yields
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D = det[32 ,B3, "'JBTL-I-Z] - det[Bl ,B3, "'PBTH-Z] + .-
+ (—1)n+1d€t[31 , BZ: T Bn—ll Bn+1' Bn+2]

+ (=D det[B,,B,, ..., By, Bpio]l + (1Y 2det[B,,B,, ..., Byi1]
By theorem 2.5.7, all the resulting determinants are deleted from each other.
Then, D = 0.
Another case can be established in the same way(odd n and even m). [ ]

This property does not apply if the matrices are square (n X n) because the

sum of the order is even (whether n is odd or even)

1 1 1

Example 3.1.7 Evaluate the determinant of A = B ;] and B = [4 c 6

Then, det(A) =1+ 0, and det(B) = 0
Lemma 3.1.8 [1].

1. det [A1 ,Az , ...,An ,Om] = det [A1 ,Az , ...,An], and
2. det[A1 ’AZ , ""Aj—l ,Om 'Aj+1 ) ,An] = det[A1 'AZ ) ""Aj—l '_Aj+1 P —An]

Where m <mn, AK=[a1_k,...,am_k]T for kef{1,..,n}—{} and 0, is an m

by 1 zero vector .

Proof : proof of the first formula,

a1 A
azj a1,j ‘2']
Let ;=] ." |, Af:[B-] where B;=| ¢ |, (1<j<n)
: I am,
am,j g

By expanding the determinant with respect to the first row, we get

a a cee a
D =det[4;,4;,...,4,,0,] =d€t[ S Bln 00 ]
n m

By B,
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D = (—1)2(11‘1 det[BZ ,B3, ""BTU Om] + (—1)3 alzdet[Bl ,B3, ...,Bn, Om] + -
+ (=D™" ayndet[By, By, ..., Byp_1, 0]

+ (_1)2+Tl (0) det[Bl rBZJ ---an]

D = al’l det[Bz ,Bg, ""BTU Om] - alzdet[Bl ,B3, ...,Bn, Om] + -

+ (—1)¥" a,,det[B,,By, ..., By_1,0]
det [A1 ,Az ) !An ) Om] = det [A1 ,A2 , ,An]
Now, proof the second formula, by (P.M.I)

Basecase : Forn=2, m=1 ,wehave detla; 0]=a;,—0= a;

Induction hypothesis: Assume that foralln and m, 1 <m <n, itistrue that
det[Ay, Az, ., Ajm1, 0 Ajy1 oy An] = det[Ay Ay, o, Ajy , —Ajs1 s o) —Ay]

Induction step: We will show that the identity holdsforn+1, 1<m<n+17?

al,]-
az,; ay;
Let 4; = | A; = [Bj] where B; =

am

az']'

P, A<gj<sn
am,j

)
By expanding the determinant with respect to the first row, we get

D= det[Al !AZ , "'!Aj—l 'Om ,Aj+1 , ...,An,An+1]

I L 0  a@yj+1 - Qun Arpp
By .. Bi.1 0, Bju . By Bpy

]
= a4 det[By, ..., Bj_1,0m, Bjs1 o, By, Bnyg] + -
+ (-1)/"*a, ;_,det|B;,...,Bj_2 0m, Bjs1 «, B, Bpya] + 0

+ (—1)/*"q, ;1 detBy , ..., Bj_1,0mm, Bjyg o) By, Bpya | + -

+ (—=1)"2ay py,det[By, ..., Bj_1,0mi1, Bjiz ., By
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By inductive hypothesis
D =ay,det|B,,...,Bj_y,—Bj41 ..., —=Bpyq| + -
+ (—=1)"'*la,;_,det[B;,..,Bj_3,— Bjy1 ., —Bpi1] + -
+ (-1)/**a, . det|By,...,Bj—1,— Bjyy ., —Bpy1] + -+

+ (—1)"2ay 4 det[By , ..., Bj_1,— Bjyy .., —By]

det [a1,1 e Ay — dgj+1 . —a1,n+1]
= de
By .. Bjq — Bj11 —Bn1
= det[A1 ,Az ,...,Aj_l ,_Aj+1 ""I_ATL+1] .

This property does not apply if the matrices are square since if all the elements

of a column are zeros, then the value of the determinant is zero. (see theorem
1.3.5)

Example 3.1.9 Anexample that illustrates Theorem 3.1.8 is
_[3 5 7 _
Let A= [2 ’ 4], det(4) = 8

o 5308 1]

ad 302 A= 35 o

Theorem 3.1.10[1]. Suppose 1<m<n, and m+n be an odd integer,

A=(a;;) =[Ay,..,Ay] be an mxn matrix, and X be an arbitrary mx1

column vector, then

det[A; + X, .., A, + X] = det[A; , ..., A,]

Proof: by (P.M.1)

Basecase: For n=2, m= 1, we have
det[alll + X a1‘2 + X] = al‘l — al‘z = det[al‘l al‘z]
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Induction hypothesis: Assume the assertion is true for all n even and m odd with

1<m<n,

det[A; + X, ..., A, + X] = det[A, ..., A,]
We have to prove that is true for n+ 2 evenandall m odd?
With 1<m<n+2,

azj

_ (4 — | : i [ / =
Let AJ"[B-] where B;= | : |, 1<j<n+2) and X—[X/] where X' =
]

X2
xm]

amj
By expanding the determinant with respect to the first row , we get

aiq +x1 .. a1 n+2 + x1

det[4{ + X, ..., 4,4, + X] = det
41 n+2 T X] [B1+X/ . Bpa+ X

= (—1)1+1(a1,1 + xl)det [ BZ + X/, v Bn+2 + X/] + e
+ (=)™ 2 (ay 1y + x;)det [ Bi+X/, .., Byt + X/]
By induction hypothesis for each component we obtain:

det[Al +X, ...,An+2 + X] = (—1)1+1(a1’1 + xl)det[ Bz, ...,Bn+2]

+ -+ (D" (g 40 + xq)det[ By, ..., Bpil

= (=D'*(ay,1)det[ By, ..., Byyo] + -+ (=D)""**(ay ,4;)det[ By, ..., Byy1]

+x1 [ (=11 1det[ By, ..., Buyal + -+ (=1)"*2*1det[ By, .., Byl

det[Ay + X, ., Anss + X] = det [(E’ll (2:22] + x,det [311 B;z]
Applying lemma 3.1.6
det[Ay + X, ) Apss + X] = det [6;1,11 CE:;Z] +0
= det[Ay, ..., Apsz]
[ |

The second case (n odd and m even) can be treated similarly.
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3 57

Example 3.1.11 Let A= [2 1 4

et
], take X = [2]
Then, det(A) = det(Al ,Az,A3) =8
Also, det(A; + X, A, + X, Az +X) = |i g 2 |=8
Corollary 3.1.12[1] For m + n odd, 1<m <n andforall k,
1 <k<n, wehave

det[Al , ""Ak—l 'Ak 'Ak+1 , ,An]

=det[Ay — Ay, ..,Ap — Ap—q , Apir — Ay o Ay — A
Proof: det(A) = det[Ay, ..., A1, Ak, Aps1, ) Ay
Applying theorem 3.1.10 with X = —A; and lemma 3.1.8
=det[A; — Ay, ., Ap_q — Ay, Ax — Ay, Apyr — Ag s o Ay — Ag]
=det[A; — Ay, ., Ap—g — A, 0y, Apsq — Ay ooy Ay — A
=det[A; — Ay, ., Aj—q — A s Ax — Apyq s o, Ay — Ay

= det[Ak - A1 y ...,Ak - Ak—l 'Ak+1 - Ak , ""ATl - Ak]

Example 3.1.13 let A = [3 57

>3 4],then det(4) = 8

Applying Corollary 3.1.12 with A = [i]

det(A) = |_21 §|=8

Note, This properties (theorem 3.1.10 and corollary 3.1.12) do not apply if the
matrices are square (n X n) because the sum of the order is even (Whether n is

odd or even)
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3.2 How determinant is affected by operations on columns.

In this section we describe how the determinant is affected by operations on
columns such as interchanging columns, reversing columns or decomposing a

single column.
(1) Decomposing column in a square matrix if
Apsn = [A1,45, ..., Ay, ..., A,] and A, = By + Ci, ke{1,2,...,n} then
|A|=14A1,Az, Akt By Arsts o, Apl + 1 A1, As s o, Akt Cro s Ap oo Al
In non-square matrices case what happens, we have
Theorem 3.2.1[12]. Let A= [A{,A5,..,A;,..,A,] be a m Xn matrix,

m <n, and A, = By + C, forsome ke{1,2,..,n}. Then
|A|=141,42, ..., A1, Br , Ags1, - Anl + | A1, Az, oo, A1, Cr , Ajgn -0 Al

J1’ %72 ""Ajm |

+ Z (_1)r+j1+jz+---+jm+1 A: A

1j1<<jm sn
ke{j1 ,.jm}

Where r=14+2+--+m

Proof : After applying (2.5.1)

A

|A| - Z (_1)T+j1+j2+m+jm Aj1’Ajz’ o |

1<j;<<jm sn
We separate the sum of determinants into tow sums: the first one consisting of the
determinants of matrices which contain the column A, = B,+ C, and the

second one consisting of other determinants.

— +j1tj+ 4]
|A| = z (—DrHiatiztotim A LAy, A |
1j1<<jm sn
ke {j1 ,wjm}

1<j1<<jm <n
ke{j1 ..jm}
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— +j1+jo++j
= (-1 Hatizttim |4 L, By, ., A
1<j1<<jm =n
ke {j1 ».jm}
+j1+ja+ ]
+ Z (—DrHiatiztotim |4 G, A |
1j1<<jm sn
ke {j1 jm}
—1)rtiitiztt) . . .
+ Z (-1 m |4;, A, .., 4, |

1£j1<<jm =n
ke{j1 ,.jm}

Now the third sum is added and subtracted so that it can be included into both the
first and the second sum :

|A|=1A41,42, ..., Ar—1,Bx , Aks1, -, Anl + | A1, 42, .., Ak—1, C , Agg1 5 - Apl

Aj |

T4ji+jotetj
D IR G LAY VT

15j1<<jm sn
ke{j1 ,.jm}

= |A1 !AZ ) "'!Ak—l ,Bk ,Ak+1 ) ...,Anl + |A1 ,Az ) ""Ak—l le ,Ak+1 ) "'rAnl

Jm

+ z (_1)T+j1+j2+"'+jm+1 |A] A] A
12y

1<j1<<jm sn
ke{j1 - jm}

Example 3.2.2 Let [Ay, Ay, A3] be a 2x3 matrix and A; = By + C4. Then
according to theorem 2.7.2 we have

|Bl +C1 !AZ: A3|

142)+j,+j,+1
= 1By Ay, A3l + ICy Ay, Asl+ Y (~)FPTT g g |
1</1<),<3
1e{j1 .z}

=|B;,Ay, A3l + |C1, Ay, As| + (—1)3*2+3%14, , A5

=|By,A,, A3l + |C1,A;, Az| — |4, Asl.

(2) Interchanging columns in a square matrix results in changing the sign of the
determinant. Non-square matrices in which the number of columns is equal to the

number of rows increased by one have the same property.
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Theorem 3.23 [12]. Let A= [A, A, ..., A , Ans1] be a mx(@m+1)

matrix. Then foreach i,j € {1,2,..,m + 1} suchthat i < j, we have

det(A) = —det(Ay, Az, ., Aimy  Aj Avyr o Aj1 A Ay oo Ay Agr)

Proof: Let r=1+2+--4+m. Fix each i,j €{1,2,..,m+ 1} such that i <j.

From all the determinants in the right—hand side of

141 = Z (-~ |4y Ay, A |

1<j,<<jm <n

We distinguish the determinants in the expression which contain either A; or A;

but not both of them. Thus, we have

(m+1)(m+2) _

14| = (—1)(”72 i)|A1,A2,...,Al-_1 Aisrs o A1 A Ajy ey A |

(r+mDme) )

+ (—1) |A1 ,Az , ""Ai—l ,Al’ ’Ai+1’ ""Aj—l ,Aj+1 ) vae ,Am+1|
+ (=)t im A Ay e A A

1<j1<<jm sn
i,j€1njm}
Notice that exactly j —i—1 inversions are needed to move the column A; to the

position between A;,_; and A;;; in the first summand. Similarly, in the second
summand, also j—i—1 inversions are needed to move the column A; to the

position between A;_; and A;, .

In other summands we can simply interchange columns A; and A; with the sign

change ( square matrix m X m). Thus, we have

rym+1)(m+2) —i+(i—j—1))

|A| = (—1)( 2
X |Ay, Az, s Aiy JA; Airs o Ajr Ayt o A
(r+memsD iy 1)

)|A1,A2,...,Ai_1 Aisr, o A1 JALAL L e, A

+ (=D j+17
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1y m
- z (—)EDTEE

iy Aiye A

1’ Jm
1=j1<<jm sn

i,jeljimjm}

r+(m+1)(m+2)

det(d) =—(—DH 2|41 Ay, o Ay A Ay s Ay A ey A

(r+(m+1)(m+2)_i)
- (-1 2 Ay, Ay At Ay e Ajey AL A ,Am+1|
- (—L) ittt | A A, A A
15j1<<jm sn
i€l jm)
det(A) = —det(Ay, Az, ., Ai1  A; Ay 0 Ajm1, Ai VA oo A Aier) |

Remark 3.2.4 Consider an m Xn matrix A with m rows and n columns, m < n.
Let A/ be a matrix obtained from A by interchanging two columns. Theorem 3.2.3

tells us that det(A)+det(A/)=O when n—m = 1. However, in general, if

n—m>1 the sum det(A)+det(A/) IS not zero as explained in the following

example.

1 2 7

Example 3.25 Let A = [3 0 1

4 3 _
& 2], det(4) = 5

And A/ =[1 & % 7 3], det(al)=5

det(A) + det (A/) is not zero, since n —m > 1

Theorem 3.2.6 [1] (Cyclic). If 1<m <n, and m+n is an odd integer, then for all
i €{1,..,n}. We have

(=)™ det[A;, o, Ay s oy Ai_q] = det[Aq , ..., Ay]
Proof: It is sufficient to prove

(—1)mdet[An ,A1 , "'fAn—l] = det[A1 , ’An]
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Applying Theorem 3.1.10 with X = —A4,, and Lemma 3.1.8 we have

(=) "det[An, A1, o, Ap_q] = (=1)"det[0y , Ay — Ap o, Ap_y — Ay
= (—1)™(=1D)"det[ Ay — Ay, ., Ap_q — Ay]
= det[ Al - ATL ) ---rAn—l - ATL]

=det[ Ay — Ay, Apyy —Ap Ay — Ay

Applying Theorem 3.1.10 with X = A4,

(—1)"det[A, ,A; , ..., A _1] = det[A; , ..., A,] -

Theorem 3.2.7 [1] (Semi-Cyclic). If 1 <m <n,and m + n even, then
foralli € {1, ...,n}. We have

(=D ™det[4;, ..., Ay, —Aq, .., —Ai1] = det[Ay , ..., Ay]

Proof: It is sufficient to prove
det[A,,— Ay, ..,— A,_1] = det[A;, ..., A,]
Applying Lemma 3.1.8 and Theorem 3.1.10 with X = —A,, we have
det[A,,— Ay, ...,— Ay_q] =det[A,,— Ay, ..— Ap_q1,0,,]
=det[A, —Ap,— Ay — Ay, .c,— Ap_q — Ay, 0y — Ay

=det[0,,,— A; — Ay , ., — Ap_q — Ay, —Ay]
=det[A; + Ay, ..., Ap_q1 + A, A,
=det[Ay + Ay, ..., Ap1 + A, ,A,,0,]

== det[Al , ---:An—l ,Om, Om _An]

=det[ Ay, .., Ap1, Ay ]
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1 2 7 4 3

30 1 -1 2 , thendet(4) =5

Example 3.2.8 Let A = [

let i =2, bytheorem 3.2.6

4 3 1|:5

det(4y) = (—1)<3><2>|(2) Z VS

let i =3, by theorem 3.2.6

det(43) = (—-1)®@ |Z _41 ; é §| _5
_ 27 2 B

Let B = 3 0 1 3], then det(B ) = 26

Let i =2, bytheorem 3.2.7

det(B, ) = (-1)@@ |(2) Z g :% — 26

(3) Reversing columns in a nXxn square matrix results in changing the sign of
its determinant if and only if n is congruent to 2 or 3 (mod 4). Surprisingly, the
determinant of non-square matrix also either change or does not change the sign
after column reversing, depending on the number of rows and the number of

columns of the matrix.

Theorem 2.7.13[12]. Let [A4,4,,...,A4,] be a mxn matrix, m <mn. Then we

mQ2n+m+1)

have  [AnAp_1, o, Az Ayl = 141, Agy o) Ay, Anl (1) 2

|Ay, Ay, . Ay, Ay if m=0(mod4),
|41, Az, o, Ap_y, Apl . (D™ if m = 1(mod4),
|41, Ay, ooy Ay, Ayl (1) if m = 2(mod4),
|A,Ag, o Apq, A . (=D if m = 3(mod4),

m(m+1)

Proof: Letr =142+ -4+ m = and B, =A,41-k,

(m—1)m
2

ke{12,..,n}. Since exactly (m-1D+@m-2)+-+1= inversions
of (adjacent) columns are needed to reverse the columns of a m X m matrix, we

have
|Bll BZI ---;Bnl = ZlSi1<"'<im Sn(_l)r+ll+12+m+lm |Bi1)Bi2r ---;Bim |
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(m—-1)m
2

B

— (_1)T+i1+i2+"'+im+ 'Bi1

| im? Plm—1’ "

15i1<<im SN

it mDm
— (_1)T+l1+lz+ +ip+ >

|An+1—iml An+1—im_1' ey An+1—i1 |
12i1<-<im <n

Applying the following change of variables: j =n+1-i, .., for each

k € {1,2,..,m}, we get

|An'ATl—1' ...,Az,All = |Bl,Bz, anl

= RN (D G ARSI PR LY I '

= (-1) m 2 |A11,A]2, ,A]m |
1sj1<<jm =n

— _\r+mmA D)=+t )4 m=—pm . . .

- (-1 AL A, e A |

1<j1<<Jjm sn

(m-1)m

= |A1, Ay, ... ,An_lenL (_1)m(n+1)+T

m(2n+m+1)

= |A1,A2,...,An_1,An|.(_1) 2

Finally, we state that

(1 if m = 0(mod4),
(_1)%(2n+m+1) — J (_1)n+1 lfm = 1(m0d4‘)'
=D if m = 2(mod4),
L(—l)n if m = 3(mod4),
Which is easy to verify. m

Example 2.7.14 LetA = [1 2.7 4 3]

3 01 -1 2

Then det(A) = 5, by theorem 2.7.13,

|34-72
2

AT = P derd) = (1)) = -5

m = 2(mod4) - 2mod 4 =2

34721|_|

1 2 7 4 3 _
2 -1 1 0 31713 0 1 D =-5

-1 2
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Chapter Four
Applications of Determinant to Area of Polygons in R ?

In this Chapter we will study the application for determinants of non-square

matrices in calculating the area of polygons in R?.

4.1 Areas of certain polygons in connection with determinant of rectangular
matrices.

First we state and prove the following result that relates the determinant of a

2 X 2 matrix with the area of the parallelogram spanned by its columns
Theorem 4.1.1 [9] The absolute value of the determinant
U
det [uz vz]
is equal to the area of the parallelogram in 2-space determined by the vectors

u = (up,up) and v = (vy,v;)

Proof: The parallelogram defined by the columns of the above matrix is the one
with vertices at (0,0), (uq,uy), (w3 + vy, uy, + vy) and (vq,v,), as shown in

the accompanying diagram.
area of the parallelogram A = BH

B=ul, and H?+ llproj, vlI> = |I9|?

H? = I911* = llproj, vII?

— 2
Zu ” (see theorem 1.9.6)

U.

<

H?= 9.9 —

<l
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T
N
Il
<
<
[
/-~
Sl <
§i| <l
<l
::¢| S
I I~
<l
N—

@.W)(v. 1)

H?* = 9.0 — (mﬁ)z)

(u.u)

Now, A? = B? H?

&l

A2 =

u(v.v-—
' ' (u.u)

(V. 0)? )

A% = (W) @.9) — (.u)?
But, u = (uy,uy) and v = (vq,v,)
So,

A% = (U + ud)W? + v2) — (W vy + uy v,)? (see definition 1.8.3)

A% =ui v+ u?vi+udvi+usvi— utvi - 2uvuy, vy, — us vi

AZ = u% v% - 2u1v1u2 vz + u% 1712

A2 = (v, — upvy)? = (det [Z; z;])z

Area=|det[* T
rea—| et[u2 v2]|

The area of the triangle whose heads are u = (uq,u,) and v = (v, v,) IS

1 Ul]l

Area = X |det [*
ooty

det(u,v) = —det(v,u) and orientation
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Also, the area of the quadrilateral can be found by dividing the shape into four

triangles, as in the adjacent figure

Ay A,

area A; A, A; A, = area of triangle A, A, Z + area of triangle A, A; Z + area of

triangle A; A, Z + area of triangle A, A, Z
1 1 1 1
area A; Ay Az Ay = 5|A1:A2| + 5|A2:A3| +;|A3,A4| +5|A4,A1|

This division of quadrilateral into triangles gives us the idea of calculating the

area of any polygon in R2.

Theorem 4.1.2 The area of a polygon with vertices

(x1,v1), (x2,V2), .., (xp, y,) listed counter-clockwise around the perimeter is
given by
a=ghe Sl B Slees b b
A
4 - -
From the adjacent figure it is clear that the % ] T s
area of the polygon is equal to the sum of the // ’,’
areas of triangles resulting from two A .
consecutive vertices and the center of the A
polygon
A
As
It is clear that every real m xn matrix A =[A,,...,A,] determines a polygon
in  R™ (the columns of the matrix correspond to the vertices of the polygon) and

vice versa. The polygon which corresponds to the matrix [A4,...,A4,] will be

denoted by A4, ...A,.
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1
areaof A; ... 4, = 5(|A1;A2| + |4z, Azl + -+ |Ap_q, Anl + |Ap, A

In the following we shall restrict ourselves to the case when m = 2 (polygonsin R?).

Now, if n=3. The area A with vertices (x;,v1), (x5, ¥2), (x3,y5) listed counter-

clockwise around the perimeter is given by

1
14 U K M R ey

1
= E((xﬂ’z — xy1) + (x2y3 — x3Y2) + (x3y1 — x1y3))

= %(xl(J’Z —y3) — %2, (y1 — ¥3) + x3(v1 — ¥2))

_1|x1 X2 x3|
21y1 Y2 Y3

Theorem 4.1.3 The area A of the polygon determined by A; ... 4, is given by
1
A= §(|A1;A2| + |4z, As| + -+ [Ap_1, Anl + |45, AqD)

= |A1,A2, ""ATL |

Proof: What we need here is to prove the second equality, we shall proceed by
showing that the formula %(IAI,Azl+IAZ,A3|+---+|An_1,An|+|An,A1|) is

indeed a determinant function

0 0]_1
1 0
A2: 1t is clear that multiplying a single row by a constant ¢ means the dialation or

AL: The area of a triangle with vertices (1,0), (0,1), (0,0) is = |(1)

N

contraction of one coordinate while keeping the other coordinate fixed and in this

case new area equals |c| times old area.

A3: A Let A a polygon with vertices (xq,v1),(x3,¥2), ..., (xn,¥,) such that
x; = u; + v;, and B a polygon with vertices (uq,vy), Uz, v5), ..., (U, v,), and
C a polygon with vertices (vy,y1), (V2,¥2), - (Vn, Yn)

U +vy u +vy, rou, + Un]

Suppose that, area of a polygon A = [44, ..., 4,] = [ y y ¥
1 2 n
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u u cee u
but, area of apolygon B = [By, ..., B,] = yll yzz yn ]
n

Vi VU,
area of a polygon C =[Cy, ..., C,] = [yi yzz YZ]
that is, area of 4 ... (|A1,A2| + Az, Azl + -+ |Ap_1, Anl + |45, ArD)
1 %1 x; 2 n
_§(|3’1 J’2| |2 |+ |n |)

__(|u1+v1 uz}-ll;v2|+|u2)-}|;v2 u3;v3|+"'+|un;vn ul;vlb
(use theorem 3.1.1)

=3y Rlhy Rl By ul+ln sl Sl+h b
=3y wlrhn wleehn wbesds Rl+lhy Rl+

v,

Yn 3’1|

area of A, ...A4,
1 1
= §(|B1;Bz| + |By, B3| + -+ + | By, B1]) +§(|C1,C2| +1Co, C3| + -+ + |G, C1])
areaof A, ..A, = areaof B;..B, +areaof C;...C,

A4: Exchanging two rows geometrically means the reflection of the heads of the

polygon about in the straight line y = x, That is, the image of each point (x,y)

under the transformation is [(1) (1)] [;] = BC] ],which keeps the area fixed.

Since the area of a polygon is a determinant function, which is unique by
Theorem 2.1.4, we obtain that the area equals the previously defined determinant
(the cofactor definition and Radic definition ). [ ]
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Example 4.1.4 Use matrices to find the area of triangle with vertices:
(4,0, (7.2),(2,73)

. _ 114 7 2|_13 |
areaoftrlangle—2|O 2 3173 R

4.2 Some properties of the determinant and their geometric interpretation

Theorem 4.2.1[13]. Let A, ..A, beapolygoninR2. Then
area Of Ay .. Ay = 5 |A1 + Ay, Az + As, oo, An_y + An, Ay + A4

Proof: We need to show that
|A; + Ay, Ay + Az, o Ayq + Ap, Ay + Ay] =

|41, Azl + Az, Asl + -+ |Ap_q1, Apl + |An , A4
The proof will use the method of mathematical induction.

First, we have the theorem holds for n = 3, that is

A3

From the adjacent figure it appears that the triangular shape resulted from the vertices shift

process and therefore,

area of A;ApAs = 1Ay + Az, Ay + Ay, Ay + Ay

1
= E(|A1 +Ay,A; + Azl + |4, + A3, A3 + A+ [As + Ap A + Az)
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Applying Theorem 3.1.10 with X, =-4,, X,=-4; X;=-A4; on the
determinants in order

1
area of A;4,4; = 5(|A1 JAsl + Az, Aql + 145, Az))

= %(lAl Azl + 1Az, Asl + |43, AqD)
Second, for n > 3. Assume that is true for n = k, by theorem 2.5.7
|A; + A, A, + Az, .. A1 + Ag A + A4
= Ay + Ay, Ay + Az, Ap_q + Al + (DF|AL + (—DFA Ay + Ay
= Ay + Ay Ay + Az, Aoy + Al + (DK Ay, Agl + 1Ay A
= |Ay, Azl + 1Az, Asl 4 - + Aoy, Al + Ag Al + (D Ay, A | + Ay, Aq
We shall prove the result holds for k + 1

det[Ay + Ag, Ay + Ag, oo, Ay + A A + Aggr , Ager + A4
= det[A1 + Az,Az + A3, ""Ak—l + Ak]

+ (_1)kdet[A1 + (_1)kAk ,Ak + Al] + det[Ak + Ak+1' Ak+1 + Al]

= det[A1 + Az,AZ + A3, ""Ak—l + Ak] + (_1)kdet[A1,Ak] - det[Ak, Al]

+ det[Ay , Ayyq] + det[Ay , A;] + det[Ayyq, Aq]

= det[4; + Ay, Ay + Az, ..., Ajq + A + (=1)*det[A;, A)] + det[Ay , Ajiq]

+ det[Ay4q1,A1]

= det[Al, Az] + det[Az,Ag] + + det[Ak ’Ak+1] + det[Ak+1 ’Al]
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Example 4.2.2 Use Theorem 4.2.1 to compute the area of the polygon in R? with
vertices (0, 0), (1,0), (1, 1), (0,1)

Az + As

Ay + Ajg Ay + Az

A 2
A + A

Ay A,

Now, Area Ay Ay Ay Ay =7 |Ay + Ay Ay + A3, A + Ay, Ay + Ay

Corollary 4.2.3[13]. If n isodd, then for every point X in R? it holds
|A; + X, ..., Ap + X| = |Aq, ..., Ay
Proof: Since m = 2, if nisodd, then m + n isodd, by theorem 3.1.10 it holds

that is, the area of the polygon A;A, ... A, will not be changed when a fixed

vector X = (x,y) issubtracted from all the vertices (heads) of the polygon.

Example 4.2.4 The area of a polygon with vertices
(1,3),(2,0),(7,1),(4,-1),(3,2)

when all the heads are shifted by an amount X = (1,3)

1274 312385 4_ g
3 01-12 l63 425

area of a polygon = 3




Theorem 4.25[13]. Let A, ..A4,, beapolygonin R? withodd n.

Then
|Aq, ., Ayl = |4, Aq, oo Ay
Proof: Sincem =2, if nisodd, then m+n isodd.
by Cyclic theorem, (—=1)@D™det[A;, ..., Ay, ..., Ai_1] = det[A;, ..., A,]
When i =n, then (i + 1)m iseven

SO, |A1, ...,Anl = |An,A1, ---'An—ll-

Example 4.2.6 Use Theorem 4.2.5 to find the area of a polygon with vertices:

A1 =(32), A, =(51), A;=(74)

As

Then, area of a polygon A, 4, A; =

|357 3

2 1 4:|z71 2 i|:8 § o

Az

Note, we can calculate the area by starting
from any vertex of the polygon paying attention to the direction and arrangement
of the vertices.

Area Of a polygon A1A2 A3 = det(Al, Az,Ag) = det(Az,A3,A1) = det(A3,A1,A2)

Theorem 4.2.7[13]. Let A, ..A, be a polygon in R?and let n be an even integer.
Then for any point X in R? itholds

|A1 +X, ...,An +X| = |A1, ...,Anl
Onlyif Y™, (-1)'4; =0.

Proof: This theorem is incompatible with the theorem 3.1.10 and the reason is
m =2, if nis even, then m+n is even, This does not meet the theorem 3.1.10

requirement
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Now, by Theorem 2.5.7, itis clear that for any point p in R? holds

|A1,A2, ""An'pl = |A1,A2, ""Anl + (_1)n+1|A1 - AZ + et (_1)n+1 An' pl
= |A11A2) ---1A7’l| (1)

Onlyif A; —A,+--— A, =0.
Now, by theorem 3.1.10, since m + n + 1 is odd, taking X = —p, we can write
|41, Az, ., Any | = A1 + (=p), Az + (=p), ..., An + (=P),p + (=p)|
= |A; + (=p), Az + (=p), ..., An + (=), 03]
By Lemma 3.1.8
= |41 + (=p), Az + (=p), ..., An + (=D)|
Putting X = —p, we get
|Ay, Ay, Al = 1AL+ XA+ X, A, + X
since |Ay, Ay, ..., Ay, | = A1, Ay, . Ay (from1)

We get,
|41, Ay, . Ayl = A1+ X, A, + X, ... A, + X| [ ]

That is, the area of the polygon A;A4, .. A, will not be changed when a fixed

vector X = (x, y) is subtracted from all the vertices (heads) of the polygon.
When for example X = —A;, we obtain
|A1, Ay, .., Ap|l = 10,4, — Ay, ..., A, — Ayl
=|A; — Ay, ..., A1 — A,

== |B1, Bz, ey Bn—ll

1
= E |B1'BZ| + |BZ'BS| + et |Bn—1ﬂBll
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Example 4.2.8 Use Theorem 4.2.7 to find the area of a polygon with vertices:

A1 =(12), A, =(35), 4;=(42), A, =(2,-1)

SII’\CG _A1 +A2 _A3 +A4 = 0

area of a polygon o
1 34 2
A4y A3A, = |2 5 2 _1” =|-91=9

A

A,

Az

V 3
Aq

We note that when we move on the vertices of the polygon in opposite

direction but in the same order, we obtain the same area but opposite value of the

determinant.
While the original space recedes itself, meaning

1 2 4 3|_

2 -1 2 5_9

area of a polygon A;A, A3A, =
Now, by an amount X = (1,2)

area of a polygon (4; + X)(4, +X) (As + X)(4, + X)

12 45 3| o/
_||4 7 4 1”_' 9=9
Theorem 4.2.9[13]. Let A,..A, be a polygon
n(=1)'4; = 0. Then
|A1,...,An| == |An,A1,...

Proof:

|Aq, .0, Ayl = A1 — Ay, o, Ay — Ay Ay — Ayl
== |A1 - An, ‘e
== |02'An_A1r---:An_An—1|
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Ay +X

4T AL+ X

Ay + X

A+ X

A1

JA,_1 — Ay, 0,] (see lemma 3.1.8)

in R?

1 2 3

with even n and let

If n is even, by theorem 4.1.10, taking X = —A,,, we can write



Adding —A4, toeachcolumn
det(4y, ..., A,) = det(—=A4,, —Aq, ..., —A,_1)
Take out a common negative signal factor from the two rows
det(A,, ..., A,) = det(A,,Aq, ..., Ap_1) .

Note that, this says that we can calculate the area by starting from any vertex of

the polygon paying attention to the direction and arrangement of the vertices.

Example 4.2.10 Use Theorem 4.2.9 to find the area of a polygon with vertices:

Al = (1'2)' AZ = (3;5); A3 = (4‘;2); A4- = (2'_1) 5 “2

Slnce _Al +A2 _A3 +A4 = O
Ay Az

“1 3 4 2”:“2 13 4

2 5 2 -1 —1252”29

| V é
-1 A,

We note that when we move on the vertices of the polygon in opposite
direction but in the same order, we obtain the same area but opposite value of the

determinant.

Theorem 4.2.11[13]. Let A;..A, be a polygon in R? with even n and let
n(=1)'4; =0. Then

|A1, ...,Anl - |A1, ---'An—ll
Proof: By Theorem 2.5.7,

|A1,A2, ...,Anl == |A1,A2, ""An—ll + (_1)1’l|A1 _A2 + -+ An—l'Anl
= |A1,A2, ""ATl—ll

since Y, (—1)'4; =0, weget A; —Ay,+ -+ Ap_y = Ap.

That meanS, |A1,A2, ...,Anl = |A1, Az, ""ATl—ll .
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We notice that if we displace the shape to the original point and calculate the
area by dividing the shape into such based on the origin point, the area does not

change.

Example 4.2.12 If A;A,A3A, is parallelogram, then

det[ Ay, Ay, A3, Ay] = det[ Ay, Ay, Az]

Now, | A1, 4,5, As| = | Ay, Azl — | Ay, As| + | Ay, As

= | A, Az + |—A1 + Ay, A3l

Since n iseven,weget —A; + A4, —A;+A4, =0

| A1, Az, As| = | Ay, Ayl + |As — Ay, Azl

= | A, Ax| + |— Ay, A3| = | Ay, Ayl + | Az, Ayl

|A11A21A3!A4-| = |A11A2| + |A31A4|

Example 4.2.13 Use Theorem 4.2.11 to find the area of a polygon with vertices:
Al = (112)1 AZ = (3)5)) A3 = (4';2); A4- = (2;_1)

Since —A;+A4, —A;+A4,=0
|A1’A21A3, A4| = |A1 — Ay Ay — Ay Az — Ay, Ay — A4|

= |A1 —A4'A2 —A4'A3 - A4;0| = |A1 —A4'A2 —A4,A3 - A4|

—_
—_
N}

0|_ -1 1 2)_ 4

ol 13 6 31

w
(o)}
w

1 W 3 4 70
At Ay




Note that the point can be considered as the center on which to divide triangles to

calculate the area

then,

area of a polygon A; A4, A;A, = “

1 3 4 2
2 5 2 -1

|=J 3 ] ==

Theorem 4.2.14[13]. Let A, ..A, be a polygon in R? with even n and let

m,(—1)'A; = 0. Then

|A1, "'!Anl = |A1, ...,Akl + |Ak+1,

FAnll

Where k may be any integer such that 1 < k < n. A

Proof:

areaof A, ... 4,

e

As

Ak+1

Az

1
= E(|A1»Az| + |4y, Azl + -+ |Ap—1, Al + 1Ak, Agsa | + [Ags1, Ao + - +

|An—1r Anl + |An» Al D

1
= §(|A1»A2| + Az, Az + - + |Ak—1, Akl + |Aks1, Aggz| + -+ [An—1, An]) +

1
E (|Ak»Ak+1| + |An» A1 D

1
A1, s Anl = A1, o, Al + 1At ooy Apl + 5 (A, A | + 1An, ArD) =

1
3 1Ak, A1l + A, Ags1])

1
let A= §(|Ak;Ak+1| + |Ap, Aq| — Ak, Ayl = |Ap, Agsq )

|A1, ...,Anl = |A1, ,Akl + IAk+1’ ...,Anl + A

But, if Y™ ,(-1)!4; =0, then A=0 (see figure)

Then, |A1,...,An| == IAl,...,Akl + |Ak+1,...,An|
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Example 4.2.15 Use Theorem 4.2.14 to find the area of a polygon with vertices:

Al = (1;2); AZ = (0,1), A3 = (1,0), A4- = (2;_1)1 AS = (3'

-1), 46 = (3,1)

Since
2 Al
—A1+A2—A3+A4_+A5—A6:0 Ay ¢ Ag
Then, 53\\2
area of a polygon 4,4, AsA, As Ag = '1 A 4
1 0 1 2 |
2 1 0 -1 —1 1
2 Al
take k = 3 then
A21 A6
area of a polygon A, A, A5 + area of a polygon A, As Ag !
1 0 1 2 _ _ AN \ é
2 1 0” “ SENRERERE ; f
A, 5
take k = 2 then : A
area of a polygon A, A, + area of a polygon A;A, As Ag 4y, A

1+3=4

2

A B

Corollary 4.2.16 [13]. Let By,...,B, be given by

2

2

An+Aq

B]_: 5

,B2: ) aeen ,Bn:

Then

4|Bll --'anl = |A11A2| + |A2;A3| + -t |An;A1| Ay

By

A, As
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A1+A,; Ar+As3 Apnt+Aq

Proof: 4|B,,...,B,| =4 T

By theorem 4.2.1

4By, Byl = 4 (3 1Ay Agl + 3 1Ag, Axl + -+ 714, Ar])

= |Ay, Ayl + Az, As| + -+ + |Ap, A4 )

Example 4.2.17 From the adjacent figure we find that
area of a polygon B, B, B3B, = % area of a polygon A; A, A3 A,
Use Theorem 4.1.3 to find the area of a polygon with vertices:

AL =(1,2), A, =(3,5), 4;=(42), A, =(2,-1)
Since —A;+A4,—A;+A4,=0

Then, area of a polygon 4,4, AzA, = 9

area of a polygon with vertices
B, = (2,3.5), B, = (3.53.5), B;=(3,0.5), B, = (1.5,0.5)
Since —B;+B,—B3;+B,=0

3 15”

Then, area of a polygon B,B, B3B, = “3 5 3. 5 0.5 0.5

That means, by Corollary 4.2.16

area of a polygon B;B, B3B, = % area of a polygon A; A, A; A, .
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Chapter Five
Inverse for non-square matrix

In linear algebra, the inverse of a matrix is defined only for square matrices,

and if a matrix is singular, it does not have an inverse.

The aim of this chapter is the discussion of existence of inverses for non-
square matrices. We know that the fundamental idea for existence of inverse of

matrix it must be nonsingular. (it has non-zero determinant).
5.1 Right inverse or left inverse of a matrix

Although non-square matrices do not have inverses (both sides inverse),
some of them have one side inverses. For this reason we introduce the concepts of

"left inverse" and "right inverse"
Definition 5.1.1 [3,p.397 ].

(i) A non-singular non-square matrix A has a left inverse if there exists a matrix

A;t suchthat A71A =1, where I denote the identity matrix.

(i) A non-singular non-square matrix A has a right inverse if there exists a matrix

Azl suchthat A Az =1, where I denote the identity matrix.

We note here a right inverse of A,,., (m <n) is an Az! matrix, where a left

inverse of A, (m >n) isan A;! matrix.

1 3 0

Example5.1.2 Let A= [2 > 1

] Find aright inverse of A

Solution: Let Az! be a a right inverse of 4, then
X1 N
1 3 07, 1 o0
aag =y 5 LZ yz]_[o ]
3
X1 + 3x; y1+3y, ]z[l 0
0 1

2x1 +2x5, +x3 2y + 2y, +y;
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Gauss-Jordan reduction Using we obtain the following

-1

3 —
X1 +3X3=>

E

Xy =7 X3 =3 s o itiyz=3 Ly — Y3 = *)

This system has infinitely many solutions, one solution gives the following

1 1 0 0

-1 L 13
ARt = 0 /3 , another solution is Az = /32 0
-2 —1/3 —3/8 1

Computing a right inverse of horizontal matrix always can be transformed to

finding a solution of a linear system with m equations and n variable (m < n).

Note: When a right inverse or a left inverse for a non-singular non-square matrix

exists, it is not unique.

Remark 5.1.3 For any non-singular square matrix A, left inverse and right inverse

exists and it is equal to inverse of 4, that is

-1 _ 4-1 _ 24-1_ _1
Ap =4, =4 ~ det(4)

adj(A).

The following theorem is from [3], but we give here another proof

Theorem 5.1.4 Every non-singular horizontal matrix A has a right inverse Az given

by
AR = —— adj(A)
R = Ger(a) *Y
Proof:
[(111 Az - aln'l
| ayq a,, vee aon | Mll M21 o M]l Mml
. : . : M M i e
et A= ay ap 5 oa ag=|" Moo Mo M
: : - : My, My, .. My, - My,
Am1 Amz2 ° Qmn

Since A is non-singular, det(A) is non-zero the matrix
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M11 M21 Mjl Mml

M M e My o M
B = di(A) = 12 -22 j2 m2
detcd) “YA = Gern I
Mln MZn IVIjn an
satisfies
ai1 Q2 - Qi
[a21 Azz am] Miy My, Mj, M1
AB _ 1 | S 5 . 5 | M12 M22 e M]Z b Mmz
- det(A)I a.il a'iz a{:n : . . .
l : J Mln M2n Mjn an
Am1 Amz " Omn

The (i,j)™ element in the product matrix A B is (**)

if i=j, aj; Mj; + appMj; + -+ + aiMj, = det(4)  (theorem 2.3.2)
and, if i#j, weneedtoshowthat a;; Mj; +apMj; + -+ aMj, =0
Consider the matrix B obtained from A by replacing the k** row of A by its
it" row. Thus B is a matrix having two identical rows the i*® and k®* rows. Then
det(B) = 0. Now expand det(B) about the k'™ row, the elements of the k" row
of B are a;;, a3, ..., a;,. The cofactors of the k" row are My, Myy , ..., My, -
We have, 0= det(B) = daj1 Mkl + al-szz + .-+ aiann

This means that

det(4) 0 0
0 det(4) - 0
B =——— . =1
det(4) : : : m
0 0 ... det(4)
Hence, the matrix B is aright inverse of A. m
: : _M 30 .
In example 5.1.2 we have seen that a right inverse for A= [2 5 1 IS
1 1
-1 .
Apt= |0 /3 here we compute an inverse of the same A by theorem 5.1.4
-2 —1/3
- - _1/2 3/2 - - - - -
which is Azl = 1/2 —1/2 . it is easy to see that the resulting inverse is
0 1

another solution to the system (*).
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Example 5.1.5 LetA =

to find a right inverse of A, Az', by applying theorem 5.1.4 we first compute
cofactors of A , det(A) = —4 and the result is

2 5 1 __1/2 _5/4 1/4 _
1 1 _ Yy 3 Y
Ax' = == 3 =D 1) )
det(4) —4|-2 - /2 /4 - /4
2 -1 1 1 1 1
i /2 /4 /4 |
Theorem 5.1.6 [3] Every non-singular vertical matrix A has a leftinverse A;, such
that
1
Al = dj(A
L det(A)a ]( )
Proof: similar to the proof of theorem 5.1.4 a

The following theorem describes the case that A has both a right inverse and a left inverse.
Theorem 5.1.7 If A is an m X n matrix such that both Az' and A;! exist, then
m =n (S0 A is square). Moreover, A isinvertibleand A4 1 = Azt = A7L.

Proof: Let A bean m X n matrix

If A Az =1, thenthe equation Ax = b has a solution for every possible b in R™
(given b, just let x = Az'b, then Ax = A(Az'b) = I,,b = b.

Since b is arbitrary, in particular, forall i =1,...,m, thesystem Ax =¢;
(where ¢; =(0,..,1,..,0)T, the 1 in the ith component) has a solution,
say r; forevery i, thatis,
Ary = e Ary = ey, ..., A1y, = e
Let Ag*=[r; -+ Tp]. Then
AARY =A-[ry - 1] =[Ary -~ Ary,] =[eren] = I
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Therefore A has a pivot position in every row. This force m <n, since every

pivot position must be in a different column.
If A;'A =1,, considerthe equation Ax =0. Then A;'Ax=A;*0=0.

But A;'Ax=1,x=x, so x=0. In other words, Ax =0 has a unique solution
and therefore the columns of A must be linearly independent (see definition 1.9.3)
and therefore each column must be a pivot position column. Since each pivot

position must be in a different row, these forces n < m.

So, combining the two paragraphs gives that m = n. Since A is now known to be

square, A isinvertibleand A ! = Az = A;t . n
5.2 Properties for inverse and adjoint of non- square matrices.

In Chapter one we have known that taking inverse and transposing a matrix
commute. (theorem 1.5.2). Here we write an example that asserts this fact for a

non-square matrix.

—1/2 3/2

Example 5.2.1 Let A = B ; (1)] arightinverse of Ais Azx! = 1/2 —1/2 ,
0 -1
-1/ 1 0 1 2
/2 [, -1 0 1

—1/2 1/2 0

— (A—l )T
3/2 —1/2 _1 R

ANt = [

The following Corollaries says that this is true in general.
Corollary 5.2.2 If A = (a;;) isnon-singular m X n_matrix, then

(AD;' =AD" and  (ADR' = (ALD]
Proof: If m <n, then ATisan nx m

Azl is aright inverse of A, we have A Az =1,,
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Taking transposes, we obtain

(AARDT = )"

(ARDT AT =1,

These equations imply that

(ADr = (AghH”

The proof for the case n <m is similar. [

Corollary 5.2.3 Let A be a non-singular m X m matrix, and B be non-singular

m X n matrix, then
(AB)z! =Bz!4™! and (AB);!=B;!4!

Proof: If m<mn,since A isan mXm matrix and B iSsan mXmn matrix,

we have A™1 isan m x m matrix and Bzl isan n xm matrix
Now,

(AB)(BR'A™) = ABBz)A ' =AlL, A '=A Al =1,

When n < m we obtain

(B;'A™1)(AB) =B;'(A~14)B=B;'1,B=B;!B =1,

Therefore, (AB)z! = Bz'4™! and (AB);!=B;47! n
Example 5.2.4 Prove theorem 5.2.3 for the matrices A = B 51) , B= B ; 2]
7 —6
Then, B=[7 ° 3]  adj(aB)= [—3 4]
4 8 1
-4 2
7 —6
/10 /10 —1/5 3/5
(AB)g' = _3/1() 4/10 and  A7! = [2 -1 ]
—4; 2 /s /s
/10 /10
1 -3 _1/2 3/2
. —1_ -1 _ _
adj(B)=|-1 1|, Bx 1/2 1/2
0 2 0 1
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[ 7/10 _6/101
Bl Al = |—3/10 4/10 = (AB);"
l_4/10 2/10 |

Corollary 5.2.5 If k is nonzero real number and A= (a;;) is a non-singular

m X n matrix, then
(kA = 1 A1
k

where the inverse is a right or a left inverse accordingto m <n or m >n

Proof: If m<n, since A isan mXxn matrix, Az! is an nxm

and we have
1,4 _1 . .
(kA) (E Ag ) = A A" = I,,, Which gives
-1 1 -1
(kAR = k Ag
Also,if n<m, (¢A;')(kA)= A;* A=1I, which gives
(kA =+ A

We notice here that the properties of the inverse that are satisfied in

matrix

square

matrices (see theorem 1.5.2.b-c-d) are also satisfied in non-square matrices (see

theorem 5.2.2, 5.2.3, 5.2.5)
The following theorem is given in [8], but we are providing our own proof.
Theorem 5.2.6 If A = (a;;) isan m x n (m <n) matrix, then

A adj(A) = det(4) I,

[¢11 izt Gin)
| Az1 Q2 < QAzp | [Mll Moy - %jl
. : : : . M M i2
Proof: Let A= g, g, - ap) d@=|;" "7 j
: . . : Mln Mzn ‘e M]n

Am1i Amz  ° Qmn
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A1 A1z 0 Qip

| a1 (V5% Arn I[Mll M21 1\4j1 Mml —|
. : : : M M . M . M
Aadji(d) =|ay ap - awl||l + L 7 L J
' : . Min Mzn ... My, ™ Mpy
Am1 Amz  *° Amn

The (i,j)™ elementin the product matrix A adj(A) is

if i=Jj,  apuMpy+apMp+ e+ aE My, = det(4)

and, if i+j, aj; Mj; + aiMj; + -+ a;uMy, =0 (It was pre-established in
theorem 5.1.4 **)
det(4) 0 w0
Hence, A adj(A) = 0 det:(A) 0 = det(4) I,,, ]
0 0 .. det(4)

We note that this property is valid for square matrices except that the switch

here is not permissible. (see theorem 1.4.4.a).

i.e, A adj(A) = det(A) I, # (adj(4))A

Example 5.2.7 Prove theorem 5.2.6 for the matrices A = B i 0 ]

-1
2 3
Then, adj(4) =13 1|, and det(4) =-7
1 -2

s0, A adj(A) = =71, but (adj(A)A # =71,

All of the following corollaries in this section are proved by using theorem 5.2.6

as follows:

Corollary 5.2.8 If A = (a;;)issingular m xn matrix, then adj(A) is singular
Proof: by theorem 5.2.6, Aadj(A) = det(4) I,,

Since, A issingular, then det(4) =0

So, Aadj(A) =0,

If A =0 (null and singular), then adj(A) = 0 and hence adj(A) is singular too.
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If A+ 0 (non-null and singular), then A contains a non-null row, say the i** row

a; itfollowsthata;adj(A) =0

Which implies that the rows of adj(A) are linearly dependent (see definition

1.9.3), and hence adj(A) is singular.

[
This property is satisfied in the case of square matrices.

Example 5.2.9 Prove theorem 5.2.8 for the matrices A = B é i

-1 0
then adj(A) =| 2 O], and det(A) =0, det(adj(A))= 0

-1 0
Corollary 5.2.10 If A = (a;;) isan m x n (m < n) non-singular matrix, then

(adj(A)" = adj(AT)

Proof: By theorem 5.1.4, if m <mn, ,then adj(A) = det(4) Azt
Taking transposes, we obtain
(adj())" = (det(4) Az*)"
(adj(A))" = det(4) (4" D
And, adj(A") = det(4) (4AT);*
adj(A") = det(4) (Az")" (2)
From (1) and (2), we obtain
(adj(A))" = adj(AT) ]

This property is valid for singular matrices of all size ( square or non-square)

30
Example5.2.11 Leta= [, 7 |
2 3
then adj(A)=[3 1|, (i) =[5 3 1]
i 31 -2
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1 2
3 1], adj(AT):[g i
0 -1

1

T _
A= -2

| = (adj))”

Corollary 5.2.12 If k is a scalar and A = (al-j) is non-singular m X n matrix,

then
adj(kA) = k™ 1 adj(A)
Proof: Bytheorem5.1.4, if m <n

(from corollaries 2.4.4, 5.2.5)
1
adj(k A) = det(kA)(k A)z! = k™ det(4) T ARt

= k™ 1det(4) Ax! = k™ adj(A)
Similarly, if n<m . .
This property is valid for singular matrices of all size ( square or non-square)

Corollary 5.2.13 Let A be an m X m non-singular matrix, and B be an m xn

non-singular matrix, then
adj(A B) = adj(B) adj(A)

Proof: By theorem5.1.4, if m <n
adj(A B) = det( AB)( AB)R?

= det(4) .det(B). BxtA™? (from theorem 3.1.2 , corollary 5.2.3)

= det(B). Bxl.det(4).A71

= adj(B).adj(A)
Similarly, if n<m m

1 3 0

_[1 3 _
Example 5.2.14 LetA = [2 1 , B= [2 5 1
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7 —6
thenAB=[Z g ﬂ adj(AB)=[—3 4]

-4 2
1 =3
. . 1 -3
adj(B)=|-1 1 ], adj(A) = [_2 1 ]
0 2

adj(B) adj(A) =

1 -3 7 —6
1 1 ] [_12 _13] = [—3 4 ] = adj( A B)
0o 2 4 2

Example 5.2.15 Let A = B ﬂ B = [2 5 8

3 2 1
_ _ 18 9 10 _
Then, det(4) =0, det(B)=0, AB=| 6 18 g0) det(dB)=—4,
—2 1 1 3 4
adj(AB)= |4 =-2|, adj(B)=|-2 -6l adj(A):[ ]
-2 -1 1 3 -2 1

det(adj(B)) =0, det(adj(A)) =0, det(adj(AB)) = -12,

-2 1
adj(B) adj(A) =| 4 —2] = adj( AB)
-2 -1

We notice here that the properties of the adjoint of a matrix that are satisfied
in square matrices (Ssee theorem 1.4.4.d-e-f) are also satisfied in non-square
matrices (see theorem 5.2.10, 5.2.12, 5.2.13).

5.3 Pseudo inverse of non-square matrices.

In section 5.2 we compute an inverse of a rectangular matrix using solution
of a linear system and an adjoint of A, here we discuss another method which

gives an inverse of A .

Theorem 5.3.1 [11,p.216] Let A be an m xn matrix, the null space of A is

denoted by N(A). The dimension of the null space of A is called the nullity of A.
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(1) N(A) =N(A"4)
(2) rank(A) = rank(ATA)

Proof: (1) show N(A4) c N(ATA)
Consider any x € N(A), Then we have Ax = 0 ( see theorem 1.9.6)
Multiplying it by AT from the left, we obtain
ATAx =AT0=0
Thus x € N(ATA)
and hence N(4) c N(4AT4A) (i)
show N(ATA) c N(4)
let x € N(ATA), thuswe have ATAx =0
Multiplying it by xT from the left, we obtain
xTATAx =xT0=0
This implies that we have 0 = (Ax)TAx = ||Ax||?
and the length of the vector Ax is zero, thus the vector Ax = 0. Hence x € N(4)
hence N(ATA) c N(4)  (ii)
from (i) and (ii)
Hence, N(A) = N(ATA)
(2) We use the rank-nullity theorem and obtain (see theorem 1.9.8)
rank(4) =n — dim(]\I(A))
= n—dim(N(ATA4))
= rank(ATA)

(Note that the size of the matrix ATA isn x n)
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Definition 5.3.2 [4] The matrix A} = AT(AAT )™%,when 4 is m X n (m < n)
and (A AT )7 lexists, and rank (A) = m, is called the right Pseudo inverse of A.

Definition 5.3.3 [4 ] The matrix A = (AT A)"'AT, when A is m xn (m >n)

and (AT A)71exists, and rank (A) = n, is called the left Pseudo inverse of A

Remark 5.3.4 The matrix A,,x, (m >n) has rank = n, and therefore AT also
has rank = m, ATA is also of rank = n,(see theorem 5.3.1) since ATA is a

n X n matrix. it therefore has full rank and its inverse exists. (see theorem 1.9.14)

Note that 4 AT isam X m matrix but its inverse does not exist.

Example 5.3.5 Let A = B _11 }, rank (A) = 2 = m = rank (4A7)
T - B -1 _ 1 [11 =3
AA" isinvertible, |[AA"|=33-9=24, and (A4")"" = 3 3]
11 3 3 12 6
A§1:AI’;=AT(AAT)_1=ﬁ[1 —1][% 33]=ﬁ[14 -6
1 1 8 0 1
a1 11 [2 6]
AAR:L:_ 14‘ _6 = 12
24[3 -1 1] 8 0
Since det(4) = 0, we cannot use adjoint method
1 =2
Example 536 Let A= (-2 1| rank(4) =2 = n=rank (AT A)
1 1
AT A sinvertible, |ATA|=36-9=27, and (ATA)'=2L[5 7
-1 1
at=ap= =20 3 2 |0 33
LooTE 2713 ell-2 1 1|1 1
3 3
-1 =2
Aapta=|_, 3 i[—z 1]=12
5 0 3l o1
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Chapter Six
Applications to linear systems of equations A X = B

In this chapter we discuss some results concerning the solutions of a linear
system Ax = b using inverses as well as the pseudo-inverse and adjoint of a

rectangular m X n matrix A.

The solution of the system can be expressed as x= A™1b where A7l is the
inverse of A. when matrix A is of order m X n (m <n) because if Az is the
right inverse of A then we have AAxz'x = bAz' which vyields I,x = bAg!
implies that x = bAR® but bAz!' is not defined. Since we can't find an actual

solution to the system, we will now try to find solution to the system.

6.1 Solving a linear system Using pseudo inverse

If A is an m X n matrix, then the linear system Ax = b is a system of m

equations in n unknowns.

Theorem 6.1.1[5] Let Ax = b bealinear systemwith A an m Xn (m > n) matrix.
If ATA isinvertible, then the solution can be given by x = A;b where A;! isa left

pseudo-inverse of A

Proof: Let A bean m xn(m>n) and ATA isinvertible, then (ATA)™! exists,
and we can multiply Ax = b by AT on both sides. Obtaining ATAx = ATb
So, multiply ATAx = ATb by (AT A)~! on the both sides,

(ATA)™ (ATA x)=(ATA)"! (A" b)

I, x =(ATA)~1 (AT b)
x = AN(AT)AT b
x = A;'b
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Example 6.1.2 Find a solution to the system
X1 +3x; = =2
3 xl —_ xZ = 4,
2% 42 X, = 0

Solution: Let x beasolutionto Ax = b, (if exists)

1 3 -2
A=1]3 —1] is the coefficient matrix, and b = [ 4 ] is the constant vector
2 2 0
x= (AT A)~1ATb
1 3
2 14 4
AT A = [ [3 —1] = ]
3 —1 2 2 2 4 14
Tav-1_ L [7 —2
So, (474)™" = 90 [—2 7]

T 14T _ 7 =2 2 23 10
(A 4)~A 90[ ][3 -1 2 90 19 —13 10

x=(ATA)TATD = 0[19 —13 10][ ] 90 [—11]

Note that x = (1 ,—1) represents the intersection point of the three straight lines

shown in the graph.

We note that rank(A) =2, which means that there

IS a unique solution to the original system occurs at

the intersection of these three lines

Note that : if ATA is invertble, then the only possibility for Ax = b are either unique

solution or no solution.
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Example 6.1.3 Find a solution to the system

X1 + 3x2 =5
X1 — Xy 1
X1+ X3 =0

Solution: Letx be asolutionto Ax = b, (if exists)

1 3 5
1 —1] is the coefficient matrix and b = H is the constant vector
1 1 0

A=

x= (AT A)~1ATb

1 3

We calculate A" A = [; _11 ﬂ[l —1] = [g 131]
1 1

Tiv-1 1 11 -3
Next, (A"A)~' = ” [_3 3]

PR TL e A R A

5
x= (AT A)TTATb = [2 yé 2 H = i[éi - [ﬂ

Note that x = (1,1) doesn’t satisfy the three
equations, that is, it doesn’t represent the intersection

point of the three straight lines. This coincides with the

second case in the note.

Theorem 6.1.4 [5] Let Ax = b Dbe a linear system with A an m Xn (m <n) matrix.
If A AT isinvertible, then the solution can be given by x = Az'b where Az! is

aright pseudo-inverse of A

Proof: Let A be an m xn(m <n) and A AT isinvertible, then (A AT)™! exists,
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and we can multiply Ax =b by (4 AT )~ on both sides, obtaining

(AAT)'Ax (AAT)'b
(AR A A x (AAT)1h
AN I, x = (AAT)'b (1)

So, multiply (1) by AT on both sides, we obtain
x=AT(AAT) b m
Example 6.1.5 Find a solution to the system
le + 3 xz - ZX3 = 4‘
_6x1—8x2 +6X3:1

Solution: Let x be asolutionto Ax = b, (if exists)

x = (AT A)~1ATb

2 -6
r_[2 3 =2 ol 117 -—48
We calculate A A" = [—6 _g 6][ 3 8]— [—48 136
-2 6
Next, (ATA)™! = [136 48

2 -6 -16 -6
1 136 487 1
T T \-1
A"(AAT) —8[3 8][4-8 171=3 24 8

-2 6 16 6
-70
L -16 -6 T
x=AT(AAT) b= 5|24 8 104 13| isasolution
70
8
—35

X1 4 1
The general solution in vector form as [le =13 + ¢ 0]
X3 35 1

4

This is a parameter vector equation of the line of intersection L of the three lines. The

coordinates of each of L's points make one of the infinitely many solutions of the system.
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Theorem 6.1.6 [6 ]. (General solution)

Let Ax=b be a full rank underdetermined system (A an m Xn(m<n)

matrix.). then the solution set is given by
x=AT(AAT) b + (1 —AT(AAT) 1A)y
x = Az*h + (I, — Ag'A)y, 1)
where v is an arbitrary vector in R™*1,
Proof: To verify that (1) is a solution, pre-multiply by A
Ax = AAR'b + A(I — Az*A)y
=I,b + (A — AAR' A)y by hypothesis
= b, since AAzR*A =L, Apyn = A
That all solutions are of this form can be seen as follows.
Let z be an arbitrary solutionof Ax=b, ie, Az = b. Then we can write
z=Az'Az+ (1 —Azx'A)z=Az'Az+z— Ag'Az

So that any solution x of Ax = b is givenby (1) with y =12z [ ]

Remark: When A4 is square and nonsingular, Az* = A"t and so (I — Az'4) =0

Thus, there is no “arbitrary” component, leaving only the wunique solution

x=A"1h

Note that: when A is not full rank, then the above theorem cannot be used.
6.2 Using adjoint to solve a system of linear equations

Let A be a non-singular m X n matrix. In this section we use adjoint of A is

find a solution for Ax = b.
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Let Apxn, m<n, be nonsingular, then Az® exists and we can multiply Ax =b

by Az on both sides, obtaining A Azlx = Ax'b

1

Then I,x= Az'b, but Axl= e adj(A) ( see theorem 5.1.4)

1
det(4)

So, x = adj(A) b

assume m >n, and A is nonsingular, then A;! exists and we can multiply both

sidesof Ax=b by A;! obtaining A;'Ax=A;'b

Thatis I,x=A;'b, but A;'= detl(A) adj(A) (see theorem 5.1.6)

1
det(4)

So, x = adj(A) b

Example 6.2.1 Find a solution to the system

X1 + 3x, = =2
3x1 — x, 4
2X1+2x2= 0

Solution: Letx be asolutionto Ax = b, (if exists)

1 3 -2
A=13 —1] is the coefficient matrix, and b = [ 4 ] is the constant vector
2 2 0
_ - - _1 - _ 1 .
det(A) =2, since A is3 x 2, A;"'exists, x = o) adj(A) b

So, we calculate adj(A) = [:i :1 LZL
11 giemy=i[73 -1 4
Next, A" = o adi(4) =3 [_1 —1 2

a3 3 4[5
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We note that in this example, adjoint method and pseudo method give the same
solution (see example 6.1.2).
Example 6.2.2 Find a solution to the system

le + 3x2 - ZX3 ==
—6x1 — 8x2 + 6x3 =

I
_ s

Solution: Letx beasolutionto Ax = b, (if exists)

Holdby a=[% 3 77

] is the coefficient matrix, and b = [ﬂ is the constant
1

_ . - -1 H —_
vector. det(A) =4, since A is2x 3, Ag"exists, x = det(d)

adj(A) b

But, adj(A)=|12 4

2 1

—-14 —5]

1
det(4)

-14 -5
Next, Az =

adj(A)=i [ 12 4
2 1

) L [14 5], q[-61
*= Jera) WA b =7 122 ‘1* [1]21 592

Thatis, x = (_—71 5—2, 3)

4 4 4
Here the solution we have obtained using adjoint method is different from the
pseudo method solution (see example 6.1.5) and both of them are members from

the general solution given by
x=AT(AAT) b + (I —AT(AAT) TA)y = Az'b + (I — ARtA)y

10 0] [-16 —6 ty
1 2 3 =2
0 1 0]—5124 8][_6 s 6]>[t2]

0 01 16 6 ts

-35

4
x=|13 |+
35

4

=35
4 1

x =|13|+-=t
35 2
4

1
0
1

, Choose t=-13, x = (‘_715_2 2).
4 4 4
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6.3 Cramer's rule for nonsingular m X n matrices

In linear algebra, Cramer's rule (see theorem 1.7.4) gives an explicit formula for the
solution of a system of linear equations with as many equations as unknowns. That is, for
the solution of a system with a square matrix and provided that the coefficient matrix is
invertible, Cramer’s rule offers a simple and a convenient formula for the solution. In this
section we want to generalize this method for an m < n system of linear equations. As in
the usual method of Cramer's, the result for rectangular matrices uses the minors of a
matrix. We also use the results in order to solve a matrix equation. in the case of systems
with an infinite number of solutions, get the final formula for calculating the unknowns by

the minors of the augmented matrix of the system.

The key to Cramer’s Rule is replacing the variable column of interest with the

constant column and calculating the determinants.

Theorem 6.3.1 Consider the following linear system of m equations in n unknowns

a11X1 + A12X2 + ... + QinXn = by
a21X1 + A22X2 + ... + QanXn = b,

Am1X1+ AmaX2 +  + QqunXn = b,

by
A= [a;;] be the coefficient matrix, b = bf . If det(4) # 0. Then
b
_ det(4,) _ det(4y) _ det(4,)
1T 0eta) 2T det(a T T deta)

Is a solution for the system Ax = b, where A; is the matrix obtained from A by

replacing the j'* columnof A by b.
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proof: We look at the linear system Ax = b.

x=A"1h
X1
X2l 1 .
= Tt (adj A) b
x‘l’l
X
o A A v Am
= | : : b
: det(A)
x Aln A2n Amn
n
 Agg Apq Am1
X4 det(4) det(4) det(4)
l[ : ]l : : K : by
| x| = Ay Ay Amj b,
[ : | det(4) det(4) - det(4)!] :
LX J S : : bm
n Aln AZn Amn
| det(4) det(A4) det(A)
This means that
Ay Ay; A

= by + by + e+
YT dera) T det(a) 2 det(A) ™

Where
a1 @z . Aj-1 by
az1 Gz .. Qzj-1 by
A] = . . . . .
Ami1 Am2 - Qpj_1 by

If we evaluate det(A;) be expanding about the j th

Hence
Y = det(a)”
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Ai1j+1 ... Qqn
A2j+1 - Q2n
Apj+1 - dmn

column, we find that

+ Apjby



For j=1,2,..,n. Inthisexpression for x;,the determinant of A;, det(A4;), can be
calculated by any method. It was only in the derivation of the expression for x; that we

had to evaluate it by expanding about the j** column. .

Example 6.3.2. Find a solution to the system

le +3x2—ZX3=4
—6x1 — 8x2 + 6x3 =

Uy

Solution: Letx beasolutionto Ax = b, (if exists)

Here the coefficient matrix is A = [—26 —38 _62] det(A) =4, and b = [ﬂ is the

constant vector.

a=[7 3 7 detan=-59 = x =00 _-59,

a=]% T detay =52 = x,=T_52/

—-6 1 6 det(4)
_[2 3 4] _ _det(43) _ 11
As=|"p g 4| det(d) =11 = x = e = /4

A solution given by Cramer'sruleis x = (_59/4, 13, 11/4)

We note that the general solution for this example given by Theorem 6.1.6 is

x=AT(AA") b + I - AT(AAT)'A)y = Ax'b + (I — Az'A)y

1
0
1

-35

4
x=|13 |+ =t

35 | 2

4

Choose t=-12, x= (_59/4,13, 11/4)
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Theorem 6.3.3 [10 ]. (Generalization of Cramer's rule)

For all beR™and A an m xn the system Ax = b is solvable if and only if

det(AAT) # 0.

Moreover, one solution for this equation is given by x = AT(4 AT)"1bh, where AT

is the transpose of A.

Also, this solution coincides with the Cramer's rule formula when n=m. In

fact, this formula is given as follows:

— det((A4T)).
I e

x det(A A7)

j: ,j:1,2,3,...,n,

where (A AT); is the matrix obtained by replacing the entries in the j** column of

by
A AT by the entries in the matrix lbzl
bm

Proof: The matrix A gives a linear transformation T, : R™ — R™ (see definition
1.9.11) and its transpose AT gives the linear transformation, adjoint operator, such
that T,r:R™ - R™.

The system Ax = b is solvable for all b € R™, if and only if, the operator A is

onto (see theorem 1.9.15).

i.e, Range(A) = R™ Hence, from the lemma 1.8.15 there exists y > 0 such that

IATz||gm = y |Izllgn,z € R™
Therefore,

(AAT z,z) > y? ||z||? .n,z € R™.

R™
This implies that T, ,r: R™ - R™, and Rang(A AT) = R™ and Ker (AAT) = {0}
From the Theorem 1.9.15, lemma 1.9.16 then A AT is one to one.

Since A AT isa n x n matrix, from the Theorem 1.9.14 then det(4 AT) # 0.
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Suppose now that det(AAT) # 0. Then (AAT)"! exists and given b € R® we

can see that x = AT (AAT)"'b isasolution of Ax = b.

z=(AAT) b is the only solution of the equation (4 AT)z =b,

then from theorem 6.3.1 (Cramer's rule ) we obtain that :

Now, since

_ det((A4"),)

_ det((A4T),)
AT qetaany 2T

det(A A7) ’

_ det((AAT),)
© T det(AAT)

Where (4 AT); is the matrix obtained by replacing the entries in the j* column

by
of A AT by the entries in the matrix lbz ‘
bm

Then, the solution x =AT(AAT)"*b=A4Tz of Ax=b can be written as
follows
Fdet((447))] n o del@dn) ]
det(A AT) J=LTTL det(a AT)
a;n 4z An1 r .
A, Gy a,, || detcaan,) . det((a4T);)
b= : : det(4 AT) Lj=1%,z det(A AT)
a : :
Aim A2q nm det((4 AT)p,) det((A AT )
[ det(a4T) | nogq.o o~ I
ewadn) [ 2j=1%m ™ gerca am)
Example 6.3.4 Find a solution to the system
le + 3 xz - ZX3 = 4
_6x1 — 8 xz + 6X3 =1

Solution: Let x beasolutionto Ax = b, (if exists)

Here the coefficient matrix is A = [—26 —38 _62] det(A) =4, and b = [ﬂ is the

constant vector.

alh 3

17 —48
—48

136
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4 —48
(AAT), = [1 136] —  det(AAT), = 592
@A, =27 3 - dettaan), =200

_apdet(AAT);  apdet(AAT), 2x592 N —6x209  -70
L™ det(A A7) det(AAT) =~ 8 8 8

arpdet(AAT);  ajdet(AAT), 3x592 —8x209 104

Y2 = Tdet(AAT) | det(A AT) g ' 8 8
= a,zdet(A AT), N asdet(A A7), _ —2 X592 N 6 x 209 _ 70
3 det(A AT) det(A A7) 8 8 8

We find that the solution of the system in this way is the same as pseudo
solution given in example 6.2.2 which comes from the general solution (see
theorem 6.1.6)

=35
4 1
x=[13|+=t
E 2
4

1
0, at t=0
1

That is both a Generalization of Cramer's rule and pseudo method give the

same solution.
6.4 Particular Cases and Examples

In this section we shall consider some particular cases and examples to
illustrate the results of what we have done in the previous sections especially in

applying pseudo inverse (theorem 6.1.1) to some certain examples.
Example 6.4.1 [10 ]. Consider the following particular case of the system Ax = b
ay1X1 + ay2x9 + . +agpx, = b. (D

Inthiscase m =1 and A = [ay1,a12, e, A1]-
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a
Then, if we define the column vector I, = I 12‘

AAT =[ay; a;, -~ @i lagzl = ||I,]|I%. (see definition 1.8.2)

Then, (AAT )b = b and

11 II2

x=AT (AAT) p =

[a11 b 1111172

| azb ”11” 2|

||11||2 '
alnb ||11|| 2

Therefore, a solution of the system (1) is given by:

Qaqj b Qaqj b .
xj = 5 = m > ] = 1,2,...,Tl
A

Example 6.4.2 [10].
Here we apply pseudo inverse to the case m = 2, for any natural n in Ax = b

aj1xX1 + A12Xo + ... +a1nxn = b1

(2)

alel + a22x2 + .-, +a2nxn = bz

A_[an A2 " aln]
Az1 Az -+ d2n

Then, let I, I, be the column vectors

a az

a, az;
L = S L= :

A1n Arn

Then,

ajq
A AT = [an Az aln] ai; [||11||2 (11, 1)
Az1 Az -+ Qzp : (I, 1) IlI2 T



1 L|I? —{, 1
(A AT) 1 _ > > ” 2” ( 1, 22)]
O LIIENZ = Ky )2 L=(L, 1) Il

Hence, from the formula x; = A" (A A" )™'b  we obtain that:

X1 a1 dzq

X2| _ 1 aj; Az |[ IILI? —<11,12>] [ ]
2N N% = 1Ky, I | L L) L1

Xn A1n Qo

Therefore, a solution of the system (2) is given by :

v —a bylll1? = by(ly, I) ta byl ll? = by(lp, 1)
S VA Y e T S el TA T TA N [ A TE
‘= a b llL, |12 = by(ly, I) . ba 1|1 = by(lz, )
NIRRT IR N2 = KL, 1)1
. billll1? = by(ly, I) byl 1* = by(lp, 1)

=a a
mUTILIRINZ — K )12 T P LN E — K, )12

Example 6.4.3. Find a solution of the following system

X1 + X2 =1
X1 + X2 + x3= -1

Solution: With the above notations

ol )

0 1
Then, |L12=1+1=2, |LII*°=1+1+1=3, |[{I,L)=-14+1+0=0

det(AAT) = ILI7 1112 — KIL, )2 =2x3-0=6
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v =a billl,|I? = ba{h, L) ta ba 1111 = by(lp, 1)
FOTR LN = K )12 T LN = KL, 1)1

_1(1x3--1x0) (—D(-1x2-1x0)
B 6 * 6

_3+2_5
6 6 6

‘= billl, |12 = ba{hy, L) ta byl 112 = by(lp, 1)
IR = K )12 T IR N2 = KL, 1)1

__1c3—0)+(1x;2-0)_3 -2 1

B 6 6 6 6 6
beW—bﬁhh>+ﬂ b lII111* — by(ly, Iy)
WL IRN2 = 1K, )2 2 LRI 2 = [, 1))

_O6), W) _ -2

6 6 6

X3 = 4g3

We note that if |[I;]|? ||IL|? = |{I;,1,)|*> this means that the angle between
I;, I, the equals zero and this indicates that the system of equations are identical,
meaning that there is an infinite number of solutions and in this case it is the

same as in example 6.4.1.

But if the angle between I;, I, is not equal to zero, then this means that the

solution of the system has an infinite number of solutions.
We note that the general solution for this example given by Theorem 6.1.6 is

x=AT(AA") D + (I - AT(AAT)'A)y = Ax'b + (I — Az A)y

5 1
gl
2

-2

Choose t =0, x= (5/6'1/6 »_2/6)

+-t

X == ¢

6
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Example 6.4.4 [10 ]. Consider the following general case of system Ax = b

a11X1 + A12X2 + ... + AipXp = by
A21X1 + QA22X2 + ... + AnXn = b,

(3)

Am1X1+ Am2aX2 + = + QunXn = b,

Then, if {I,1,,...,1,,} isanorthogonal setin R™, (see definition 1.9.4) we obtain

L o o0 - 0
aar=| 0 I 0o = 0
0 0o o - lLl?

The solution of the system A x = b is simple and is given by:
m
Xj = Z aij b]l ”Ii”_z , ] =12,..,n

i=1

Example 6.4.5. Find the solution of the following system

—X1 T X2 + X3 + X4 = 1
X1t Xy — X3 + X4 = 1
X1 — X2 — X3 + X3 = 1
Solution:
SR
Il = 1 , ]2 = _1 , 13 = _1 , = Iil
1 1 1

Then, 14017 =4, [LII?=4|Ks|?=4
det(AAT) = L1211 5] = 4 x 4 X 4 = 64

_ a11b1  azib; | azibs _ DA D@D n (1)(1D) _ -1

X1 = =
S T N T T 4 4 4 4

Yo = ai2by  azb,  azxbs _ D) (1)(1)+(_1)(1) =__1
S TA RN TAER AR 4 4 4 4
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a,zb a,3b Qs3b 1) (1 -1)(1 -1)(1 -1
p _ @by by asbs (DM DO DO
1 7EY G V2 | VEY 4 4 4 4

Qaq4b a4b b 1) (1 1)(1 1)(1 3
X, = 141+ 242+a343:()()+()()+()():_
1V EY G (72 | [ VEY | 4 4 4 4

We note that the general solution for this example given by Theorem 6.1.6 is

x=AT(AATY b + (I — AT(AAT)*A)y = A7'b + (I — AZ*A)y

-1
-1
1

t

ENJIS

+

NI

X =

[ U

Choose t=0, x= (_T' )

Finally we note that if a system of linear equations has an infinite number of
solutions, then we can use a suitable method discussed in this chapter to find a
fixed solution and construct the general solution mentioned in Theorem 6.1.6.
Certainly, it will be the same general solution given by Gauss elimination(see
definition 1.7.2).
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