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Abstract
Regression analysis consists of techniques for modeling

the relationship between dependent variable and one or more
independent variables. In this thesis, simple linear regression
will be reviewed theoretically in the first part in the thesis
followed by a general overview for multiple linear regression
where the least square estimation method is employed. In the
third part, the Bayesian technique for regression will be han-
dled with more details to illustrate the procedure. The theoreti-
cal investigation of the multiple linear regression and Bayesian
approaches accompanied with real case study using real data
set from shoes factories at Hebron city to make a real com-
parison between least square estimation method and Bayesian
technique.
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CHAPTER1
Simple Linear Regression Model

Linear regression is used to estimate the unknown effect
of changing one variable called dependent or (response) vari-
able over another variable/s called independent (or predictor)
variable.
The purpose of regression analysis are three-folds as mentioned
in (Xin and Xiaogang, 2009):

• Establish a casual relationship between response variable
Y and regressors X1, X2, ..., Xn.

• Predict Y based on a set of values of X1, X2, ..., Xn.

• Screen variables X1, X2, ..., Xn to identify which vari-
ables are more important than others to explain the re-
sponse variable Y .
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Chapter 1. Simple Linear Regression Model

1.1 Correlation

In statistical terms we use a correlation to determine whether
a relationship between two numerical or quantitative variables
exists.
Statisticians use a numerical measure to determine whether
two variables are related and to determine the strength of the
relationship between or among the variables. This measure is
called a correlation coefficient, which is denoted by r.
The range of the correlation coefficient is from −1 to +1. It
gives us an indication of the strength and direction of the lin-
ear relationship. In general, r > 0 indicates positive linear
relationship, and r < 0 indicates negative linear relationship,
where r = 0 indicates no linear relationship.
There are many formulas to find the correlation coefficient.
Here we have pearson’s correlation formula for two observed
data set x and y:

r =
Sxy√

(Sxx)(Syy)

r =

∑n
i=1 xy −

(
∑n
i=1 x)(

∑n
i=1 y)

n√
[
∑n

i=1 x
2 − (

∑n
i=1 x)2
n ][

∑n
i=1 y

2 − (
∑n
i=1 y)2
n ]

1.2 Model description

Simple regression is a description of relationship between
one independent variable X and one dependent variable Y as
shown below:
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1.3. Assumptions

Yi = β0 + β1Xi + εi. (1.1)

where
β0 :is the y intercept.
β1 : Slope of the equation.
εi :Random error in Y for observation i.
Yi : Dependant variable (some times referred to as the response
variable) for the observation i.
Xi : Independent variable (some times referred to as the ex-
planatory variable) for the observation i, (Krehbiel, 2008).

1.3 Assumptions

The purpose of modal formulation in regression analysis
is to allow the analyst to conceptualize how the observations
are generated. This formulation of statistical theory will then
allow for the study of properties of estimators of the parame-
ters. The assumptions underlying the least squares procedure
are important.
Let us assume that the Xi are nonrandom ∀i = 1, 2, ..., n,
while the εi are random variables and assumed to follow the
normal distribution with a mean of 0 and constant variance of
σ2. Since y is the sum of this random term and the mean value,
E(Y ), which is constant, the variance of y at any given value
of x is also σ2. Therefore, at any given value of x, say xi, the
dependent variable follows a normal distribution with mean 0
and standard deviation σ. Also, we assume that the εi are un-
correlated from observation to observation.

3



Chapter 1. Simple Linear Regression Model

1.4 Least Squares Formulation

Myers (2000) says that the method of least squares is
used more extensively than any other estimation procedure for
building regression models. Prior to the 1970s, it was em-
ployed almost exclusively. This method is designed to provide
the sample y intercept b0 and the sample slope b1 as estimators
of the respective population parameters β0 and β1.
Eq. (1.2) uses these estimators to form the simple linear re-
gression equation. This straight line is often referred to as the
prediction line.
Krehbiel (2008) define the predicted value of y as the y inter-
cept plus the slope times the value of x .

ŷi = b0 + b1xi (1.2)

where
ŷi : Predicted value of y for observation i.
xi : Value of x for observation i.
b0: y intercept.
b1:Slope.

Now, we need to determine the two regression coefficients b0

and b1. This method minimizes the sum of squared differ-
ences between yi and ŷi using the prediction line as shown in
eq. (1.2).
The sum of squared residual is equal to

SSE =
n∑
i=1

(yi − ŷi)2. (1.3)

Since
ŷi = b0 + b1xi

4



1.4. Least Squares Formulation

then

SSE =
n∑
i=1

(yi − (b0 + b1xi))
2

=
n∑
i=1

(y2
i − 2(b0 + b1xi)yi + (b0 + b1xi)

2)

=
n∑
i=1

(y2
i − 2b0yi − 2b1xiyi + b2

0 + 2b1b0xi + b2
1x

2
i ).

We will differentiate SSE with respect to b0 and make it equal
zero in order to find b0 formula

∂SSE

∂b0
=

n∑
i=1

(−2yi + 2b0 + 2b1xi) = 0

−
n∑
i=1

yi +
n∑
i=1

b0 + b1

n∑
i=1

xi = 0

−nȳ + nb0 + b1nx̄ = 0

−ȳ + b0 + b1x̄ = 0

b0 = ȳ − b1x̄ (1.4)

The same with respect to b1 we have

∂SSE

∂b1
=

n∑
i=1

(−2xiyi + 2b0xi + 2x2
i b1) = 0

5



Chapter 1. Simple Linear Regression Model

n∑
i=1

−xiyi + b0

n∑
i=1

xi + b1

n∑
i=1

x2
i = 0

−
n∑
i=1

xiyi + (ȳ − b1x̄)
n∑
i=1

xi + b1

n∑
i=1

x2
i = 0

substitute

x̄ =

∑n
i=1 xi
n

,

and,

ȳ =

∑n
i=1 yi
n

.

and multiply by n we have

−n
n∑
i=1

xiyi +
n∑
i=1

xi

n∑
i=1

yi − b1(
n∑
i=1

xi)
2 + b1n

n∑
i=1

x2
i = 0

n

n∑
i=1

xiyi −
n∑
i=1

xi

n∑
i=1

yi = b1(n
n∑
i=1

x2
i − (

n∑
i=1

xi)
2)

b1 =
n
∑n

i=1 xiyi −
∑n

i=1 xi
∑n

i=1 yi
n
∑n

i=1 x
2
i − (

∑n
i=1 xi)

2
. (1.5)

1.5 Estimation of error variance σ2

In practical situations, an estimate of the error variance,
σ2, is required. The estimate is used in the calculation of es-
timated standard errors of coefficient for hypothesis testing,
and in many instances, plays a major role in assessing qual-
ity of fit and prediction capabilities of the regression model

6



1.6. Inference about the slope b1

ŷ = b0 + b1x. Sum of squares of residuals or error sum of
squares (SSE) is defined as follows:

SSE =
n∑
i=1

(yi − ŷi)2 =
n∑
i=1

e2
i (1.6)

Myers (2000) defined

s2 =
SSE

n− 2

which is an estimator of σ2.
The quantity s2 is often called the mean squared error (MSE)
i.e.

MSE =
SSE

n− 2
.

Note that we divide by n − 2 because there are two con-
straints on ei, i = 1, ..., n, i.e. the normal equations.

It should be emphasized that s2 is an unbiased estimator of
a σ2 under the important assumption that the model is correct,
i.e. E(s2) = σ2

1.6 Inference about the slope b1

Recall, we assumed that xi are non random and E(εi) =
0, so it is not difficult to show that the estimator is unbiased,
using that the mean of the distribution of yi is given by
E(yi) = β0 + β1xi

7



Chapter 1. Simple Linear Regression Model

The expectation of b1 is given by

E(b1) =
n
∑n

i=1 xiE(yi)−
∑n

i=1 xi
∑n

i=1E(yi)

n
∑n

i=1 x
2
i − (

∑n
i=1 xi)

2

=
n
∑n

i=1 xi(β0 + β1xi)−
∑n

i=1 xi
∑n

i=1(β0 + β1xi)

n
∑n

i=1 x
2
i − (

∑n
i=1 xi)

2

=
nβ0

∑n
i=1 xi + nβ1

∑n
i=1 x

2
i − n2x̄β0 − n2x̄2β1

n
∑n

i=1 x
2
i − n2x̄2

= β1.

For the variance properties, one should note that
V ar(yi) = V ar(εi) = σ2.
The point estimate of b1 is given by formula (1.5), this formula
can also be expressed as:

b1 =

∑n
i=1(xi − x̄)yi∑n
i=1(xi − x̄)2

.

So,

V ar(b1) =

∑n
i=1(xi − x̄)2Var(yi)
(
∑n

i=1(xi − x̄)2)2

=
σ2∑n

i=1(xi − x̄)2

=
σ2

Sxx
, where Sxx =

n∑
i=1

(xi − x̄)2.

Now, under the assumption of normal theory on the εi and
where the slope is a linear function of the yi, we can write
b1 ∼ N(β1,

σ2

Sxx
), s =

√
σ2

Sxx
then,

b1 − β1√
σ2

Sxx

∼ N(0, 1)

8



1.7. Inference about the intercept b0

but,

s2 =
SSE

n− 2
∼ σ2χ2(n− 2)

n− 2
,

and s2 is independent of b1. So by some very straight forward
applications of standard relationships between distribution will
allow us to write

b1−β1
σ√
Sxx

s
σ

∼ N(0, 1)√
χ2
(n−2)
n−2

∼ t(n− 2)

then
(b1 − β1)

s

√
Sxx ∼ tn−2,

where tn−2 is the t− distribution with n−2 degrees of freedom.

1.7 Inference about the intercept b0

For the intercept, we have

E(b0) = E(ȳ − b1x̄)

=
1

n
E(

n∑
i=1

yi)− β1x̄

=
1

n
(
n∑
i=1

(β0 + β1xi))− β1x̄

= β0.

So, b0 is unbiased estimators for β0.

For the variance, since b0 = ȳ − b1x̄ then we have

9



Chapter 1. Simple Linear Regression Model

V ar(b0) = V ar(

∑n
i=1 yi
n

) + V ar(−x̄b1)

= σ2(
1

n
+

x̄2∑n
i=1(xi − x̄)2

)

We can use the fact that b0 is a linear combination of a normal
random variables and thus observe that

b0 ∼ N [β0, σ
2(

1

n
+

x̄2

Sxx
)].

1.8 The confidence interval for β0, β1

A confidence interval (CI) is a type of interval estimate (of
a population parameter) that is computed from the observed
data. Regression coefficient confidence interval is a function
to calculate the confidence interval, which represents a closed
interval around the population regression coefficient of interest
using the standard approach and the noncentral approach when
the coefficients are consistent.
Now, using the notes in section (1.6) we can write a (1 −
α)100% confidence intervals on β1 as

b1 ± tα2 ,n−2

√
s2

Sxx
(1.7)

The same, a (1−α)100% confidence intervals on β0 is writ-
ten as

b0 ± tα2 ,n−2s

√
1

n
+

x̄2

Sxx
. (1.8)

by using the notes in section (1.7).

10



1.9. Testing of hypothesis for b1 and b0

1.9 Testing of hypothesis for b1 and b0

This section discusses hypothesis tests on the regression
coefficients in simple linear regression. These tests can be car-
ried out if it can be assumed that the random error term, εi,
is normally and independently distributed with a mean of zero
and variance of σ2.
The t tests are used to conduct hypothesis tests on the regres-
sion coefficients obtained in simple linear regression. A statis-
tic based on the distribution is used to test the two-sided hy-
pothesis that the true slope, β1, equals some constant value,
β1,0. The statements for the hypothesis test are expressed as:

H0 : β1 = β1,0

The test statistic used for this test is:

t =
(b1 − β1,0)

s

√
Sxx.

For the intercept, if one interested in testing

H0 : β0 = β0,0

the appropriate test statistic is given by

t =
b0 − β0,0

s
√

1
n + x̄2

Sxx

.

1.10 Analysis of variance (ANOVA)

Analysis of Variance (ANOVA) is a statistical method used
to test differences between two or more means. In general, the

11



Chapter 1. Simple Linear Regression Model

purpose of analysis of variance (ANOVA) is to test for signif-
icant differences between means. But in regression models it
consists of calculations that provide information about levels
of variability within a regression model and form a basis for
tests of significance.
The total variation of the response variable y can be decom-
posed into two parts: the residual variation of y (error sum
of squares (SSE)) and the explained variation of y (regression
sum of squares (SSR)).

To calculate the test statistic we need to find:

• Sum squares total:SST =
∑n

i=1 y
2
i −

(
∑n
i=1 yi)

2

n .

• Sum squares regression :SSR = b2
1Sxx.

• Sum squares error: SSE = SST − SSR.

Each sum of squares can be divided by an appropriate constant
(degrees of freedom, which indicates how many independent
pieces of information involving the n independent numbers
y1, y2, ..., yn are needed to compile the sum of squares (Draper
and Smith, 1998). to get the mean sum of squares due to re-
gression MSR, and the mean sum of squares due to error MSE,
as shown in table (1.1)

Source of variation(Source) Sum of squares (SS) Degrees of freedom(df) Mean sqares(MS) F statistic
Regression SSR 1 MSR = SSR

1
F1 = MSR

MSE

Error SSE n-2 MSE = SSE
n−2

Total SST n-1

Table 1.1: ANOVA table for simple regression

12



1.10. Analysis of variance (ANOVA)

Some notes on ANOVA table:

• If the calculated value of the statistic falls in the critical
region, we reject the null hypothesis and conclude that the
regression coefficient is significant. In other words, we
say that the explanatory variable has significant effect on
the response variable. The critical region (or the rejection
region) is determined by the value ofF−tabulated,F 1

n−2α.
If the value of the statistic falls outside the critical region,
we do not reject the null hypothesis and conclude that the
regression coefficient is not significant, i.e., the explana-
tory variable has no significant effect on the response vari-
able.

• The coefficient of determination r2 is the amount of vari-
ance in y that explained by x.

r2 =
SSR

SST

with ranges 0 ≤ r2 ≤ 1.

• The correlation coefficient r is equal to:

r = ±
√
r2

r = ±

√
b1Sxy
Syy

Illustrative Example
Let us take this example from (Kewan, 2015) of the relation-
ship between income (X) and food expenditure (Y ). Suppose
we take a sample of seven households from a small city and
collect information on their incomes and food expenditure (in

13



Chapter 1. Simple Linear Regression Model

hundreds of dollars) in a certain month. The data obtained was
as given in table (1.2).

Income Food expenditure
55 14
83 24
38 13
61 16
33 9
49 15
67 17

Table 1.2: Income and Food Expenditure of seven households

In this example we want to find the best regression line for
the data on income and food expenditure on the seven house-
holds given in table (1.2) by using the income as independent
variable and the food expenditure as dependent variable.

But before any step, we must find the correlation coefficient
r which can be computed from the formula :

r =

∑n
i=1 xiyi −

(
∑n
i=1 xi)(

∑n
i=1 yi)

n√
[
∑n

i=1 x
2
i −

(
∑n
i=1 xi)2
n ][

∑n
i=1 y

2
i −

(
∑n
i=1 yi)2
n ]

Table (1.3) shows the calculations required for the computa-
tion of r.

14



1.10. Analysis of variance (ANOVA)

X Y XY X2 Y 2

55 14 770 3025 196
83 24 1992 6889 576
38 13 494 1444 169
61 16 976 3721 256
33 9 297 1089 81
49 15 735 2401 225
67 17 1139 4489 289∑

X = 386
∑
Y = 108

∑
XY = 6403

∑
X2 = 23058

∑
Y 2 = 1792

Table 1.3: Data on income and food expenditure

After substitution we have:

r =
6403− (386)(108)

7√
[23058− (386)2

7 ][1792− (108)2
7 ]

= 0.96

We note that the correlation coefficient is very close to 1,
which means that the relation between the income and the food
expenditure is very strong.

Then, we want to find the values of b0 and b1 for the regres-
sion model

ŷi = b0 + b1xi

We denote the independent variable (income) by x and the
dependent variable (food expenditure) by y, both in hundreds
of dollars.

Using the calculations in table (1.3) and finding

x̄ =

∑n
i=1 xi
n

x̄ =
386

7
= 55.14,

and

ȳ =

∑n
i=1 yi
n

15



Chapter 1. Simple Linear Regression Model

ȳ =
108

7
= 15.43.

Substitute these calculations in the formula:

b1 =
n
∑n

i=1 xiyi −
∑n

i=1 xi
∑n

i=1 yi
n
∑n

i=1 x
2
i − (

∑n
i=1 xi)

2
.

we find

b1 =
7(6403)− (386)(108)

7(23058)− (386)2
= 0.2525.

Also,
b0 = ȳ − b1x̄

b0 = (15.43)− (0.2525)(55.14) = 1.505

Thus, our estimated regression model is:

ŷi = 1.505 + 0.2525xi

Some notes on this regression line:

• Using this estimated regression model, we can find the
predicted value of y for any fixed value of x (during the
month in which the data has been collected). For instance,
suppose we randomly select a household whose monthly
income is 6100$ so that x = 33. The expected value of
food expenditure for this household is:

ŷ = 1.505 + 0.2525(33) = 9.8375 hundred$ = 983.75$.

In other words, based on our regression line, we predict
that a household with a monthly income of 3300$ is ex-
pected to spend 983.75$ per month on food. In our data

16



1.10. Analysis of variance (ANOVA)

on seven households, there is a one household whose in-
come is 3300$. The actual food expenditure for that house-
hold is 900$ (see Table (1.3)). The difference between the
actual and predicted values gives the error of prediction .

ε = y − ŷ = 9− 9.8375 = −0.8375 hundred$ = 83.75$

• b0 = 1.505, is the expected value of y when x = 0.
That is, a household with no income is expected to spend
150.5$ per month on food.

• The value of b1 in the regression model gives the change
in y due to increase of one unit in x. That is, for every one
dollar increase in income, a household food expenditure
is predicted to increase by 0.2525$.

• 95 % confidence interval of β1 is calculated as follows:
using eq. (1.7) we need to calculate :

Sxx =
n∑
i=1

(xi − x̄)2 =
n∑
i=1

x2
i −

(
∑n

i=1 xi)
2

n

= 23058− (386)2

7
= 1772.85

s2 = MSE =
SSE

n− 2
=

12.7

5
= 2.54.

α = 0.05

from t-distribution we find t0.025,5 = 2.571
substitute these value in eq. (1.7) we have that the 95%
confidence interval is (0.1552, 0.3498).
Using the previous calculation and eq. (1.8) we can find
the confidence interval of β0 which is (−4.066, 7.076).

17



Chapter 1. Simple Linear Regression Model

• Set the null hupothesis H0 and the alternative hypothesis
H1:

H0 : β1 = 0

H1 : β1 6= 0

Compute the quantities SST, SSR, and SSE respectively
as:

SST =
n∑
i=1

y2
i −

(
∑n

i=1 yi)
2

n
= 1792− (108)2

7
= 125.71

SSR = b2
1Sxx = (0.2525)2(1772.85) = 113.03

SSE = SST − SSR = 12.7

The ANOVA table is shown below:

(Source) (SS) (df) Mean (MS) F statistic p-value
Regression 113.03 1 113.03 F = 44.49 0.001

Error 12.7 5 2.54
Total 125.71 6

Table 1.4: ANOVA table

The F value from the table is F 5
1 0.05 = 6.61, we note

that the tabulated F is smaller than the calculated F , i.e.
the F-statistic falls in the rejection region, so we reject the
null hypothesis. Also, the p-value less than 0.05. That is,
the income is useful to explain the food expenditure in a
satisfactory way.

• From table (1.4), we note that r2 = 113.03
125.71 = 0.899. In

general, the higher r− squared, the better the model fits
your data.
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CHAPTER2
Multiple Linear Regression Model

2.1 The model description

Some times we need to predict the value of one vari-
able based on the value of two or more other variables, this
model is called multiple linear regression model. Clearly mul-
tiple linear regression analysis is an extension of simple linear
regression analysis (Montgomery et al., 2012).

For example, suppose that one want to study factors that
might affect systolic blood pressures for women aged 45 to 65
years old. The response variable is systolic blood pressure (y
). Suppose that the two predictor variables of interest are age
(x1) and body mass index (BMI) (x2). The general structure of
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Chapter 2. Multiple Linear Regression Model

a multiple linear regression model for this situation would be:

y = β0 + β1x1 + β2x2 + ε.

• The equation β0 + β1x1 + β2x2 describes the mean value
of blood pressure for specific values of age and BMI.

• The error term (ε) describes the characteristics of the dif-
ferences between individual values of blood pressure and
their expected values of blood pressure.

In general, the multiple linear regression equation is as fol-
lows:

Y = β0 + β1X1 + β2X2 + ....+ βkXk + ε (2.1)

where Y is the response variable, X1, X2, X3, ..., Xk are inde-
pendent or predictor or explanatory variables. β0, β1, ..., βk are
fixed (but unknown parameters). ε is a random variable repre-
senting the error or residuals that is normally distributed with
mean 0 and variance σ2

ε .

We can generalize the eq. (2.1) as

Yi = β0+β1xi1+β2xi2+. . .+βkxik+εi, (i = 1, 2, . . . , n;n ≥ k+1)
(2.2)

Yi = β0 +
k∑
j=1

βjxij + εi (2.3)

Myers (2000) defined a linear model as a model that is lin-
ear in the parameters.i.e., linear in the coefficients, the β’s in
eq. (2.2).
Examples of a linear model: (Myers, 2000):
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2.2. Assumptions

• A model quadratic in x but of course linear in the β’s is
given by

y = β0 + β1x+ β2x
2 + ε.

• A model contains interaction among a pair of regressor
variables

y = β0 + β1x1 + β2x2 + β12x1x2 + ε.

• In some application there is a need to perform transforma-
tions on the regressor variables. For example, consider
the case of three regressor variables x1, x2, and x3. The
following is a linear model in which the natural log trans-
formation is made on each variable:

y = β0 + β1lnx1 + β2lnx2 + β3lnx3 + ε.

In each of the three illustrations provided here, transfor-
mations are made on the regressor variables but the model
remains linear in the parameters.

• The analyst may be interested in using a log transforma-
tion on a y and, say, reciprocal transformations on x1 and
x2. As a result, the linear model is written

lny = β0 + β1(
1

x1
) + β2(

1

x2
) + ε.

2.2 Assumptions

Four assumptions of multiple regression that researchers should
always test
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2.2.1 Linearity

There must be a linear relationship between the depen-
dent variable and the independent variables. Scatterplots can
show whether there is a linear or curvilinear relationship.

2.2.2 Normality

The linear regression analysis requires all variables to be
normal. This assumption may be checked by looking at a his-
togram or a Q-Q-Plot.

2.2.3 Multicollinearity

Multiple linear regression assumes that there is no multi-
collinearity in the data. Multicollinearity arises when at least
two highly correlated predictors are assessed simultaneously
in a regression model. So, multicollinearity(also collinearity)
is a phenomenon in which two or more predictor variables in a
multiple regression model are highly correlated, meaning that
one can be linearly predicted from the others with a substantial
degree of accuracy.

Multicollinearity causes the following two basic types of
problems as found in (Frost, 2017):

• The coefficient estimates can swing wildly based on which
other independent variables are in the model. The co-
efficients become very sensitive to small changes in the
model.

• Multicollinearity reduces the precision of the estimate co-
efficients, which weakens the statistical power of your
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regression model. You might not be able to trust the p-
values to identify independent variables that are statisti-
cally significant.

Simon (2004) stated some of the common methods used of
detecting multicollinearity include:

• The analysis exhibits the signs of multicollinearity such
as, estimates of the coefficients vary from model to model.

• The t-tests for each of the individual slopes are non-significant
(P − value > 0.05), but the overall F-test for testing
all of the slopes are simultaneously 0 is significant (P −
value < 0.05).

• The correlations among pairs of predictor variables are
large.

It is possible that the pairwise correlations are small, and yet a
linear dependence exists among three or even more variables.
Many regression analysis often rely on what are called Vari-
ance Inflation Factor (VIF) to help detect multicollinearity. Vari-
ance Inflation Factor (VIF) quantifies how much the variance
of the estimated coefficient is inflated.
The V IF for a coefficient βj is:

VIF =
1

1−R2
j

.

where R2
j is the coefficient of multiple determination resulting

from regressing the jth predictor variable xj, on the remaining
n− 1 predictor variables.
Statistical software calculates a VIF for each independent vari-
able. VIFs start at 1 and have no upper limit. A value of 1 indi-
cates that there is no correlation between this independent vari-
able and any others. VIFs between 1 and 5 suggest that there
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is a moderate correlation, but it is not severe enough to war-
rant corrective measures. VIFs greater than 5 represent critical
levels of multicollinearity where the coefficients are poorly es-
timated, and the p-values are questionable.

Here we have an example from (Myers, 2000).

Site x1 x2 x3 x4 x5 Y
1 15.57 2463 472.92 18.0 40.45 566.52
2 44.02 2048 1339.75 9.5 6.92 696.82
3 20.42 3940 620.25 12.8 4.28 1033.15
4 18.74 6505 568.33 36.7 3.90 1603.62
5 49.20 5723 1497.60 35.7 5.50 1611.37
6 44.92 11520 1365.83 24.0 4.60 1613.27
7 55.48 5779 1687.00 43.3 5.62 1854.17
8 59.28 5969 1639.92 46.7 5.15 2160.55
9 94.39 8461 2872.33 78.7 6.18 2305.58

10 128.02 20106 3655.08 180.5 6.15 3503.93
11 96.00 13313 2912.00 60.9 5.88 3571.89
12 131.42 10771 3921.00 103.7 4.88 3741.40
13 127.21 15543 3865.67 126.8 5.50 4026.52
14 252.90 36194 7684.10 157.7 7.00 10343.81
15 409.20 34703 12446.33 169.4 10.78 11732.17
16 463.70 39204 14098.40 331.4 7.05 15414.94
17 510.22 86533 15524.00 371.6 6.35 18854.45

Table 2.1: Hospital manpower data

Data are given in table (2.1) that reflect information taken
from seventeen U.S Naval hospitals at various sites around the
world. The regressors are workload variables, i.e., items that
result in the need for manpower in a hospital installation. A
brief description of the variables is as follows:
Y :Monthly man-hours
x1:Average daily patient load
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2.2. Assumptions

x2:Monthly X-ray exposures
x3:Monthly occupied bed days
x4:Eligible population in the area ÷1000
x5:Average length of patients stay in days.

The goal here is to produce an empirical equation that will
estimate(or predict) manpower needs for Naval hospitals. The
following are the least squares regression equation, the esti-
mate of residual standard deviation, and the coefficient of the
determination.

Ŷ = 1962.948− 15.8517x1 + 0.05593x2 + 1.58962x3

−4.21867x4 − 394.314x5

s = 642.088 man-hours/month , R2 = 0.99082
These results seem to reflect a satisfactory fit between man-
hours and the workload variables. However the signs of the
coefficients could be classified as alarming if we interpret them
literally. The coefficients of the variable x1(average daily pa-
tient load), x4 (eligible population), and x5(average length of
patients stay), are negative. This implies that, say, in the case
of x1, an increase in patient load, when other x’s are held con-
stant, is accompanied by a corresponding decrease in hospital
manpower, a conclusion which, of course, is ludicrous. The
correlation matrix, showing the empirical linear dependency
among these regressor workload variables is as follows:
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Correlation =



x1 x2 x3 x4 x5

x1 1.00000 0.90738 0.99990 0.93569 0.67120

x2 1.00000 0.90715 0.91047 0.44665

x3 1.00000 0.93317 0.67111

x4 1.00000 0.46286

x5 1.00000


It would seem that, even though the linear regression model

fits the data quite well, the rather curious signs on the regres-
sion coefficients may be a result of the effect of multicollinear-
ity. The variance inflation factors, which are the diagonals of
the inverse of the correlation matrix, are given by

x1 : V IF = 9597.57

x2 : V IF = 7.94

x3 : V IF = 8933.09

x4 : V IF = 23.29

x5 : V IF = 4.28

It is clear that at least two of the regression coefficients, b1 and
b3, are estimated vary poorly in comparison to the ideal, i.e.,
the condition in which there is no multicollinearity.
In the case of the hospital data set, the correlation between x1

and x3 stands out as being noteworthy. If one were attempt
to reduce the multicollinearity, but still confine the estimation
procedure to ordinary least squares, the elimination of one of
the regressors, either x1 or x3, would seem to be a promising
or, perhaps necessary, approach. The implication is, perhaps,
that a model containing x1 does not need x3 or, vice versa.
The pair of variables together may prohibit quality estimation
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of either coefficient. the variable x1 was eliminated, and the
following model and statistics were obtained:

Ŷ = 2032.188+0.05608x2+1.0884x3−5.0041x4−410.083x5

R2 = 0.9908, s = 615.489

x2 : V IF = 7.92

x3 : V IF = 23.93

x4 : V IF = 12.70

x5 : V IF = 3.36

The regression without x1 has not only reduced the resid-
ual estimate of variance s2, while not severely altering R2,
but has also substantially reduced the variance inflation fac-
tor on b3 from 8933.09 to 23.93. Thus, from the results shown
here, elimination of x1 would seem to produce reduced multi-
collinearity and, perhaps an improved regression.

2.2.4 Homoscedasticity

Homoscedasticity means that the variance of errors is the
same across all levels of the independent variables. When the
variance of errors differs at different values of the independent
variables, heteroscedasticity is indicated.
A plot of standardized residuals versus predicted values can
show whether points are equally distributed across all values
of the independent variables. Also, a scatterplot of residuals
versus predicted values is good way to check for homoscedas-
ticity. There should be no clear pattern in the distribution; if
there is a cone-shaped pattern, the data is heteroscedastic.
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2.3 The least squares procedure

The method of least squares can be used to estimate the
regression coefficients in eq. (2.3).
So, the least squares function as shown in Montgomery et al.
(2012) is:

SSE =
n∑
i=1

ε2i =
n∑
i=1

(yi − b0 −
k∑
j=1

bjxij)
2 (2.4)

SSE must be minimized with respect to b0, b1, . . . , bk , so the
least squares estimators of b0, b1, . . . , bk must satisfy

∂SSE

∂b0
|b0, b1, ..., bk = −2

n∑
i=1

(yi − b0 −
k∑
j=1

(bjxij)) = 0

n∑
i=1

(yi − b0 −
k∑
j=1

bjxij) = 0

and hence
n∑
i=1

yi = nb0 +
n∑
i=1

k∑
j=1

bjxij

nb0 + b1

n∑
i=1

xi1 + b2

n∑
i=1

xi2 + . . .+ bk

n∑
i=1

xik =
n∑
i=1

yi (2.5)

and

∂S

∂bj
|b0, b1, ..., bk = −2

n∑
i=1

(yi − b0 −
k∑
j=1

(bjxij))xij = 0.
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2.3. The least squares procedure

n∑
i=1

(yi − b0 −
k∑
j=1

(bjxij))xij = 0

n∑
i=1

b0xij +
n∑
i=1

(
k∑
j=1

bjxij)xij =
n∑
i=1

yixij

b0

n∑
i=1

xij+b1

n∑
i=1

xi1xi1+. . .+bk

n∑
i=1

xikxik =
n∑
i=1

xijyi (2.6)

Now, we have the least− squares normal equations as fol-
lows:

nb0 + b1

n∑
i=1

xi1 + b2

n∑
i=1

xi2 + ...+ bk

n∑
i=1

xik =
n∑
i=1

yi

b0

n∑
i=1

xi1 + b1

n∑
i=1

xi1xi1 + ...+ bk

n∑
i=1

xi1xik =
n∑
i=1

xi1yi

...

b0

n∑
i=1

xik + b1

n∑
i=1

xikxi1 + ...+ bk

n∑
i=1

x2
ik =

n∑
i=1

xikyi.

The solution of these equations will be the least squares es-
timators b0, b1, . . . , bk.
the previous system can be represented in matrix notation as

X ′Xb = X ′Y (2.7)

where
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Y =


y1

y2

y3

...
yn



X =


1 x11 x12 . . . x1k

1 x21 x22 . . . x2k

... ... ... ... ...
1 xn1 xn2 . . . xnk



b =


b0

b1

b2

...
bk


We want to find the vector of least − squares estimators b

that minimizes sum of squares residuals such that:

S =
n∑
i=1

ε2i = έε = (y − xb)′(y − xb)

= ýy − bx́y − ýxb+ bx́xb

since (bX́Y )′ = Ý Xb, then

S(b) = Ý Y − 2bX́Y + bX́Xb
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The least squares estimator must satisfy

∂(S)

∂(b)
= −2X́Y + 2X́Xb = 0

X ′Xb = X ′Y

b = (X́X)−1X́Y

Note that (X́X)−1 always exists if the regressors are linearly
independent.

The fitted regression model corresponding to the levels of the
regression variablesX = [1, x1, x2, ..., xn] is

Ŷ = X́b = b0 +
k∑
j=1

bjxj. (2.8)

2.4 Estimation of error variance σ2

It is necessary to obtain a good estimate of σ2 in multiple
regression. We use the estimate in variable screening via hy-
pothesis testing, or for assessing model quality.
Before we discuss the estimator, we should state the relation-
ship between the total sum of squares(SST ) and the regres-
sion sum of squares(SSR). The relationship shown in (Myers,
2000):

SST = SSR + SSE.
n∑
i=1

(yi − ȳ)2 =
n∑
i=1

(ŷi − ȳ)2 +
n∑
i=1

(yi − ŷi)2

Where SSE is the familiar residual sum of squares.
SSR explains variation that accounts for k model terms. Thus
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the total degrees of freedom partition as follows:

n− 1 = k + (n− k − 1)

The unbiased estimator, s2, expresses variation in the residuals,
i.e., variation about the regression ŷ = xb, with the denomina-
tor now becoming n− p, where p is the number of parameters
estimated. In the notation of the model in (2.7), p = k+ 1. As
a result,

s2 =
(y − xb)′(y − xb)

n− p
=

n∑
i=1

(yi − ŷi)2

n− p

Where ŷi is the predicted or fitted response at the ith data point.
As in the simple linear regression case of chapter (1), this
estimator, the residual mean square, expresses natural variation
or experimental error variance and is an unbiased estimator,
assuming that the model postulated, and thus fitted is correct.

2.5 Properties of the least squares estimators un-
der ideal condition

One should recall that the ideal condition of the model in
eq. (2.3) as mentioned in (Myers, 2000) are:

• the εi has a mean of zero.

• the εi are uncorrelated, and have common variance σ2.

Under the condition that E(ε) = 0, then we can easily show
that b in eq. (2.8) is an unbiased estimator for β. since E(y) =
xβ, and x is not random.

E(b) = E((X́X)−1X́Y ) = (X́X)−1X́E(Y ) = (X́X)−1X́Xβ = β.
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For the variance of b, we have

V ar(b) = (X́X)−1X́V ar(Y )X(X́X)−1

= (X́X)−1X́σ2IX(X́X)−1

= σ2(X́X)−1.

Note that SE(b) =
√
σ2(x́x)−1 where SE(b) is the standard

error of b and b ∼ N(β, σ2(x́x)−1).

2.6 Hypothesis tests in multiple linear regression

This section from Myers (2000) discusses hypothesis tests
on the regression coefficients in multiple linear regression. As
in the case of simple linear regression, these tests can only be
carried out if it can be assumed that the random error terms,
εi, are normally and independently distributed with a mean of
zero and variance of σ2.
There are three types of hypothesis tests for multiple linear
regression models:

• Test for significance of regression: This test checks the
significance of the whole regression model.
The test is used to check if a linear statistical relationship
exists between the response variable and at least one of
the predictor variables. The statements for the hypotheses
are:

H0 : β1 = β2 = ... = βk = 0

H1 : βj 6= 0, for at least one j

The test for H0 is carried out using the following statistic:

33



Chapter 2. Multiple Linear Regression Model

F0 =
MSR

MSE
Where MSR is the regression mean square and MSE
is the error mean square. The null hypothesis, H0, is re-
jected if the calculated statistic, F0, is such that:

F0 > fα,k,n−(k+1)

where k is a degree of freedom in the numerator and n−
(k + 1) is a degree of freedom in the denominator.

• t test:
The t test is used to check the significance of individual
regression coefficients in the multiple linear regression
model. The hypothesis statements to test the significance
of a particular regression coefficient, βj, are:

H0 : βj = 0

H1 : βj 6= 0

The test statistic for this test is based on the t distribution

T0 =
bj

SE(bj)

where the standard error, Se(bj), is obtained. We would
fail to reject the null hypothesis if the test statistic lies in
the acceptance region:

−tα
2 ,n−2 < T0 < tα

2 ,n−2

• F test: This test can be used to simultaneously check the
significance of a number of regression coefficients. It can
also be used to test individual coefficients. This test can
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2.6. Hypothesis tests in multiple linear regression

be considered to be the general form of the t test men-
tioned in the second item. This is because the test si-
multaneously checks the significance of including many
(or even one) regression coefficients in the multiple lin-
ear regression model. Adding a variable to a model in-
creases the regression sum of squares, SSR. The test is
based on this increase in the regression sum of squares.
The increment in the regression sum of squares is called
the extra sum of squares. Assume that the vector of the
regression coefficients, β, for the multiple linear regres-
sion model, Y = Xβ + ε, is partitioned into two vectors
with the second vector, θ2, containing the last r regres-
sion coefficients, and the first vector, θ1, containing the
first (k + 1− r) coefficients as follows:

β =

[
θ1

θ2

]
with:

θ1 =


β0

β1

...
βk−r


and

θ2 =


βk−r+1

βk−r+2

...
βk


The hypothesis statements to test the significance of adding
the regression coefficients in θ2 to a model containing the
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regression coefficients in θ1 may be written as:

H0 : θ2 = 0

H1 : θ2 6= 0

The test statistic for this test follows the F distribution
and can be calculated as follows:

F0 =

SSR(
θ1
θ2

)

r

MSE

where SSR(θ1θ2 ) is the increase in the regression sum of
squares when the variables corresponding to the coeffi-
cients in θ2 are added to a model already containing θ1,
and MSE = SSE

n−2 .
The null hypothesis, H0, is rejected if

F0 > fα,r,n−(k+1).

Rejection of H0 leads to the conclusion that at least one
of the variables in xk−r+1, xk−r+2, ..., xk contributes sig-
nificantly to the regression model.

2.7 The confidence interval

A confidence interval for βj is as follow:
bj − βj
Se(b)

=
bj − βj√
s2(x′x)−1

∼ t α
2p ,n−p.

where j = 0, 1, 2, ..., k , p = k + 1 and s2 is the error mean
square (an estimate of the variance σ2 ).

So, a (1−α)100% confidence interval on the regression co-
efficient βj is obtained as follows

bj ∓ t α2p ,n−p
√
s2(x′x)−1
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2.8 Analysis of variance (ANOVA)

Draper and Smith (1998) stated that the ANOVA calcu-
lations for multiple regression are nearly similar to the calcu-
lations for simple linear regression, except that the degrees of
freedom are adjusted to reflect the number of explanatory vari-
ables included in the model.
For k explanatory variables, the model degrees of freedom are
equal to k, the error degrees of freedom are equal to (n−k−1),
and the total degrees of freedom are equal to (n− 1).

The corresponding ANOVA table is shown in table (2.2):

Source SS df MS F
Regression SSR k MSR = SSR

k
F = MSR

MSE

Error SSE n-k-1 MSE = SSE
n−k−1

Total SST n-1

Table 2.2: ANOVA table for multiple regression

The statements for the hypotheses are:

H0 : β1 = β2 = ... = βk = 0

H1 : βj 6= 0, for at least one j

The test for H0 is carried out using the following statistic:

F0 =
MSR

MSE
The null hypothesis, H0, is rejected if the calculated statis-

tic, F0, is such that:

F0 > fα,k,n−(k+1)
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2.9 Applications of linear regression using Real Data
Set

Regression analysis is one of the most commonly used
statistical methods in practice. Applications of regression anal-
ysis can be found in many scientific fields including medicine,
biology, agriculture, economics, engineering, sociology, geol-
ogy, etc. In this study, we have used real biological data in
order to explain the regression model in more details.
First of all, two factors that uses in biological analysis should
be defined, exposure and outcome. S.Kramer (1988) defines
the exposure as is the putative causal factor, or effector, that
the investigator believes may be( at least partly) responsible
for the outcome under study. And the outcome in an analytic
study is the effect that the investigator believes may be caused
by exposure. The main objective in most epidemiology studies
is the measurement of the association between exposure and
outcome.

Exposure to organic materials in shoe factory may cause
lung function deterioration in workers.
Previous studies demonstrate an increased lung cancer risk for
shoemakers and workers in shoe manufacturing and the risk
seems to double after being 30 years in these occupations (Fu
et al., 1996). Palestinian Statistics (2015) reported that He-
bron city has the maximal number of shoe factories. This
made us suspect that the employees in these factory encounter
some lung function problems, we there fore conducted across-
sectional survey in some employees in several factories at He-
bron city in Palestine, aiming to characterize lung function and
respiratory symptoms in factory employees and to estimate as-
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sociations with exposures to organic compounds that found
in the raw materials with existence of some confounders like
height, weight, age, number of years of smoking and number
of years of working in shoes factories.
This study included 113 employees chosen randomly from shoe
factories in Hebron city. Lung function abnormality was mea-
sured by using a spirometer machine that measures the Forced
Expiratory Volume in one second (FEV 1) which is considered
to be dependent variable. FEV1 means the volume exhaled
during the first second of a forced expiratory maneuver started
from the level of total lung capacity. (FEV1) was recorded by
using a spirometer (Micro Direct Spiro USB) with spida 5 soft-
ware program. All cases were at rest 15 minutes and were not
allowed to smoke for 1 hour prior to the measurement. The
procedure was carefully described to the employees with em-
phasis on the need to avoid leaks round the mouthpiece and
to make a maximum inspiration without hesitation and with-
out leaning forward. The procedure was demonstrated using a
detached mouthpiece with nose clip in an upright posture and
tight clothing was loosened . Employees were allowed to do 2
practice attempts before the actual measurement.

For exposure, four different tasks were performed in the
factory mainly (painting, management, adhesive and molding),
these tasks were considered as exposure independent variables.
The data(shown in appendix A) were analysed using Statistical
Package for Social Sciences SPSS (version 20), guided by the
article (Joaquim et al., 2007).
Dependent and independent variables were all included to for-
mulate the following multiple linear regression:
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FEV1 = β0+β1(age)+β2(smoking years)+β3(working years)+β4(height)

+β5(weight)+β61(management)+β62(adhesive)+β63(painting)+β64(molding)+ε.
(2.9)

FEV 1 expresses the Y variable such that

FEV 1 = Y =


3.35

3.41
...

3.48


with mean 3.5426 and standard deviation 0.7256.
Figure (2.1) shows the Boxplot of( FEV1), as you see the data
are normal and have outliers points.

Figure 2.1: The Boxplot of FEV1
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Also, figure (2.2) shows the normality of FEV1.

Figure 2.2: The normality of FEV1

The independent variables x1, ..., x9 represented the vari-
ables mentioned in eq. (2.9) respectively, such that

x =



x1 x2 x3 x4 x5 x61 x62 x63 x64

1 33 17 8 165 73 0 0 0 1

1 44 10 14 170 78
... ... ... ...

... ... ... ... ... ... ... ... ... ...
1 23 0 7 185 85 0 0 0 1


The table (2.3)shows the description for these variables.
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mean standard deviation
Age 34.52 11.698

smoking years 6.889 9.2011
working years 11.020 8.9627

weight 77.10 13.567
height 169.97 7.644

Table 2.3: The Descriptive Statistics for the independent variables

Figure (2.3) shows the percentage of workers in each work-
ing task in the factory. Clearly the percentage of molding task
is the highest one.

Figure 2.3: Kind of work in the factory

As we have four different working groups in the factory,
then we have three dummy variables(adhesive, painting, and
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molding) which contain all of the information needed to deter-
mine which observations are included in which group. Thus,
each of the groups is defined by having one of the dummy vari-
ables equal to one except of one group which is all zeros. The
group with all zeros is known as the reference group, in our
example we have (management) as a reference group.

Before we make a regression, we must find the correla-
tion between the variables, table (2.4) shows the correlation
between our variables.

Table 2.4: Correlations matrix for the variables

age smoke work manag adhesive painting mold height weight FEV1
age 1 0.187 0.630 0.306 -0.082 0.1 -0.328 -0.047 0.214 -0.623

smoking 0.187 1 0.466 0.289 -0.154 -0.081 -0.107 -0.011 0.044 -0.144
working 0.630 0.466 1 0.401 -0.243 -0.068 -0.165 0.006 0.220 -0.411

management 0.306 0.289 0.401 1 -0.257 -0.355 -0.496 0.090 0.094 -0.160
adhesive -0.082 -0.154 -0.243 -0.257 1 -0.159 -0.273 -0.006 -0.005 0.070
painting 0.1 -0.081 -0.068 -0.355 -0.195 1 -0.377 -0.157 0.003 -0.158
molding -0.328 -0.107 -0.165 -0.495 -0.273 -0.377 1 0.051 -0.091 0.244
height -0.047 -0.011 0.006 0.09 -0.006 -0.157 0.051 1 0.395 0.188
weight 0.210 0.044 0.220 0.094 -0.005 0.003 -0.091 0.395 1 -0.092
FEV1 -0.623 -0.144 -0.411 -0.160 0.070 -0.158 0.244 0.188 -0.092 1

We note from this table that the correlations between the
predictors are very weak, which indicates less multicollinear-
ity. We note a good correlation between FEV1 and other vari-
ables.

Table (2.5) provides the R and R2 values. Where R value
represents the simple correlation and equal to 0.649 which in-
dicates a moderate degree of correlation. Also, we have R2

value which indicates how much of the total variation in the
dependent variable can be explained by the independent vari-
able, in our case, 42.2% can be explained.
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Table 2.5: Model Summary

Model R R Square Adjusted R Square Std.Error of the Estimate
1 0.649 0.422 0.377 0.57256

Now, the least square estimators b can be obtained by b =
(x́x)−1x́y as shown in Table (2.6)

Table 2.6: The coefficients and their 95% confidence interval

Lower Bound Upper Bound VIF p-value
b0 2.386 -0.163 4.934 0.066
b1 -0.035 -0.048 -0.023 1.898 0.000
b2 -0.002 -0.015 0.012 1.340 0.815
b3 -0.003 -0.022 0.015 2.326 0.709
b4 0.015 -0.001 0.031 1.250 0.060
b5 -0.001 -0.01 0.008 1.292 0.778
b62 -0.007 -0.396 0.383 1.442 0.974
b63 -0.139 -0.458 0.179 1.485 0.387
b64 0.010 -0.279 0.298 1.647 0.947

Looking at the p-value of the t-test for each predictor, we
can see that only the age and the height contributes to the
model. This is because all variables are introduced in one step
using the enter method in SPSS.
So, the regression model is

FEV1 = 2.386−0.035(age)−0.002(smoking years)−0.003(working years)

+0.015(height)−0.001(weight)−0.007(adhesive)−0.139(painting)+0.01(molding).
(2.10)

which has a normally distributed residuals with mean ap-
proximately to zero as in figure (2.4).
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Figure 2.4: The normality of residuals

The ANOVA table (2.7) reports how well the regression
equation fits the data, i.e. predicts the dependent variable. We
note from this table that the sig. value (the statistical significant
of the regression model that was run) is less than 0.05, and in-
dicates that the regression model statistically significantly pre-
dicts the outcome variable(i.e.,it is good fit for the data).

Source SS df MS F Sig
Regression 24.870 8 3.109 9.483 000

Error 34.094 104 0.328
Total 58.964 112

Table 2.7: ANOVA table for multiple regression

Based on this regression, we can predict the expected (FEV1)
for any person as long as we know his age, smoking years,
working years, height, weight, and the type of work he do in
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the shoe factory.
We note from this regression that FEV1 decreases as age, smok-
ing years, working years, weight, adhesive, and painting in-
crease. But increases as height and molding increase.
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CHAPTER3
Bayesian Model

3.1 Introduction

Bayesian statistics, named for Thomas Bayes (1701 - 1761),
as defined in (Edwards et al., 1963) is a theory in the field of
statistics in which the evidence about the true state of the world
is expressed in terms of degrees of belief known as Bayesian
probabilities. Such an interpretation is only one of a number
of interpretations of probability and there are other statistical
techniques that are not based on ’degrees of belief’. One of the
key ideas of Bayesian statistics is that probability is orderly
opinion, and that inference from data is nothing other than the
revision of such opinion in the light of relevant new informa-
tion.
The purpose of bayesian analysis is to revise and update the
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initial assessment of the event probabilities generated by the
alternative solutions. This is achieved by the use of additional
information. So the bayesian statistic consider θ to be a quan-
tity whose variation can be described by a probability distri-
bution called the prior distribution, which is formulated before
the data are seen, and then this prior distribution is updated
with the sample information θ. The updated prior is called the
posterior distribution, which different from classical statistic
(frequency statistic) that considers the parameter θ to be an un-
known, but fixed quantity.
The prior distribution can be chosen to represent the beliefs of
the researcher before observing the results of an experiment;
this results in a proper subjective bayesian analysis. Often,
however, it is difficult for a researcher to specify prior beliefs
about model parameters, and to cast them into the form of a
prior probability distribution.
Keying Ye and Wheeler (1999) defines a noninformative prior
as is a function which is used in place of a subjective prior dis-
tribution when little or no prior information is available. The
term noninformative is used to connote the lack of subjective
beliefs used in formulating such a prior. However, one can
think of a noninformative prior as simply being a function that
is formally used in place of a subjective prior distribution, for
the purpose of accomplishing some goal.

3.2 Advantages and disadvantages of Bayesian model

We want to state some advantages to use Bayesian analy-
sis :

• It provides a natural and principal way of combining prior
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information with data, within a solid decision theoretical
framwork.

• Small sample inference proceeds in the same manner as
if one had a large sample.

• It provides conditional and exact inference on the data
without reliance on asymptotic approximation.

• It obeys the likelihood principle, while the classical infer-
ence does not in general obey it.

• It provides interpretable answers.

• It provides a convenient setting for a wide range of mod-
els, such as MCMC.

• Bolstad (2007) states that Bay’s theorem gives the way to
find the predictive distribution of future observations but
this is not always easily done in a frequentist way.

as any models, there is some disadvantages to use Bayesian
analysis:

• There is no correct way to choose a prior .

• It can produce posterior distributions that are heavily in-
fluenced by the priors.

• It often comes with a high computational cost, especially
in models with a large number of parameters.

3.3 Some applications on Bayesian model

Explicitly (Spiegelhalter and Rice, 2009) stated that Bayesian
statistical methods tend to be used in three main situations:

49



Chapter 3. Bayesian Model

• The first situation is if one has no alternative but to in-
clude quantitative prior judgments, due to lack of data
on some aspect of a model, or because the inadequacies
of some evidence has to be acknowledged through mak-
ing assumptions about the biases involved. These situ-
ations can occur when a policy decision must be made
on the basis of a combination of imperfect evidence from
multiple sources, an example being the encouragement of
Bayesian methods by the Food and Drug Administration
(FDA) division responsible for medical devices.

• The second situation is with moderate-size problems with
multiple sources of evidence, where hierarchical models
can be constructed on the assumption of shared prior dis-
tributions whose parameters can be estimated from the
data. Common application areas include meta-analysis,
disease mapping, multi-centre studies, and so on.

• The third area concerns where a huge joint probability
model is constructed, relating possibly thousands of ob-
servations and parameters, and the only feasible way of
making inferences on the unknown quantities is through
taking a Bayesian approach: examples include image pro-
cessing, spam filtering, signal analysis, and gene expres-
sion data.
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3.4 The Model Description

Bayesian analysis uses the posterior distribution to form vari-
ous summaries for the model parameters including point esti-
mates such as posterior means, medians, percentiles, and inter-
val estimates such as credible intervals. Moreover, all statisti-
cal tests about model parameters can be expressed as probabil-
ity statements based on the estimated posterior distribution.

We can state bayes rule as

p(hypothesis|data) =
p(data|hypothesis)p(hypothesis)

p(data)

which tells us how to make inferences about hypotheses
from data.

The posterior distribution is done with the use of this rule

P (Ai|B) =
P (B|Ai)p(Ai)∑∞
j=1 P (B|Aj)P (Aj)

(3.1)

where A1, A2, ... be a partition of the sample space. B is any
set. which is called also Bayes rule.
If we denote the prior distribution by Π(θ) and the sampling
distribution by f(x|θ), then the posterior distribution, the con-
ditional distribution of θ given the sample x as mentioned in
(George, 2008) is

Π(θ|x) =
f(x|θ)Π(θ)

g(x)
, (3.2)

where f(x|θ)Π(θ) = f(x, θ), g(x) is the marginal distribution
of X , that is

g(x) =

∫
f(x|θ)Π(θ)dθ.
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and f(x|θ) is the maximum likelihood estimation which is the
most commonly used method of estimating parameters and de-
termining the extent of error in the estimation in social science
statistics.

There are three types of noninformative priors Jeffreys’ prior,
the reference prior method and probability matching priors.
Here we need to talk about jeffreys’ prior, jeffreys’ prior, named
after Sir Harold Jeffreys, is one of the earliest methods of defin-
ing noninformative priors was based on the principle of insuf-
ficient reason. This method which found in 1961, sometimes
referred to as Laplace’s rule, prescribes a uniform prior on the
parameter space. jeffreys proposed

Π(θ) ∝ |I(θ)|
1
2

where I(θ) is the expected Fisher information matrix:

I(θ) = −Eθ[
d2

dθ2
logp(y|θ)]

Jeffreys’ prior, like the uniform prior, may be improper. How-
ever, Jeffreys’ prior is invariant, in the sense that if the Jeffreys’
prior in one parameterization is transformed to a different pa-
rameterization, then the transformed prior will be the Jeffreys’
prior in the new parameterization.

There are three general steps for bayesian modeling:

• Specify a probability model for unknown parameter val-
ues that includes some prior knowledge about the param-
eters if available.

• Update knowledge about the unknown parameters by con-
ditioning this probability model on observed data.
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• Evaluate the fit of the model to the data and the sensitivity
of the conclusions to the assumptions.

Recall that the matrix notation Y = Xβ + ε ; ε ∼ N(0, σ2)
where X = [x1, x2, ...xp] and Y = (y1, y2, ...yn) is the linear
model of regression. Also, we proved that b is unbiased esti-
mator in chapter (2) and b = (x′x)−1x′y .
Now, for the variance σ2 (Banerjee, 2010) found that

s2 =
1

n− k
(y − xb)′(y − xb).

where k = p+ 1 is the number of columns of x.

The posterior distribution has two components: a likelihood,
which includes information about model parameters based on
the observed data, and a prior, which includes prior informa-
tion (before observing the data) about model parameters. The
likelihood and prior models are combined using the Bayes rule
to produce the posterior distribution:

Posterior ∝ Likelihood× Prior.

Banerjee (2010) assumes the priors on β and log σ2, and then

p(β) ∝ 1; p(σ2) ∝ 1

σ2

equivalently

p(β, σ2) ∝ 1

σ2

So,the joint posterior distribution for β and σ2 as

p(β, σ2|Y ) = P (β|σ2, y)× P (σ2|y)
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but
p(β|σ2, y) ∝ p(yi|β).p(β).

We assumed previously that εi are normally distributed with
mean 0, variance σ2 and εi and εj are independent ∀ i 6= j. Also
the xi are fixed i.e., not random variables. Alston et al. (2013)
found that p(yi|β, σ2) is normal as it is a linear combinations
of normals.
Then we have E(yi|β, σ2) = βxi and var(yi|β, σ2) = σ2 .

Now, the normal probability density function pdf with mean
and variance as mentioned above is

p(yi|β, σ2) =
1√

2πσ2
exp[−(yi − βxi)2

2σ2
]

Now, since εi and εj are independent of one another for i 6= j,
then yi and yj are also independent of one another.
The likelihood estimator of β is b = (x′x)−1x′y which is the
same estimator as the one found in sec.( 2.3)
So, β|σ2, y ∼ N((x′x)−1x′y, σ2(x′x)−1). But we must find the
marginal posterior distribution of σ2.
Recall that

s2 =
1

n− k
(y − xb)′(y − xb).

then (Banerjee, 2010) found the marginal probability density
function (pdf) σ2 belong to the inverse gamma (IG) distribution
i.e.

σ2|Y ∼ IG(
n− k

2
,
(n− k)s2

2
)

which is the classical unbiased estimate of σ2 in the linear re-
gression model.
Now, we can find the marginal posterior distribution of β by
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integrating out σ2 as:

p(β, Y ) =

∫
p(β|σ2, Y )p(σ2|Y )dσ2.

this integration compute by the Marcov Chain Monte Carlo
(MCMC) method which is defined by(Lynch, 2006) as is a gen-
eral simulation method for sampling from posterior distribu-
tions and computing posterior quantities of interest.
A Marcov Chain is a sequence of random variables, in which
each random variable depends on the previous one. (i.e. gen-
erate a finite set of points in some parameters space that are
drawn from a given distribution function).

Monte Carlo, as in Monte Carlo integration is used to ap-
proximate an expectation by using the Marcov Chain samples,
and provide approximate solutions to a variety of mathemat-
ical problems by performing statistical sampling experiments
on a computer, and it is a simple, fast, intriguingly educational
method for solving stochastic (random) system problems.
This simulation used in any system or situation with some
random variables, i.e production lines, tolerancing, instrumen-
tation data handling, test schedules, bus schedules, trimming
controls, waiting lines, etc.
We can summarize this method as MCMC is an iterative pro-
cedure, such that given the current state of the chain, θ(i),the
algorithm makes a probabilistic update to θ(i+1).
before any data is observed the distribution of unknown but
observable y is

p(y) =

∫ ∫
p(β, σ2)p(y|β, σ2)dβdσ2.

which is the marginal or prior predictive distribution of y.
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Now, after y is observed the posterior predictive distribution of
ỹ is:

p(ỹ|y) =

∫ ∫
p(ỹ|β, σ2)p(β, σ2|y)dβdσ2.

since β and σ2 were known, then

ỹ ∼ N(X̃β, σ2I)

where X̃ is the covariate matrix.

3.5 Applications on Bayesian model using Real Data
Set

We illustrate a practical issue of simulation by fitting an exam-
ple which described in section (2.9). After some background
in section (2.9) we show in this section the results of fitting the
model using the Bayesian inference package winBugs (which
based on bugs) operating from within the general statistical
package R.

Gelman et al. (2003) defined Winbugs as a software for
Bayesian analysis using (MCMC) methods, it runs under mi-
crosoft windows.

After applying the Bayesian regression model to the indus-
trial data as reported in sec (2.9). In order to compute the
Bayesian estimates of the regression model, the model was
implemented in Winbugs, with 4000 iterations as a burn-in,
a thinning of 50 iterations, and a final sample size of 5000 it-
erations. The chains passed most of the standard convergence
tests. As a first result, table (3.1) reports the posterior mean
and 95% credible interval of the regression coefficients.
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Table 3.1: The posterior mean and their 95% credible interval

Posterior mean Lower Bound Upper Bound
b0 2.391 -0.133 4.918
b1 -0.036 -0.048 -0.023
b2 -0.002 -0.015 0.011
b3 -0.002 -0.021 0.017
b4 0.015 -0.0004 0.031
b5 -0.001 -0.01 0.008
b62 -0.002 -0.383 0.393
b63 -0.134 -0.457 0.186
b64 0.009 -0.281 0.298
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Figure 3.1: The posterior distribution of the estimators

It can be shown from fig (3.1) the density for the posterior
coefficients βj that is represents our prior beliefs about the ex-
planatory variables.
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3.6 Comparison Between Frequentist and Bayesian
approaches

Perhaps a better question is when to use Bayesian anal-
ysis and when to use frequentist analysis. The answer to this
question mainly lies in our research problem. i.e, the specific
research questions determine which analysis is better. For ex-
ample, if we are interested in estimating the probability that
the parameter of interest belongs to some prespecified interval,
we will need the Bayesian framework, because this probability
cannot be estimated within the frequentist framework. If we
are interested in a repeated-sampling inference about our pa-
rameter, the frequentist framework provides that. It is impor-
tant to state some differences between frequency and Bayesian
statistic:

• As we mentioned above the underlying parameters re-
main constant during the repeatable process in frequn-
tist, while they are described probabilistically in Bayesian
statistic.

• In frequentist the data are repeatable random sample i.e
there is frequency, where in Bayesian the data are ob-
served from the realized sample.

• We conclude from previous differences that the parame-
ters are fixed in frequentist but the data are fixed in Bayesian.

• Prior information abound and it is important and helpful
to use it in Bayesian, while no prior information to the
model specification in frequentist.

But when the sample size is large, the results of paramet-
ric models which provides by bayesian inference often be
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vary similar to the results produced by frequentist meth-
ods.

• The interpretation of a 95% confidence interval in fre-
quentist is that if we repeat the same experiment many
times and compute confidence intervals for each exper-
iment, then 95% of those intervals will contain the true
value of the parameter. But 95% Bayesian credible inter-
val provides a range for a parameter such that the proba-
bility that the parameter lies in that range is 95%.

Table (3.2) shows the output of our approaches,

Table 3.2: The coefficients and their 95% confidence interval for two ap-
proaches

Frequency Bayesian
Lower Bound Upper Bound Posterior mean Lower Bound Upper Bound

b0 2.386 -0.163 4.934 2.391 -0.133 4.918
b1 -0.035 -0.048 -0.023 -0.036 -0.048 -0.023
b2 -0.002 -0.015 0.012 -0.002 -0.015 0.011
b3 -0.003 -0.022 0.015 -0.002 -0.021 0.017
b4 0.015 -0.001 0.031 0.015 -0.0004 0.031
b5 -0.001 -0.01 0.008 -0.001 -0.01 0.008
b62 -0.007 -0.396 0.383 -0.002 -0.383 0.393
b63 -0.139 -0.458 0.179 -0.134 -0.457 0.186
b64 0.010 -0.279 0.298 0.009 -0.281 0.298

We have now seen how Bayesian methods work in a simple
case:the Normal linear regression model with multiple regres-
sion - many explanatory variables and natural conjugate prior.
The credible interval for βj smaller range than the confidence
interval using frequentist approach.
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