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Abstra
t

The Adomian de
omposition method was �rstly introdu
ed in 1980 by George Ado-

mian. This method is analyti
al numeri
al method for solving di�erential equations.

Indeed, the Adomian de
omposition method is based on splitting the given equation

into linear and nonlinear parts. The nonlinear part is de
omposed into a series of

Adomian polynomials.

This thesis is mainly 
on
erned with the Adomian de
omposition method for both

ordinary and partial di�erential equations. Firstly, we introdu
e the Adomian de-


omposition method and Adomian polynomials. Se
ondly, we use Adomian de
om-

position method for solving linear and nonlinear di�erential equations. Finally, we

solve a 
onve
tion between two parallel walls equation, a di�usion of oxygen in

absorbing tissue equation and Burgers' equation by using Adomian de
omposition

method.
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Chapter 1

Adomian De
omposition Method

1.1 Introdu
tion

Sin
e its introdu
tion in the 1980s, the Adomian De
omposition Method (ADM)

has proven to be an e�
ient and reliable method for solving many types of

problems. Originally developed to solve nonlinear fun
tional equations, the ADM

has sin
e been used for a wide range of equation types (like boundary value

problems, integral equations, equations arising in �ow of in
ompressible and


ompressible �uids, et
...), [11℄.

The ADM involves separating the equation under investigation into linear and

nonlinear portions. The linear operator representing the linear portion of the

equation is inverted and the inverse operator is then applied to the equation. Any

given 
onditions are taken into 
onsideration. The nonlinear portion is

de
omposed into a series of Adomian polynomials. ADM generates a solution in

the form of a series whose terms are determined by a re
ursive relationship using

these Adomian polynomials. The method provides the solution in a rapidly


onvergent series with 
omponents that 
an be elegantly 
omputed [1℄.

The main advantage of the method is that it 
an be applied dire
tly for all types

of di�erential and integral equations, linear or nonlinear, homogeneous or

1
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inhomogeneous, with 
onstant 
oe�
ients or with variable 
oe�
ients. Another

important advantage is that the method is 
apable of greatly redu
ing the size of


omputation work while still maintaining high a

ura
y of the numeri
al solution

[9℄.

1.2 De
omposition method and Adomian polyno-

mials

Solution of linear and nonlinear di�erential equations 
an be 
arried out by using

an approximation method 
alled the de
omposition method. De
omposition

method 
an be used for solving operator equation of the form Fu = g where the

operator F may be partial di�erential operator, our attention here is the 
ase

where F is di�erential operator.

Basi
ally two te
hniques are involved in applying this method. First, the nonlinear

part in the equation to be solved is written in terms of the Adomian's polynomials.

Se
ond, the assumed solution u = F−1g is de
omposed into 
omponents to be

determined, su
h that the �rst 
omponents is the solution for the linear part of F ,

or of a suitable invertible part, in
luding 
onditions on u, the other 
omponents

are then found in terms of pre
eding 
omponents [3℄.

De�nition 1.1. [22℄ (De
omposition series of �nite-order p) A de
omposition

series of �nite-order p is a series

∑
Ck, where ea
h Ck is an E-valued fun
tion of

the p(k + 1) variables X
(1)
0 , . . . , X

(1)
k , . . . , X

(p)
0 , . . . , X

(p)
k

The de
omposition series of �rst order is simply 
alled the de
omposition series.

De�nition 1.2. [22℄ (Weak 
onvergen
e of the de
omposition series of �nite-order

p) A de
omposition series of �nite-order p is weakly 
onvergent if for ea
h
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olle
tion of p 
onvergent series in E
(
∑
u
(1)
n , . . . , u

(p)
n

)

, the series

∑

Ck

(

u
(1)
0 , . . . , u

(1)
k , . . . , u

(p)
0 , . . . , u

(p)
k

)

in E 
onverge.

De�nition 1.3. [22℄ (Strong 
onvergen
e of the de
omposition of

nite-order p) A de
omposition series of �nite-order p is strongly 
onvergent if it is

weakly 
onvergent and if its sum is depends only on the sum of the series in E, i.e.

∞∑

n=0

u(i)n =
∞∑

n=0

v(i)n

⇒ S
(∑

u(1)n , . . . , u(p)n

)

= S
(∑

v(1)n , . . . , v(p)n

)

, ∀i ∈ [1, p]

De�nition 1.4. [22℄ (De
omposition S
heme) Let

∑
Ck(x0, . . . , xk) be a strongly


onvergent de
omposition series. The de
omposition s
heme asso
iated with

∑
Ck

is the re
urrent s
heme u0 = 0, un+1 = Cn(u0, . . . , un),

whi
h 
onstru
ts a series

∑
Cn in a Bana
h spa
e E.

De�nition 1.5. [22℄ (De
omposition Method) Is the method 
onsisting of


onstru
ting the solution of an equation with a de
omposition s
heme

The ADM 
onsists of de
omposing the unknown fun
tion u(x, t) of any equation

into sum of in�nite number of 
omponents de�ned by

u(x, t) =

∞∑

n=0

un(x, t).

The ADM 
onsists of splitting the given equation into linear and nonlinear parts,

inverting the highest-order derivative operator 
ontained in the linear operator on

both sides, identifying the initial and/or boundary 
onditions and the terms

involving the independent variable alone as initial approximation, de
omposing the

unknown fun
tion into a series whose 
omponents are to be determined,

de
omposing the nonlinear fun
tion in terms of spe
ial polynomials 
alled

Adomian polynomials and �nding the su

essive terms of the series solution by

re
urrent relation using Adomian polynomials.
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Adomian polynomials are the key in solving nonlinear equations, and whi
h notion

was named the Adomian polynomials by Ra
h [19℄. The Adomian de
omposition

te
hnique suggests that the unknown solution u(x, t) 
an be represented by the

following de
omposition series

u(x, t) =
∞∑

n=0

un(x, t),

with un being 
omputed re
ursively in an elegant way. However, the nonlinear

term F (u), su
h as u2, u3, sin u, eu, uux, et
, 
an be expressed by an in�nite series

of the Adomian polynomials An

F (u) =
∞∑

n

An=0(u0, u1, u2, . . . , un), (1.1)

where the Adomian polynomials An 
an be evaluated for all forms of nonlinearity.

De�nition 1.6. [19℄ (Adomian Polynomials) Let F be an analyti
al fun
tion and

∑
un a 
onvergent series in a Bana
h spa
e E. Then the Adomian polynomials An

for the nonlinear term F (u) 
an be evaluated by the following expression

An =
1

n!

dn

dλn

(

F (
∞∑

n=0

λnun)

)∣
∣
∣
∣
λ=0

.

Example 1.1. The Adomian polynomials for F (u) = u2 are

A0 = u20,

A1 = 2u0u1,

A2 = u21 + 2u0u2,

A3 = 2u1u2 + 2u0u3,

A4 = u22 + 2u1u3 + 2u0u4,
.

.

.
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Example 1.2. The Adomian polynomials for F (u) = sin u are

A0 = sin u0,

A1 = u1 cosu0, (1.2)

A2 = u2 cosu0 −
1

2!
u21 sin u0,

.

.

.

Remark: In ADM, the solution u(x, t) is de
omposed in the form of an in�nite

series given by

u(x, t) =
∞∑

n=0

un(x, t).

Further, the nonlinear fun
tion N(u) is assumed to admit the representation

N(u) =

∞∑

n=0

An(u0, u1, . . . , un),

where A′

ns are 
alled k − th order Adomian polynomials. In the linear 
ase

N(u) = u, An simply redu
es to un. Adomian's method is simple in prin
iple, but

involves tedious 
al
ulations of Adomian polynomials. Adomian gave a method for

determining these Adomian polynomials by parameterizing u(x, t) as

uλ(x, t) =

∞∑

n=0

un(x, t)λ
n,

and assuming N(uλ) to be analyti
 in λ, whi
h is de
omposed as

N(uλ) =
∞∑

n=0

An(u0, u1, . . . , un)λ
k.

Hen
e, the Adomian polynomials Am are given by

Am(u0, u1, . . . , un) =
1

m!

∂mN(uλ)

∂λm

∣
∣
∣
∣
λ=0

, ∀m ∈ N

⋃

0,

Theorem 1.1. [15℄ Let φand ψ be fun
tions of the parameter λ

φ =
∑

∞

k=0 unλ
n
, ψ =

∑
∞

k=0wnλ
n, then it holds
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(i) Am(φ) = um,

(ii) Am(λ
kφ) = Am−k(φ),

(iii) Am(φψ) =

m∑

k=0

Ak(φ)Am−k(ψ) =

m∑

k=0

Ak(ψ)Am−k(φ),

(iv) Am(φ
n+1) =

m∑

k=0

Ak(φ)Am−k(φ
n) =

m∑

k=0

Am−k(φ)Ak(φ
n)

where m ≥ 0 and 0 ≤ k ≤ m are integers.

Proof. (i) A

ording to Taylor theorem, the unique 
oe�
ient um of the Ma
laurin

series of φ is given by

um =
1

m!

∂mφ

∂λm

∣
∣
∣
∣
λ=0

,

whi
h gives (i) by means of the de�nition of Am(φ).

(ii) It holds

λkφ = λk
∞∑

i=0

uiλ
i =

∞∑

i=0

uiλ
i+k =

∞∑

m=k

um−kλ
m,

whi
h gives by means of (i) that

Am(λ
kφ) = um−k = Am−k(φ).

(iii) A

ording to Leibnitz's rule for derivatives of produ
t, it holds

∂m(φψ)

∂λm
=

m∑

i=0

m!

i!(m− i)!

∂iφ

∂λi
∂m−iψ

∂λm−i
=

m∑

i=0

m!

i!(m− i)!

∂iψ

∂λi
∂m−iφ

∂λm−i
,

whi
h gives that

Am(φψ) =
1

m!

∂m(φψ)

∂λm

∣
∣
∣
∣
λ=0

=

∞∑

k=0

(
1

k!

∂k(φ)

∂λi
|λ=0

)(
1

(m− k)!

∂mk(ψ)

∂λmk

∣
∣
∣
∣
λ=0

)

=

m∑

k=0

Ak(ψ)Am−k(φ).

Similarly, it holds

Am(φψ) =
∞∑

k=0

Ak(ψ)Am−k(φ).

(iv) Write Φ = φn
. A

ording to (iii), it holds

Am(φ
n+1) = Am(Φ

nφ) =
∞∑

k=0

Ak(Φ)Am−k(φ).
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Similarly, it holds

Am(φ
n+1) =

∞∑

k=0

Ak(φ)Am−k(Φ).

Theorem 1.2. [18℄ For fun
tion f(u) = uk, the 
orresponding mth-order Adomian

polynomial is given by

Am(u
k) =

m∑

r1=0

um−r1

r1∑

r2=0

ur1−r2

r2∑

r3=0

ur2−r3 · · ·
rk−3∑

rk−2=0

urk−3−rk−2

rk−2∑

rk−1=0

urk−2−rk−1
urk−1

,

(1.3)

where m ≥ 0 and k ≥ 0 are positive integers.

Proof. The statement 
an be proved by the method of mathemati
al indu
tion.

(i) A

ording to (1.1), it is obvious that the statement holds when σ = 2.

(ii) Assume that the statement holds when σ = 2, i.e.

Am(u
k) =

m∑

r1=0

um−r1

r1∑

r2=0

ur1−r2

r2∑

r3=0

ur2−r3 · · ·
rk−3∑

rk−2=0

urk−3−rk−2

rk−2∑

rk−1=0

urk−2−rk−1
urk−1

,

where m ≥ 0 and k ≥ 2 are integers. Repla
ing rj by r
′

j+1 and m by r′1, the above

expression reads

Ar′1
(uk) =

r′1∑

r′2=0

ur′1−r′2

r′2∑

r′3=0

ur′2−r′3

r′3∑

r′4=0

ur′3−r′4
· · ·

r′
k−1∑

r′
k
=0

ur′
k−1−r′

k
ur′

k
,

using the above expression and by means

Am(u
k+1) =

m∑

r′1=0

Am−r′1
(u)Ar′1

(uk)

=

m∑

r′1=0

um−r′1

r′1∑

r′2=0

ur′1−r′2

r′2∑

r′3=0

ur′2−r′3

r′3∑

r′4=0

ur′3−r′4
· · ·

r′
k−1∑

r′
k
=0

ur′
k−1−r′

k
ur′

k
.

Therefor, the statement holds for σ = k + 1.

(iii) A

ording to (i) and (ii), the statement holds for any positive integer

σ ≥ 2.
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Theorem 1.3. [18℄ For a parametri
 series u(λ) =
∑

∞

n=0 unλ
n
, it holds

1

m!

∂mf(u(λ))

∂λm
=

1

m!

∂m

∂λm
f

(
m∑

i=0

uiλ
i

)

, (1.4)

where f is a smooth fun
tion.

Proof. Suppose f(u) is a nonlinear fun
tion, sin
e

u =

∞∑

i=0

uiλ
i =

m∑

i=0

uiλ
i +

∞∑

i=m+1

uiλ
i,

we have su
h result as following:

∂mf(u(λ))

∂λm
=

∂m

∂λm
f

(
∞∑

i=0

uiλ
i

)

=
∂m

∂λm
f

(
m∑

i=0

uiλ
i +

∞∑

i=m+1

uiλ
i

)

=
∂m

∂λm
f

(
m∑

i=0

uiλ
i

)

.

Therefore, we obtain

∂mf(u(λ))

∂λm
=

∂m

∂λm
f

(
∞∑

i=0

uiλ
i

)

=
∂m

∂λm
f

(
m∑

i=0

uiλ
i

)

.

Corollary 1.1. From Thm. (1.2), we �nd

uk(λ) =

(
∞∑

n=0

unλ
n

)k

= uk0 +
∞∑

m=1

Am(u
k)λm, (1.5)

Example 1.3. For F (u) = u2

we �rst set

u =

∞∑

n=0

un. (1.6)

Substitute equation (1.6) into F (u) = u2 gives
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F (u) = (u0 + u1 + u2 + u3 + u4 + u5 + . . .)2

= u20 + 2u0u1 + 2u0u2 + u21 + 2u0u3 + 2u1u2 + . . .

= u20
︸︷︷︸

A0

+2u0u1
︸ ︷︷ ︸

A1

+2u0u2 + u21
︸ ︷︷ ︸

A2

+

2u0u3 + 2u1u2
︸ ︷︷ ︸

A3

+2u0u4 + 2u1u3 + u22
︸ ︷︷ ︸

A4

.

This is 
onsistent with the results obtained before using Adomians algorithm.

Theorem 1.4. [18℄ Assume that f(u) has the Taylor expansion with respe
t to u0,

then

Am(f(u)) =

m∑

k=1

f (k)(u0)

k!

1

m!

∂m(
∑m

i=1 uiλ
i)k

∂λm

∣
∣
∣
∣
λ=0

. (1.7)

Proof. Expanding f(u) in Taylor series with respe
t to u0, one has

f(u) = f(u0) +
∞∑

k=1

f (k)(u0)

k!
(u− u0)

k. (1.8)

From (1.8), we have

Am(f(u)) =
1

m!

∂m
(
∑

∞

k=1
f(k)(u0)

k!
(u(λ)− u0)

k
)

∂λm

∣
∣
∣
∣
λ=0

.

Corollary 1.2. From Thm. (1.4), we �nd

f(u(λ)) = f(u0) +

∞∑

n=1

Am(f(u))λ
m.

Example 1.4. Take F (u) = sin u.

Note that it is impossible to perform algebrai
 operations here. Therefore, our

main aim is to separate A0 = F (u0) from other terms. To a
hieve this goal, we

�rst substitute

u =
∞∑

n=0

un (1.9)



10 Chapter 1. Adomian De
omposition Method

into F (u) = sin u to obtain

F (u) = sin(u0 + u1 + u2 + . . .) = sin(u0 + [u1 + u2 + . . .]).

Thus

sin(u0 + [u1 + u2 + . . .]) = sin u0 cos(u1 + u2 + . . .) + cosu0 sin(u1 + u2 + . . .)

Applying the Taylor expansion for sin(u1 + u2 + . . .) and cos(u1 + u2 + . . .).

F (u) = sin u0

[

1− (u1 + u2 + . . .)2

2!
+

(u1 + u2 + . . .)4

4!
− . . .

]

+

cosu0

[

(u1 + u2 + . . .)− (u1 + u2 + . . .)3

3!
+ . . .

]

= sin u0

[

1− 1

2!
(u21 + 2u1u2 + . . .) + . . .

]

+ (1.10)

cosu0[(u1 + u2 + . . .)− 1

3!
(u31 + 3u21u2 + 3u21u3 + . . .) + . . .]

= sin u0
︸ ︷︷ ︸

A0

+ u1 cosu0
︸ ︷︷ ︸

A1

+ u2 cosu0 −
1

2!
u21 sin u0

︸ ︷︷ ︸

A2

+ . . .

When we 
ompare the Adomian polynomials found in eq. (1.10) with the ones

found in eq. (1.2) we see that we have the same Adomian polynomials 
omputed

using two di�erent methods.
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1.3 ADM and Taylor series method

In this se
tion an important observation 
an be made here. If we substitute

Adomian polynomials into eq. (1.1) we obtain

F (u) = A0 + A1 + A2 + A3 + A4 + · · ·

= u0 + (u1 + u2 + u3)F
′(u0) +

1

2!
(u21 + 2u1u2 + 2u1u3 + u22 + · · · )F ′′(u0) +

1

3!
(u31 + 3u21u2 + 3u21u3 + 6u1u2u3 + · · · )F ′′′(u0)

= F (u0) + (u− u0)F
′(u0) +

1

2!
(u− u0)

2F ′′(u0) +

1

3!
(u− u0)

3F ′′′(u0) + · · ·

=
∞∑

n=0

F (n)(u0)

n!
(u− u0)

n.

The last expansion 
on�rms that the series of An polynomials is a Taylor series

expansion about a fun
tion u0 and not about a point as usually used.

Proposition 1.1. [5℄ Consider the di�erential equation

du

dx
= N(u(x)), (1.11)

together the initial 
ondition

u(x0) = u0. (1.12)

Then, the general solution given by the Taylors series method is pre
isely the

ADM, where

uk(x) =
u(k)(x0)

k!
(x− x0)

k, k = 0, 1, 2, . . .

and uk, k=0,1,. . . , 
ome determined by the iterative s
heme:

u0 = u(x0),

un(x) =

∫ x

x0

An−1(s)ds, n = 1, 2, 3, . . .
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where Ak, k=0,1,2,. . . , satis�es

Ak(x) =
1

k!

dk

dxk
(N(u(x)))

∣
∣
∣
∣
x=x0

(x− x0)
k−1, k = 1, 2, . . .

Proof. Repla
ing the initial 
ondition (1.12) into eq. (1.11) to get

u′(x0) = f(x0, u0) = N(u0),

so that

A0 = u′(x0).

Now, by di�erentiating eq. (1.11) with respe
t to x, we obtain

u′′(x) =
d

dx
[N(u(x))] = N ′(u(x))u′(x), (1.13)

by using the initial 
onditions: u(x0) = u0 and u
′(x0) = N(u0) we obtain

u′′(x0) = N ′(u0)u
′(x0). (1.14)

Then, by multiplying (x− x0) both sides of eq.(1.14), we have

u′′(x0)(x− x0) = u′(x0)(x− x0)N
′(u0) = u1(x)N

′(u0) =: A1(x). (1.15)

Now, the next step is to integrate eq.(1.15) over [x0, x]

∫ x

x0

u′′(x0)(s− x0)ds =

∫ x

x0

A1(s)ds.

That is, sin
e

∫ x

x0

u′′(x0)(s− x0)ds =
u′′(x0)

2!
(s− x0)

2

∣
∣
∣
∣
xx

0

= u2(x),

we have

u2(x) =

∫ x

x0

A1(s)ds.

By di�erentiating eq. (1.13) again, we obtain

u′′′(x) =
d2

dx2
N(u(x))

= N ′′(u(x))(u′(x))2 +N ′(u(x))u′(x)u′′(x), (1.16)
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Let x = x0 in eq. (1.16) and divide by 2!, then multiplying by (x− x0)
2
we have

1

2!
u′′′(x0)(x− x0)

2 =
1

2!

(
N ′′(u(x0))[u

′(x0)]
2 +N ′(u(x0))u

′(x0)u
′′(x0)

)
(x− x0)

2

=
1

2!
[u′(x0)(x− x0)]

2N ′′(u0) +

(
u′′(x0)

2!
(x− x0)

2

)

N ′(u0).

Now,

1

2!
u′′′(x0)(x− x0)

2 =
1

2!
u21(x)N

′′(u0) + u2(x)N
′(u0) =: A2(x), (1.17)

and integrating both sides of eq. (1.17) over [x0, x], we obtain

u3(x) =
u′′′(x0)

3!
(x− x0)

3 =

∫ x

x0

u′′′(x0)

2!
(s− x0)

2ds =

∫ x

x0

A2(s)ds.

Then,

u3(x) =

∫ x

x0

A2(s)ds.

By 
ontinuing of the same way this pro
ess, one gets

u(n+1)(x0)

n!
(x− x0)

n =
1

n!

dn

dxn
N(u(x))

∣
∣
∣
∣
x=x0

(x− x0)
n = An(x). (1.18)

Integrate both sides of eq. (1.18) over [x0, x], we have

un(x) =

∫ x

x0

An−1(s)ds.

Therefore,

u0 = u(x0),

un(x) =

∫ x

x0

An−1(s)ds, n = 1, 2, 3, . . .

where Ai(x), i = 1, 2, 3, . . . veri�es

Ak(x) =
1

k!

dk

dxk
N(u(x))

∣
∣
∣
∣
x=x0

(x− x0)
k−1. k = 1, 2, . . .



Chapter 2

ADM for Ordinary Di�erential

Equations

2.1 Analysis of ADM

The dis
ussion of de
omposition te
hnique for solving nonlinear di�erential

equation will be dis
uss in this se
tion.

Consider equation

Fu(t) = g(t), (2.1)

where F represents a general nonlinear ordinary or partial di�erential operator

in
luding both linear and non linear terms. The linear terms are de
omposed into

L+R, where L is easily invertible (usually the highest order derivative) and R is

the remained term of the linear operator. Thus, the equation 
an be written as

Lu+Nu+Ru = g, (2.2)

where Nu presents the nonlinear term. By solving this equation for Lu, sin
e L is

14



2.1. Analysis of ADM 15

invertible, we 
an write

L−1Lu = L−1g − L−1Ru− L−1Nu, (2.3)

u = h+ L−1g − L−1Ru− L−1Nu, (2.4)

where h is the solution of the homogeneous equation Lu = 0, with the pres
ribed

initial or boundary 
onditions in some suitable way. The problem now is the

de
omposition of the nonlinear term Nu. To do so, Adomain develop a te
hnique

in whi
h he parametrized λ in a suitable way using

u =
n∑

i=0

λiui, (2.5)

then Nu will be a fun
tion of λ, u0, u1, . . . . Suppose the nonlinearity term is of the

form Nu = f(u) whi
h is analyti
 in λ, expanding Nu with respe
t to λ to obtain

f(u(λ)) =
n∑

i=0

λiAi, (2.6)

then An are polynomials de�ned su
h that ea
h Ai depends only on u0, ..., un,

An = An(u0, ..., un) and they 
an be 
al
ulated from the following expression

An =
1

n!

(

dn

dλn
N

(
∞∑

k=0

λkuk

))

=
1

n!

dn

dλu
f(u(λ))

∣
∣
∣
∣
λ

, (2.7)

using that

d

dλ
=
du

dλ

d

du
, f = f(u), u = u(λ),

then ea
h

du

dλ
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is evaluated at λ = 0 and dividing by n!. Hen
e,

d

dλ
f(u) =

df

du

du

dλ
,

d2

dλ2
f(u) =

d2f

du2

(
du

dλ

)2

+
df

du

d2u

dλ2
,

d3

dλ3
f(u) =

d3f

du3

(
du

dλ

)3

+ 3
d2f

du2
du

dλ

d2u

dλ2
+
df

du

d3u

dλ3
,

for the nth
derivatives

djf

dλj
=

j
∑

i=0

c(i, j)
dif

dui
,

where

c(i, j) =
d

dλ
(c(i, j − 1)) +

du

dλ
(c(i− 1, j − 1)),

su
h that c(0, 0) = 1, c(0, 1) = 0, and noting that c(i, j) = 0, i > j, and c(0, j) = 0,

j > 0.

If i = j = 2, then c(2, 2) = (du
dλ
)2 = u21.

c(2, 3) = 3du
dλ

d2u
dλ2 = 3u1u2 Now, by (2.5)

u = u0 + λu1 + λ2u2 + · · · ,

the following are useful relations

(
dn

dλn
u(λ)

)

λ=0

= n!u,

and

(
dn

dun
f(u(λ))

)

λ=0

=
duf

dun
,
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hen
e, by eq. (2.7)

A0 = f(u0),

A1 =

(
d

dλ
f(u)

)

λ=0

=

(
df

du

du

dλ

)

λ=0

= u1f
′(u0),

A2 =
1

2

(
d2

dλ2
f(u)

)

λ=0

=

(

d2f

du2

(
du

dλ

)2

+
df

du

d2

dλ2

)

λ=0

= u2f
′(u0) +

u21
2
f ′′(u0),

A3 = u3f
′(u0) + u1u2f

′′(u0) +
u31
3!
f ′′′(u0).

In general, a 
onvenient 
omputational form for A′

ns polynomials is

An =
1

n!

(
n∑

v=1

c(v, n)
dvf

duv

) ∣
∣
∣
∣
λ=0

.

Parameterize eq. (2.4) in the form

u = h+ L−1g − λL−1Ru− λL−1Nu, (2.8)

where λ is just an identi�er for 
olle
tion the terms in a suitable way su
h that un

depends on u0, u1, ..., un−1

∞∑

n=0

λnun = h+ L−1g − λL−1R

∞∑

n=0

λnAn − λL−1
∞∑

n=0

λnun. (2.9)

Equating the 
oe�
ients of equal powers of λ, we obtain

u0 = h + L−1g,

un = −L−1Run−1 − L−1An−1.

Hen
e, un is 
al
ulable for n ≥ 1, as well u =
∑

∞

n=0 un. But when we tried to solve

the equation in analyti
al form, the pro
ess is longer. However, all the terms of

(2.9) 
an be determined and the solution is approximated by the trun
ated series

u =
∑N

n=0 un, see [3℄.
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2.2 Examples

Example 2.1. As a simple example, 
onsider the nonlinear, initial value problem

dy

dx
= y2, (2.10)

with the initial 
ondition y(0) = 1.

This di�erential equation has the exa
t solution of

y(x) =
1

1− x
,

following the method des
ribed above, we de�ne a linear operator

L =
d

dx
,

the inverse operator is then

L−1 =

∫ x

0

(.)dx,

rewriting the di�erential equation (2.10) in operator form, we have

Ly = Ny,

where N is a nonlinear operator su
h that

Ny = y2,

next we apply the inverse operator for L to the equation. On the left hand side of

the equation, this gives

L−1Ly = y(x)− y(0),

using the initial 
ondition, this be
omes

L−1Ly = y(x)− 1,
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returning this to equation (2.5), we now have

y(x)− 1 = L−1(Ny),

or

y(x) = 1 + L−1(Ny).

Next, we need to generate the Adomian polynomials, An. Let y be expanded as an

in�nite series

y(t) =

∞∑

n=0

yn(t),

and de�ne

Ny =

∞∑

n=0

An.

To �nd An, we introdu
e the s
alar λ su
h that,

∞∑

n=0

yn(t) = 1 + L−1(

∞∑

n=0

An), (2.11)

y(λ) =
∞∑

n=0

λnyn,

From the de�nition of the Adomian polynomials,

An =
1

n!

dn

dλn
(Ny(λ)) |λ=0,
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we �nd the Adomian polynomials.

A0 = y20,

A1 = 2y0y1,

A2 = 2y0y2 + y2,

A3 = 2y0y3 + 2y1y2,

A4 = 2y0y4 + 2y1y3 + y22,

.

.

.

Returning the Adomian polynomials to equation (2.11), we 
an determine the

re
ursive relationship that will be used to generate the solution

y0(x) = 1,

yn+1(x) = L−1(An),

solving this yields

y0 = 1,

y1 = x,

y2 = x2,

y3 = x3,

y4 = x4,

.

.

.

we 
an see that the series solution generated by this method is

y(x) = 1 + x+ x2 + x3 + x4 + ... =

∞∑

n=0

xn,
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whi
h we re
ognize as the Taylor series for the exa
t solution

y(x) =
1

1− x

Example 2.2. If we 
onsider the anharmoni
 os
illator des
ribed by

d2θ

dt2
+ k2 sin(θ) = 0 (2.12)

with k2 = g\l and large amplitude motion and assuming θ(0) = γ and θ′(0) = 0.

we write

Lθ +Nθ = 0.

We obtain

θ = θ(0)− L−1Nθ = θ(0)− L−1

∞∑

n=0

An,

where

Nθ = k2 sin θ,

sin
e for

Nθ = sin θ,

we have

A0 = sin θ0,

A1 = θ1 cos θ0,

A2 = −θ
2
1

2
sin θ0 + θ2 cos θ0,

A3 = −θ
3
1

6
cos θ0 − θ1θ2 sin θ0 + θ3 cos θ0,

.

.

.
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we get

θ0 = γ,

θ1 = −L−1k2A0,

θ2 = −L−1k2A1,

.

.

.

Sin
e L−1
represents a twofold de�nite integration from 0 to t,

θ1 = −
(
k2t2

2!

)

sin γ,

θ2 =

(
k4t4

4!

)

sin γ cos γ,

θ3 = −
(
k6t6

6!

)
(
sin γ cos2 γ − 3 sin3 γ

)
,

.

.

.

For more example see [11℄.

2.3 A 
omparison between ADM and Taylor series

method

In this se
tion, we will 
ompare the performan
e of the ADM and the Taylor series

method applied to the solution of linear ordinary di�erential equation.

Example 2.3. For 
omparison purposes, 
onsider the linear initial value problem

exu′′ + xu = 0, (2.13)

subje
t to the initial 
onditions

u(0) = α, u′(0) = β. (2.14)
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We will use two di�erent methods to solve this example.

ADM method:-

Eq. (2.14) 
an be written in an operator form as

Lxxu = −xe−xu, (2.15)

where Lxx(.) =
d2

dx2 (.). Then the inverse of Lxx is, L−1
xx (.) =

∫ x

0

∫ x

0
(.)dxdx. Applying

L−1
xx to both sides of (2.15) we �nd that

u(x) = α + βx− L−1
xx (xe

−xu). (2.16)

The de
omposition method 
onsists of de
omposing u(x) into a sum of


omponents given by the in�nite series

u(x) =
∞∑

n=0

un. (2.17)

Substituting (2.17) into (2.16) yields

∞∑

n=0

un(x) = α + βx− L−1
xx

(

xe−x

∞∑

n=0

un

)

. (2.18)

Next, we equate sele
ted 
omponents on both sides using the following re
ursive

relationship:

u0 = α + βx,

uk+1 = −L−1
xx (xe

−x
∞∑

n=0

uk(x)), (k ≥ 0).

A

ordingly, we �nd

u0 = α + βx
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u1 = −L−1
xx (xe

−xu0) = −L−1
xx (α

∞∑

n=0

(−1)n

n!
xn+1 + β

∞∑

n=0

(−1)n

n!
xn+2)

= α

∞∑

n=0

(−1)n

(n + 3)(n+ 2)n!
xn+3 − β

∞∑

n=0

(−1)n

(n+ 4)(n+ 3)n!
xn+4

= α(
1

6
x3 − 1

12
x4 +

1

40
x5 + . . .) + β(

1

12
x4 − 1

20
x5 + . . .).

So,

u(x) = α(1− 1

6
x3 +

1

12
x4 − 1

40
x5 + . . .) + β(1− 1

12
x4 +

1

20
x5 + . . .). (2.19)

As 
an be veri�ed by the above 
omputation, two 
omponents only were used to

obtain the approximation. Furthermore, the a

ura
y level of the approximation


an be in
reased by evaluating further 
omponents.

The Taylor series method:-

The Taylor series method introdu
es the solution by an in�nite series given by

u(x) =
∞∑

n=0

anx
n. (2.20)

Substituting eq. (2.20) into eq. (2.13) gives

ex

(
∞∑

n=2

n(n− 1)anx
n−2

)

= −
∞∑

n=0

anx
n+1,

or, equivalently

(
∞∑

n=0

xn

n!

)(
∞∑

n=0

n(n− 1)anx
n−2

)

= −
∞∑

n=0

anx
n+1. (2.21)

The 
oe�
ients an, n ≥ 0, are determined by equating 
oe�
ients of like powers of

x through determining a formal re
urren
e relation. It is obvious that an expli
it

re
urren
e relation is di�
ult to derive. Alternatively, we multiply the series

involved, term by term, to �nd a0 = α, a1 = β, a2 = 0, a3 = −1
6
α,
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a4 =
1
12
α− 1

12
β and a5 = − 1

40
α+ 1

20
β. In view of eq. (2.21), the series solution eq.

(2.20) follows immediately. At this point, it should be noted that using the Taylor

series method, six iterations were evaluated to obtain the same result provided by

the de
omposition method where two 
omponents only were 
omputed.

The two series methods were applied separately to linear and nonlinear ordinary

di�erential equations. The study showed that the de
omposition method is simple

and easy to use and produ
es reliable results with few iterations used. The method

also minimizes the 
omputational di�
ulties of the Taylor series in that the


omponents are determined elegantly by using simple integrals [5℄.

2.4 Conve
tion between two parallel walls

In many physi
al appli
ations two parallel walls are maintained at uniform

temperatures. The transport phenomenon o

urring as a result of a 
onve
tive

�ow between the verti
al walls is given by the following di�erential equation:

d4u

dx4
− Rau = ǫ

(
du

dx

)2

, ǫ << 1 (2.22)

where u represent the velo
ity of the parti
les' between the parallel walls and Ra is

Rayleigh number, asso
iated with the boundary 
onditions

u(0) = u(1) = 0, u′′(0) = u′′(1) = 1. (2.23)

Method of solution

We �rst write (2.22) in the form

Lu = ǫ

(
du

dx

)2

, (2.24)
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where L denotes the linear operator

L =
d4

dx4
− Ra, (2.25)

we 
hoose the linear operator to be (2.25) rather than

d4

dx4

as it is usually done in this method, sin
e we are interested in os
illatory solutions

and these are generated by (2.25) more easily.

The operator L is invertible and its inverse is given by

L−1[.] =

∫ 1

0

g(x, s)[.]ds, (2.26)

where g(x, s) is the Green's fun
tion whi
h satis�es the boundary value problem

Lg = δ(x− s), (2.27)

g(0, s) = g(1, s) = 0, g′′(0, s) = g′′(1, s) = 0. (2.28)

The homogeneous equation

d4u

dx4
− Rau = 0

has the four linearly independent solution sinh((Ra)1/4x), sin((Ra)1/4x),

cosh((Ra)1/4x) and cos((Ra)1/4x), therefor we take the value of g(x, s) to be

g(x, s) =

{

c1 cosh(bx) + c2 sinh(bx) + c3 sin(bx) + c4 cos(bx), x < s

a1 cosh(bx) + a2 sinh(bx) + a3 sin(bx) + a4 cos(bx), x > s
(2.29)

where

b = (Ra)1/4,
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applying the boundary 
onditions

g(0, s) = 0 gives c1 + c4 = 0,

g(1, s) = 0 gives a1 cosh(b) + a2 sinh(b) + a3 sin(b) + a4 cos(b) = 0,

g′′(0, s) = 0 gives c1 + c4 = 0,

g′′(1, s) = 0 gives a1 cosh(b) + a2 sinh(b) + a3 sin(b) + a4 cos(b) = 0,

whi
h gives c1 = c4 = 0, a3 = −a4 cos(b)
sin(b)

and a1 = −a2 sinh(b)
cosh(b)

thus,the relation (2.29)

be
omes

g(x, s) =

{

c2 sinh(bx) + c3 sin(bx) , x < s

a2
cosh(b)

sinh(b(x− 1)) + a4
sin(b)

sin(b(1− x)) , x > s
(2.30)

The remaining 
onstants are determined by applying the mat
hing 
onditions at

x = s, 
ontinuity of g, ∂g
∂x

and

∂2g
∂2x

at x = s,

c2 sinh(bs) + c3 sin(bs) = a2
sinh(b(s− 1))

cosh(b)
+ a4

sin(b(1− s))

sin(b)
,

c2 cosh(bs) + c3 cos(bs) = a2
cosh(b(s− 1))

cosh(b)
− a4

cos(b(1− s))

sin(b)
,

c2 sinh(bs)− c3 sin(bs) = a2
sinh(b(s− 1))

cosh(b)
− a4

sin(b(1− s))

sin(b)
,

and the value of the jump in the third derivative g is

a2
cosh(b(s− 1))

cosh(b)
+ a4

cos(b(1− s))

sin(b)
− c2 cosh(bs) + c3 cos(bs) =

1

b3
,

solving these four equations gives

c2 =
sinh(b(s− 1))

2b3 sinh(b)
,

c3 =
sin(b(s− 1))

2b3 sin(b)
,
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a2 =
sinh(bs)cosh(b)

2b3 sinh(b)
,

a4 =
sin(bs)

2b3
,

hen
e,

g(x, s) =
1

2b3







sinh(b(s−1))
sinh(b)

sinh(bx) + sin(b(1−s))
sin(b)

sin(bx) , x < s
sinh(bs)
sinh(b)

sinh(b(x− 1)) + sin(bs)
sin(b)

sin(b(1− x)) , x > s
(2.31)

Clearly, g(x, s) is symmetri
 and not de�ned for Ra = (kπ)4, whi
h are known as

the 
riti
al frequen
ies. In this se
tion, we treat only the 
ase Ra 6= (kπ)4 for

whi
h g(x, s) is de�ned and unique.To �nd the inverse, L−1
, of the operator L,

solving the homogenous di�erential equation of (2.22) with pres
ribed boundary


onditions (2.23)

d4u

dx4
− Rau = 0

with u(0) = u(1) = 0, u′′(0) = u′′(1) = 1 gives,

uc(x) =
1
2b2

(
sinh(bx)−sinh(b(x−1))

sinh(b)
− sin(b(1−x))+sin(bx)

sin(b)

)

applying L−1
on both sides of (2.24) and using the solution of homogenous

equation with given boundary 
onditions gives

u(x) =
1

2b2

(
sinh(bx)− sinh(b(x− 1))

sinh(b)
− sin(b(1− x)) + sin(bx)

sin(b)

)

+ ε

∫ 1

0

g(x, s)

(
du

ds

)

ds, (2.32)

write u in the de
omposition form

u =

∞∑

n=0

un (2.33)
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and expand the nonlinear term

(
du
dx

)2
as

(
du

dx

)2

=
∞∑

n=0

An, (2.34)

as follows

A0(x) =

(
du0
dx

)2

,

A1(x) = 2
du0
dx

du1
dx

,

A2(x) = 2
du0
dx

du2
dx

+

(
du1
dx

)2

,

A3(x) = 2
du0
dx

du3
dx

+ 2
du1
dx

du2
dx

,

A4(x) = 2
du0
dx

du4
dx

+ 2
du1
dx

du3
dx

+

(
du2
dx

)2

,

next, substituting (2.33), (2.34) into (2.32) we get:

u0(x) =
1

2b2

(
sinh(bx)− sinh(b(x− 1))

sinh(b)
− sin(b(1− x)) + sin(bx)

sin(b)

)

,

un(x) = ε

∫ 1

0

g(x, s)An−1(s)ds, n ≥ 1.

See [3℄



Chapter 3

ADM for Partial Di�erential

Equations

3.1 ADM for linear partial di�erential equations

For instan
e, in order to solve a linear PDE with two operators

Lxu+ Lyu = g,

three general algorithms 
an be used. The �rst of them inverses the operator Lx:

un = −L−1
x Lyun−1, ∀n ≥ 1,

the se
ond inverses Ly:

un = −L−1
y Lxun−1, ∀n ≥ 1,

and the third uses a double inversion:

un = −1

2
(L−1

x Ly + L−1
y Lx)un−1, ∀n ≥ 1,

we 
an implement these general algorithms with or without 
al
ulating integral


onstants. The algorithm 
hoi
e doesn't depend only on the 
onsidered equation

but also on the boundary or initial 
onditions. When someone is unfamiliar with

30



3.1. ADM for linear partial di�erential equations 31

this method, solutions of equations often 
al
ulated don't verify the 
onditions and

so they 
an make believe that the method is not e�
ient. This is be
ause most of

the algorithms don't use all the 
onditions and so don't dire
tly impose them on

the solution. Of 
ourse, this problem doesn't exist when the equation is a

di�erential equation be
ause the integration 
onstants only have to be 
orre
tly

identi�ed. In the following we present the illustration of the implementation of

several s
heme on a simple 
ase [7℄.

Consider the equation:

Lxu+ Lyyu = 2x+ y2,

where u is a fun
tion of the two variables x and y, Lx is the �rst order derivation

operator 
on
erning the variable x and Lyy is the se
ond order derivation operator

asso
iated to the variable y. Consider also the initial 
onditions:

u(x = 0) = 0, u(y = 0) = 0,
∂u

∂y
(y = 0) = 0.

One of the algorithms 
onsists in inverting the operator L1
x and to 
al
ulate the

integration 
onstant 
reated by this operation. So we 
an implement this s
heme:

u0 = L−1
x (2x+ y2) + a0(y),

un+1 = L−1
x Lyyun + an+1(y), ∀n ≥ 0,

the �rst term of the series is

u0 = x2 + xy2 + a0(y),
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where a0(y) is a 
onstant fun
tion that is 
al
ulated with the �rst 
ondition. We

obtain:

u0 = x2 + xy2.

Then we have

u1 = −L−1
x (2x) = −x2 + al(y),

and the integration 
onstant is still null,

u1 = −x2,

the next term is

u2 = a2 = 0.

So the terms of the series are null after the se
ond rank:

un = 0, ∀n ≥ 2.

The �nal result is:

u =

∞∑

n=0

un = u0 + u1 = xy2,

whi
h is a
tually the solution of our equation. A similar method 
onsists in

inverting the other di�erential operator Lyy and to implement the following

s
heme:

u0 = L−1
yy (2x+ y2) + a0(x)y + b0(x),

un+1 = L−1
yy Lxun + an+1(x)y + bn+1(x), ∀n ≥ 0.

The 
al
ulation is a bit longer be
ause a double integration has to be made at ea
h

step and be
ause the two integration 
onstants generated have to be identi�ed
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with the two last 
onditions. We su

essively obtain:

u0 = xy2 +
y4

12
+ a0y + b0 = xy2 +

y4

12
,

u1 = −y
4

12
+ a1y + b1 = −y

4

12
,

u2 = a2y + b2 = 0,

un = 0, ∀n > 2,

and �nally the a

urate solution is obtained:

u =
∞∑

n=0

un = u0 + u1 = xy2.

A third method 
onsists in simultaneously inverting the two derivation operators

without 
al
ulating any integration 
onstants:

u0 =
1

2
(L−1

x + L−1
yy )(2x+ y2),

un+1 = −1

2
(L−1

x Lyy + L−1
yy Lxun), ∀n ≥ 0.

Simple 
al
ulations lead to:

u0 =
x2

2
+ xy2 +

y4

24
,

u1 = −x
2

2
− 1

2
xy2 − y4

24
,

u2 =
x2

4
+

1

2
xy2 +

y4

48
,

u3 = −x
2

4
− 1

4
xy2 − y4

48
,

.

.

.
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and with an immediate re
ursion:

ϕ2p =

2p
∑

n=0

un =
x2

2p+1
+ xy2 +

y4

3× 2p+3
,

ϕ2p+1 =

2p+1
∑

n=0

un = (1− 1

2p+1
)xy2,

so we have:

limϕ2p = limϕ2p+1 = xy2,

giving the expe
ted result:

u =

∞∑

n=0

un = limϕn = xy2.

3.2 ADM for se
ond order linear partial

di�erential equations

Hyperboli
 Equation

Consider the hyperboli
 equation

Lttu = 9Lxxu, (3.1)

with the asso
iated 
onditions

u(x = 0) = 0 = u(x = 1) = 0, u(t = 0) = sin(πx),
∂u

∂t
(t = 0) = 0.

The analyti
al solution of this equation is

u(x, t) = cos(3πt) sin(πx).

Here we are going to prove that this solution 
an be obtained with the

de
omposition method. As a �rst term of the series, we 
an use the fun
tion u0

that veri�es the boundary 
onditions and the equation Ltt = 0. Then we 
an
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implement the re
urrent and invert Ltt:

u0 = sin(πx),

un+1 = L−1
tt Lxxun, n ≥ 0,

so we 
al
ulate:

u0 = sin(πx),

u1 = −9

2
(πt)2 sin(πx),

u2 =
27

8
(πt)4 sin(πx),

u3 = −81

80
(πt)6 sin(πx),

.

.

.

un ≈ (−1)n(πt)2n
9n

(2n)!
sin(πx).

We 
an noti
e that we have the �rst terms of the development as an entire series of

a 
osinus fun
tion. As n in
reases towards in�nity, we obtain the exa
t solution of

our hyperboli
 equation:

u =
∞∑

n=0

un ≈ cos(3πt) sin(πx).

Ellipti
 Equation

Now 
onsider the ellipti
 equation

Lxxu+ Lyyu = 0. (3.2)

Consider also the 
onditions:

u(y = 0) = u(y = 1) = u(x = 0) = 0, u(x = 1) = sin(πy).
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It 
an be solved by inverting the se
ond order derivation operator 
on
erning the

variable x, if the integration 
onstants are 
al
ulated.

u0 = L−2
x (0) + a0(y)x+ b0(y),

un+1 = −L−2
x L2

yun + an+1(y)x+ bn+1(y), n ≥ 0.

So we 
al
ulate:

u0 = sin(πy)x,

u1 =

(
1

6
x3 − 1

6
x

)

π2 sin(πy),

u2 =

(
1

120
x5 − 1

36
x3 +

7

360
x

)

π4 sin(πy),

u3 =

(
1

5040
x7 − 1

720
x5 +

7

2160
x3 − 31

15120

)

π6 sin(πy),

.

.

.

In this 
ase, a simple expression of un, 
an't be found. This observation is the

result of the 
al
ulation of the integration 
onstants and parti
ularly of the term

that is proportional to x and whi
h has been 
reated by the 
ondition at x = 1.

Finally, we 
an't obtain a general expression of ϕn for all integers n nor


onsequently an a

urate expression of u.

Paraboli
 Equation

We 
an try to solve, on the �eld that is de�ned by x ≥ 0, 0 ≤ y ≤ 1, the

hyperboli
 equation

Lxu = Lyyu (3.3)

asso
iated to the boundary 
onditions

u(x = 0) = 0, u(y = 0) = 1− e(−x), u(y = 1) = sin(x)
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The de
omposition method 
an be implemented by inverting the operator L2
y but

without 
al
ulating the integration 
onstants. We have to initialize the re
urrent

with u0 that veri�es the 
onditions and the equation Lyyu0:

u0 = (1− y)(1− e−x) + y sin(x),

un+1 = L−1
yy Lxun, ∀n > 0.

The 
al
ulation is easy and leads to:

u0 = −e−x(1− y) + y sin(x) + 1− y,

u1 = e−x

(
y2

2
− y3

6

)

+
y3

6
cos(x),

u2 = −e−x(
y4

24
− y5

120
)− y5

120
sin(x),

u3 = e−x

(
y6

720
− y7

5040

)

− y7

5040
cos(x),

.

.

.

u2n = −e−x

(
y4n

(4n)!
− y4n+1

(4n+ 1)!

)

− y4n+1

(4n+ 1)!
sin(x),

u2n+1 = e−x

(
y4n+2

(4n+ 2)!
− y4n+3

(4n+ 3)!

)

− y4n+3

(4n+ 3)!
cos(x).

We 
an't �nd an analyti
al expression of the sum of this series but we 
an assert

that there are two fun
tions f and g of the variable y so that this sum 
an be

written

u(t, y) = e−x(sin(y)− cos(y)) + sin(x)f(y) + cos(x)g(y),

where f and g verify f ′′ = −g and g′′ = f , see [7℄
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3.3 A di�usion of oxygen in absorbing tissue

The su

essful treatment of 
an
er by radiotherapy is di
tated primarily by the

ability to apply a radiation dosage large enough to do substantial damage to the


an
erous 
ells without damaging surrounding healthy 
ells, and still remain

within the tissue toleran
e level of radiation. The sus
eptibility of 
an
erous 
ells

to radiation has been shown to in
rease with in
reasing oxygen 
on
entrations

within the tumor. Many experiments have shown that the dependen
e of tissue

radiosensitivity, for ba
terial 
ells, indi
ates a 2-3-fold in
rease in the radiation

dosage would be required to obtain the degree of destru
tion for 
ells in the total

absen
e of oxygen in 
omparison with oxygenated 
ells. This e�e
t of oxygen

allows the use of smaller radiation doses to a
hieve the desired per
entage of

destru
tion of 
an
erous 
ells. It should be noted that the solution of the di�usion

of oxygen in absorbing tissues here is not limited to 
an
erous tumors, but may be

used in the di�usion of oxygen in absorbing tissues in general [4℄.

The solution of the oxygen di�usion problem in a medium, whi
h simultaneously

absorbs the oxygen, 
onsists of �nding u and s su
h that

∂u

∂t
=
∂2u

∂x2
− 1, (3.4)

subje
t to

∂u

∂x
(t, 0) = 0,

u(t, s(t)) = 0, (3.5)

∂u

∂x
(t, s(t)) = 0, (3.6)

and the initial 
ondition

u(0, x) =
1

2
(1− x)2, 0 < x < s(0) = 1. (3.7)
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Method of solution

Consider the general problem:

∂u

∂t
=
∂2u

∂x2
− g(x), 0 < x < s(t), (3.8)

whi
h is the governing equation, subje
t to the boundary 
ondition

∂u

∂x
(t, 0) = h(t),

the Diri
hlet boundary 
ondition

u(t, s(t)) = p(t),

the Neumann boundary 
ondition

∂u

∂x
(t, s(t)) = q(t),

and the initial 
ondition

u(0, x) = ϕ(x), 0 < x < s(0).

Our problem 
ontains, as a spe
ial 
ase, the above system whi
h des
ribes the

oxygen di�usion problem. Based on the ADM, we write (3.4) in Adomians

operator-theoreti
 notation as

Lxxu =
∂u

∂t
+ g(x), (3.9)

where

Lxx =
∂2

∂x2
. (3.10)
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Applying the inverse linear operator

∫ s(t)

x

∫ s(t)

x

(.)dxdx

to (3.10) and taking into a

ount that

u(t, s(t)) = p(t)

and

(∂u/∂x)(t, s) = q(t),

we obtain

u(t, x) = p(t)− q(t)(s− x) +

∫ s(t)

x

∫ s(t)

x

g(x)dxdx+

∫ s(t)

x

∫ s(t)

x

∂u

∂t
dxdx.

De�ne the solution u(t, x) by an in�nite series of 
omponents in the form

u(t, x) =

∞∑

n=0

un(t, x).

Consequently, the 
omponents un 
an be elegantly determined by setting the

re
ursion s
heme:

u0 = p(t)− q(t)(s− x) +

∫ s(t)

x

∫ s(t)

x

g(x)dxdx,

un+1(t, x) =

∫ s(t)

x

∫ s(t)

x

∂un
∂t

dxdx, n ≥ 0,
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for the 
omplete determination of these 
omponents. Repla
e p(t) = q(t) = 0 and

g(x) = 1 into the re
ursion s
heme to get

u0 =
1

2!
(s− x)2,

u1 =
s
′

3!
(s− x)3,

u2 =
s
′2

4!
(s− x)4 +

s
′′

5!
(s− x)5,

.

.

.

A polynomial pro�le of �fth degree is now obtained by the ADM, whi
h is the

trun
ated de
omposition series

u(t, x) = u0(t, x) + u1(t, x) + u2(t, x),

so that

u(t, x) =
1

2!
(s− x)2 +

s
′

3!
(s− x)3 +

s
′2

4!
(s− x)4 +

s
′′

5!
(s− x)5, (3.11)

and whi
h automati
ally satis�es the boundary 
onditions (3.5) and (3.6). We 
an

now obtain an expression for the lo
ation of the moving boundary, s(t). This is

derived from integrating (3.8) with respe
t to x from 0 to x and taking into

a

ount that (∂u
∂x
)(t, 0) = h(t); we obtain

∂u

∂x
= h(t) +

∫ x

0

g(x)dx+

∫ x

0

∂u

∂t
dx. (3.12)

Substitute x = s into (3.12) and using the fa
t that (∂u/∂x)(t, s) = q(t). Thus

∫ s(t)

0

g(x)dx+

∫ s(t)

0

∂u

∂t
dx = q(t)− h(t), (3.13)

s(0) = 1.
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Using the following Leibniz's rule for di�erentiation under the integral sign:

d

dt

∫ s(t)

0

u(t, x)dx =

∫ s(t)

0

∂u

∂t
dx+ u(t, s(t))

ds

dt
,

and taking into a

ount that u(t, s(t)) = p(t), we obtain

∫ s(t)

0

∂u

∂t
dx =

d

dt

∫ s(t)

0

u(t, x)dx− p(t)
ds

dt
. (3.14)

substituting (3.14) into (3.13), we get

∫ s(t)

0

g(x)dx+
d

dt

∫ s(t)

0

u(t, x)dx− p(t)
ds

dt
= q(t)− h(t),

where s(0) = 1. If we 
onsider p(t) = q(t) = h(t) = 0 and g(x) = 1, then (1.8)

be
omes

d

dt

∫ s(t)

0

u(t, x)dx = −s, (3.15)

substitute the pro�le equation (3.11) into (3.15) gives an ODE to solve for s(t),

namely,

s2s′

2!
+
s3s

′2

3!
+
s4s′′

4!
+
s4s

′3

4!
+
s5s′s′′

5!
+
s6s′′′

6!
= −s,

with s(0) = 1. So that

ss′

2!
+
s2s

′2

3!
+
s3s′′

4!
+
s3s

′3

4!
+ 3

s4s′s′′

5!
+
s5s′′′

6!
+ 1 = 0, (3.16)

we now 
an determine the lo
ation of the moving boundary s(t) as a fun
tion of

time by solving the nonlinear equation. Indeed, the solution s(t) follows

immediately by setting the following form:

√
1 + 2λt, (3.17)
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where λ ∈ R is a parameter to be determined. Simple 
omputations lead to

ss′ = λ,

s′′s3 = −λ2,

s′′′s5 = 3λ3,

s′′s′s4 = −λ3.

Substituting these expressions into (3.16), we obtain λ3 + 6λ2 + 24λ+ 48 = 0.

Consequently, we �nd λ ≈ −3.19 whi
h is a real root of this equation. Hen
e, the


on
entration and the lo
ation of the moving boundary for 0 ≤ t ≤ 1/6.4 
an be

represented fairly a

urately by the approximate expression equation (3.11) and

√
1− 6.4t, respe
tively.

It should be noted that this solution is appli
able for the time 0 ≤ t ≤ 1/6.4 only.

An important note 
an be made here that the t-solution 
an be obtained by using

the initial 
ondition equation (3.7) only. To do this, we apply the inverse linear

operator L−1
t (.) =

∫ t

0
(.)dt to both sides of (3.8) and use the initial 
ondition

equation (3.7) to obtain

u(t, x) = ϕ(x)− g(x)t+

∫ t

0

∂2u

∂x2
dt,

where

ϕ(x) = (1/2)(1− x)2 and g(x) = 1.

So that the de
omposition method 
onsists of de
omposing the unknown fun
tion

u(x, t) into a sum of 
omponents de�ned by the series u(t, x) =
∑

∞

n=0 un(t, x).

Thus the 
omponents 
an be elegantly determined in a re
ursive manner as will be
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dis
ussed later; we therefore set the re
urren
e s
heme:

u0 = (1/2)(1− x)2 − t,

un+1 =

∫ t

0

∂2un
∂x2

dt, n ≥ 0.

3.4 ADM for nonlinear wave equation

In this se
tion, we will again make use of the ADM in order to obtain analyti


nonhomogeneous solutions of the nonlinear partial di�erential equation

uxx − uutt = ϕ(x, t), (3.18)

with initial 
onditions

u(0, t) = f(t), ux(0, t) = g(t). (3.19)

To apply the de
omposition method, we write equation (3.18) in an operator form

Lxx(u(x, t)) = ϕ(x, t) +Nu, (3.20)

with nonlinear term Nu = uutt and Lxx = ∂2

∂x2 are the di�erential operators. It is


lear that L−1
xx is the two fold integration from 0 to x, Applying the inverse

operator to (3.20) yields

L−1
xxLxx(u(x, t)) = L−1

xx (ϕ(x, t)) + L−1
xx (Nu),

from whi
h it follows that

u(x, t) = f(t) + xg(t) + L−1
xx (ϕ(x, t)) + L−1

xx (Nu). (3.21)
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The de
omposition method 
onsists of de
omposing the unknown fun
tion u(x, t)

into a sum of 
omponents de�ned by the de
omposition series

u(x, t) =
∞∑

n=0

un(x, t), (3.22)

and the nonlinear term Nu = uutt 
an be expressed in the An Adomian's

polynomials, thus;

Nu =

∞∑

n=0

An,

where

A0 = u0
∂2

∂t2
u0,

A1 = u0
∂2

∂t2
u1 + u1

∂2

∂t2
u0,

A2 = u0
∂2

∂t2
u2 + u1

∂2

∂t2
u1 + u2

∂2

∂t2
u0,

.

.

.

whi
h leads to the re
ursive relationship

u0 = f(t) + xg(t) + L−1
x φ(x, t),

u1 = L−1
xx (A0),

u2 = L−1
xx (A1), (3.23)

.

.

.

un+1 = L−1
x (An), n ≥ 0.

Example 3.1. Let us 
onsider a nonhomogeneous nonlinear wave equation. The

equation of the form

uxx − uutt = 2− 2(t2 + x2), (3.24)

the initial 
onditions posed are

u(x, 0) = x2, (3.25)

u(0, t) = t2, (3.26)
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ux(0, t) = 0. (3.27)

Using (3.23) to determine the individual terms of the de
omposition, we �nd

u0 = x2 + t2 − x2t2 − 1

6
x4, (3.28)

and

u1 = L−1
x (A0) = x2t2 +

1

6
x4 − 1

3
x4t2 − 7

90
x6 +

2

15
x6t2 +

1

16
x8,

u2 = L−1
x (A1) =

1

3
x4t2 +

7

90
x6 − 2

15
x6t2 − 1

16
x8 − · · · ,

and so on for other 
omponents. It 
an be easily observed that the self 
an
eling

noise terms appear between various 
omponents. Can
eling the third term in u0

and the �rst term in u1 , the fourth term in u0 and the �rst term in u1 , in keeping

the non 
an
eled terms in u0 yields the exa
t solution of (3.24) given by

u(x, t) = x2 + t2. (3.29)

This 
an be veri�ed through substitution, see [12℄

3.5 One dimensional nonlinear Burgers' equation

The study of Burgers' equation is important sin
e it arises in the approximate

theory of �ow through a sho
k wave propagating in a vis
ous �uid and in the

modeling of turbulen
e [10℄. The exa
t solutions of Burgers' equation have been

surveyed by Benton and Platzman [20℄. In many 
ases these solutions involve

in�nite series whi
h may 
onverge very slowly or for small values of the vis
osity


oe�
ients.

Consider the one-dimensional nonlinear Burgers' equation for a given �eld u(x, t)

and di�usion 
oe�
ient (or vis
osity, as in the original �uid me
hani
al 
ontext) v,
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see [6℄.

ut + ε uux − vuxx = 0, a ≤ x ≤ b, (3.30)

with initial 
onditions:

u(x, 0) = f(x) (3.31)

u(a, t) = β1, u(b, t) = β2 ∀ t > 0, (3.32)

In this se
tion, the use of tanh fun
tion method is demonstrated to get an

analyti
al solution of eq. (3.30) whi
h is not of series form. Se
ondly, an

approximate solution is obtained by applying ADM using the initial 
ondition

u(x, 0) = f(x) only. Then, a test example is given to demonstrate the a

ura
y of

the method and to illustrate its pertinent feature, another approa
h for using ADM

with the boundary 
onditions is proposed to get a numeri
al solution of eq. (3.30).

Analyti
al solution using the tanh fun
tion method for

Burgers' equation

we �nd parti
ular solutions for Burgers' eq. (3.30) using the re
ent tanh fun
tion

method. For this, 
onsider the transformations:

u(x, t) = f(ξ), (3.33)

where ξ = c(x− λt), where 
 and λ are arbitrary (real) 
onstants. Based on this

we use the following 
hange of variables

∂

∂t
(.) = −cλ d

dξ
(.),

∂

∂x
(.) = c

d

dξ
(.),

∂2

∂x2
(.) = c2

d2

dξ2
. (3.34)
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Applying the 
hange of variable to Burgers' eq.(3.30), the following ordinary

di�erential equation is obtained.

−cλdf (ξ)
dξ

+ εcf (ξ)
df (ξ)

dξ
− c2v

d2f (ξ)

dξ2
= 0, (3.35)

Integrating eq. (3.35), we get

−cλf (ξ) + εc

2
f 2 (ξ)− c2v

df (ξ)

dξ
= B, (3.36)

where B is the 
onstant of integration. Now we introdu
e a new independent

variable:

y = tanh (ξ) ,

that leads to the 
hange of derivative

d

dξ
(.) = (1− y2)

d

dy
(.). (3.37)

We introdu
e the following tanh series

f (ξ) = s (y) =
m∑

i=0

aty
t, (3.38)

where m is a positive integer. From eqns. (3.37) and (3.38) we get

−cλs + cε

2
s2 − c2v

(
1− y2

) ds

dy
= 0. (3.39)

To determine the parameter m we balan
e the linear term of highest order in eq.

(3.39) with the highest order nonlinear term. This in turn gives m=1, so we get

s (y) = a0 + a1y. (3.40)
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Substituting s(y), and s′(y), from eq. (3.40) into eq. (3.39) yields the system of

algebrai
 equations for a0 ,a1, 
, and λ :

y0 : −c2va1 + 0.5cεa20 − cλa0 = 0,

y1 : a0a1cε− a1cλ = 0,

y2 : 0.5cεa2 + c2va1 = 0,

(3.41)

with the aid of Mathemati
a we �nd two solutions:

a0 =
−2cv

ε
, a1 =

−2cv

ε
, λ = −2cv,

a0 =
2cv

ε
, a1 =

−2cv

ε
, λ = 2cv.

So we obtain the solutions

u(x, t) =
2cv

ε
(−1− tanh [c (x+ 2cvt)]) ,

u(x, t) =
2cv

ε
(1− tanh [c (x− 2cvt)]) ,

(3.42)

The ADM for Burgers' equation using the initial 
ondition

Let L
(

L(.) = ∂(.)
∂t

)

is a linear operator. Then the approximate solution of the

nonlinear Burgers' equation (3.30) is rewritten in the operator form with the initial


ondition u(x, 0) = u0 = f(x), 
an be determined by Adomian's polynomials with

the iterative pro
ess:

u0 (x, t) = f (x) ,

un+1 (x, t) = L−1 (g (t)− R (un)− An) , n ≥ 0. (3.43)

Applying the inverse operator L−1
on both sides of eq. (3.30) we get:

u (x, t) = f (x)− L−1 (uux − vuxx) . (3.44)
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Now, we get

∞∑

n=0

un (x, t) = f (x)− L−1

(
∞∑

n=0

An − v

(
∞∑

n=0

un

) ∣
∣
∣
∣
xx

)

(3.45)

Identifying the zeroth 
omponent u0(x, t) as f(x), the remaining 
omponents

un(x, t), n > 1 
an be determined by using the re
urren
e relation (3.45). That is,

u0 (x, t) = f (x) ,

un+1 (x, t) = L−1 (An − v (un)xx) , n ≥ 0. (3.46)

where An are adomian's polynomials that represent the nonlinear term (uux). One


an see that the �rst few terms of An are given by:

A0 = u0xu0,

A1 = u0xu1 + u1xu0,

A2 = u0xu2 + u1xu1 + u2xu0,

A3 = u0xu3 + u1xu2 + u2xu1 + u3xu0.

The rest of polynomials 
an be generated in a similar way. The s
heme in (3.46)


an easily determine the 
omponents un(x, t), n > 0 and the �rst few 
omponents

of un(x, t) take the following form

u0 (x, t) = f (x) ,

u1 (x, t) = L−1 (A0 − v (u0)xx) ,

u2 (x, t) = L−1 (A1 − v (u1)xx) , (3.47)

u3 (x, t) = L−1 (A2 − v (u2)xx) ,

u4 (x, t) = L−1 (A3 − v (u3)xx) .
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Cal
ulating more 
omponents in the solution series 
an enhan
e the numeri
al

solution obtained by de
omposition series. Consequently, one 
an re
ursively

determine ea
h individual term of the series

∑
∞

n=0 un(x, t), and hen
e the solution

u(x, t) is readily obtained in a series form. For numeri
al purposes to test the

a

ura
y of the proposed method, based on ADM, we 
onsider two test 
ases for

the Burgers' equation. The obtained numeri
al approximate solution for ea
h 
ase,

uappr.(x, t), is 
ompared with the exa
t solution where

uappr.(x, t) = u0(x, t) + u1(x, t) + u2(x, t)

+u3(x, t) + u4(x, t) + ...
(3.48)

Test Case :

Consider the following analyti
 solution of Burgers' eq. (3.30):

u(x, t) =
1

2

[

1− tanh

{
1

4v

(

x− 15− 1

2
t

)}]

, t ≥ 0,

and the initial 
ondition

u(x, 0) =
1

2

[

1− tanh

{
1

4v
(x− 15)

}]

, t ≥ 0,

where x ∈ [0, 28]

This test problem has known initial 
onditions and applying ADM one needs initial


onditions only the A

ording to this example and the s
heme in (3.47), we get:

u1 =
0.0625t

v

[

1− tanh2

{
1

4v
(x− 15)

}]

,

u2 =
0.0078125t2

v2
sec h2

{
1

4v
(x− 15)

}

tanh

{
1

4v
(x− 15)

}

,

u3 = − t3

3072v3
sec h2

{
1

4v
(x− 15)

}[

1− 3 tanh2
{

1

4v
(x− 15)

}]

.

We obtain a numeri
al approximate solution for Burgers' equation. The obtained
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numeri
al results are summarized in Tables 1-4. From these results, we 
on
lude

that the proposed method, to 
al
ulate the approximate numeri
al solution of the

Burgers' equation, gives remarkable a

ura
y in 
omparison with the exa
t

solution for some values of time t.
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x U Approximate U Exa
t Absolute error

4 0.99998986 0.99998987 4.00932 ∗ 10−9

8 0.99944700 0.99944722 2.13127 ∗ 10−7

12 0.97068831 0.97068776 5.45743 ∗ 10−7

16 0.37754702 0.37754066 6.35561 ∗ 10−6

20 0.01098545 0.01098694 1.48505 ∗ 10−6

24 0.00020339 0.00020342 3.48687 ∗ 10−8

28 3.726 ∗ 10−6 3.7266 ∗ 10−6 6.4136 ∗ 10−10

Table 3.1: Absolute errors at t = 1 and v = 0.5.

x U Approximate U Exa
t Absolute error

4 0.99999543 0.99999627 8.39849 ∗ 10−7

8 0.99975179 0.99979657 4.47788 ∗ 10−5

12 0.98891035 0.98901305 1.02707 ∗ 10−4

16 0.62015142 0.62245933 2.30791 ∗ 10−3

20 0.02890743 0.02931223 4.04797 ∗ 10−4

24 0.00054256 0.00055277 1.02176 ∗ 10−5

28 9.9418 ∗ 10−6 1.013 ∗ 10−5 1.88157 ∗ 10−7

Table 3.2: Absolute errors at t = 3 and v = 0.5.

x U Approximate U Exa
t Absolute error

4 0.99999942 0.99999942 7.6743 ∗ 10−10

8 0.99991507 0.99991518 1.1337 ∗ 10−7

12 0.98756129 0.98756834 7.0518 ∗ 10−6

16 0.34871176 0.34864513 6.66311 ∗ 10−5

20 0.00359200 0.00359360 1.5927 ∗ 10−6

24 0.00002428 0.00002430 1.1512 ∗ 10−8

28 1.6366 ∗ 10−7 1.6373 ∗ 10−7 7.7609 ∗ 10−11

Table 3.3: Absolute errors at t = 1 and v = 0.4.
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The following �gures (3-1-3-3) show the behavior of the approximation solutions

for the �rst test 
ase.
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Figure 3-1: The numeri
al solution (v=0.5 from t=0 to t=1).
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Figure 3-2: The numeri
al solution (v=0.5 from t=0 to t=3).
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Figure 3-3: The numeri
al solution (v=0.4 from t=0 to t=1).

The ADM for Burgers' equation (
onsidering the boundary


onditions)

Let R = ∂2

∂x2 . Then eq. (3.30) 
an be expressed as

Ru =
1

v
[ut + uux], x ∈ [a, b]. (3.49)

Applying the inverse operator R−1
on both sides to eq. (3.49) yields

u(x, t) = µ+
1

v
[ut + uux], (3.50)

where R−1 =
∫ ∫

(.)dxdx and µ = C(t) + xB(t). Using eq.(3.50) be
omes

∞∑

n=0

un(x, t) = µ+
1

v
R−1

[
∞∑

n=0

unt +
∞∑

n=0

An

]

,

where An =
∑n

m=0 un−mumx. Now we de
ompose µ into µ =
∑

∞

n=0 µn.

We have

∞∑

n=0

un(x, t) =
∞∑

n=0

µn +
1

v
R−1

[
∞∑

n=0

unt +
∞∑

n=0

An

]

,
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Identify u0 = µ0 = C0(t) + xB0(t), all other 
omponents are determined by

un+1 = µn+1 +
1

v
R−1 [unt + Am] ,

where µn+1 = Cn+1 + xBn+1, n ≥ 0. The integration 
onstants C's and B's are

determined by satisfying the boundary 
onditions with the approximate

solutionφn+1 =
∑n

k=0 uk, n ≥ 0; Thus,

φn+1(a, t) = u(a, t) = β1,

φn+1(b, t) = u(b, t) = β2.

Our �rst approximation is φ1 = u0, orφ1 = C0(t) + xB0(t). Sin
e

φ1(a, t) = u(a, t) = β1, φ1(b, t) = u(b, t) = β2.

Therefor,

C0 + aB0 = β1, (3.51)

C0 + bB0 = β2. (3.52)

Solving (3.51) and (3.52), we get

B0 =
β2 − β1
b− a

,

C0 =
bβ1 − aβ2
b− a

.

Hen
e,

u0 =
(x− a)bβ2 − (b− x)β1

b− a
.

To 
al
ulate u1, we have

u1 = C1 + xB1 +
1

v
R−1 [u0t + A0] .
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A two term approximation is given by

φ2 = φ0 + u1 = u0 + u1.

Hen
e,

φ2 =
(x− a)bβ2 − (b− x)β1

b− a
+ C1 + xB1 +

1

v
R−1 [u0t + A0] . (3.53)

Sin
e φ2(a, t) = β1 and φ2(b, t) = β2, we have

ξa + C1 + aB1 = 0, (3.54)

ξb + C1 + bB1 = 0, (3.55)

where,

ξa =
1

v

[
R−1 (u0t + A0)

]
|x=a,

and

ξb =
1

v

[
R−1 (u0t + A0)

]
|x=b .

Eqns. (3.54) and (3.55) give

B1 =
ξa − ξb
b− a

, (3.56)

C1 =
aξa − bξb
b− a

. (3.57)

Using(3.56), (3.57) and (3.53), we get

u1 =
aξa − bξb
b− a

+ x
ξa − ξb
b− a

+
1

v

[
R−1 (u0t + A0)

]
,

we 
an 
ontinue in this manner to 
al
ulate u2, u3, . . .
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