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Abstract

The Adomian decomposition method was firstly introduced in 1980 by George Ado-
mian. This method is analytical numerical method for solving differential equations.
Indeed, the Adomian decomposition method is based on splitting the given equation
into linear and nonlinear parts. The nonlinear part is decomposed into a series of
Adomian polynomials.

This thesis is mainly concerned with the Adomian decomposition method for both
ordinary and partial differential equations. Firstly, we introduce the Adomian de-
composition method and Adomian polynomials. Secondly, we use Adomian decom-
position method for solving linear and nonlinear differential equations. Finally, we
solve a convection between two parallel walls equation, a diffusion of oxygen in
absorbing tissue equation and Burgers’ equation by using Adomian decomposition

method.
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Chapter 1

Adomian Decomposition Method

1.1 Introduction

Since its introduction in the 1980s, the Adomian Decomposition Method (ADM)
has proven to be an efficient and reliable method for solving many types of
problems. Originally developed to solve nonlinear functional equations, the ADM
has since been used for a wide range of equation types (like boundary value
problems, integral equations, equations arising in flow of incompressible and
compressible fluids, etc...), [11].

The ADM involves separating the equation under investigation into linear and
nonlinear portions. The linear operator representing the linear portion of the
equation is inverted and the inverse operator is then applied to the equation. Any
given conditions are taken into consideration. The nonlinear portion is
decomposed into a series of Adomian polynomials. ADM generates a solution in
the form of a series whose terms are determined by a recursive relationship using
these Adomian polynomials. The method provides the solution in a rapidly
convergent series with components that can be elegantly computed [1].

The main advantage of the method is that it can be applied directly for all types

of differential and integral equations, linear or nonlinear, homogeneous or



Chapter 1. Adomian Decomposition Method

inhomogeneous, with constant coefficients or with variable coefficients. Another
important advantage is that the method is capable of greatly reducing the size of

computation work while still maintaining high accuracy of the numerical solution

[9].

1.2 Decomposition method and Adomian polyno-
mials

Solution of linear and nonlinear differential equations can be carried out by using
an approximation method called the decomposition method. Decomposition
method can be used for solving operator equation of the form Fu = g where the
operator F' may be partial differential operator, our attention here is the case
where F' is differential operator.

Basically two techniques are involved in applying this method. First, the nonlinear
part in the equation to be solved is written in terms of the Adomian’s polynomials.
Second, the assumed solution u = F~!g is decomposed into components to be
determined, such that the first components is the solution for the linear part of F',
or of a suitable invertible part, including conditions on wu, the other components

are then found in terms of preceding components [3].

Definition 1.1. [22] (Decomposition series of finite-order p) A decomposition
series of finite-order p is a series »_ Cy, where each Cy, is an E-valued function of
the p(k + 1) variables Xél), . ,Xlgl), . ,Xo(p), . ,X,gp)

The decomposition series of first order is simply called the decomposition series.

Definition 1.2. [22] (Weak convergence of the decomposition series of finite-order
p) A decomposition series of finite-order p is weakly convergent if for each



1.2. Decomposition method and Adomian polynomials

collection of p convergent series in E (Z ug), e ,u,(lp)>, the series

3G (ol )

in E converge.

Definition 1.3. [22] (Strong convergence of the decomposition of
nite-order p) A decomposition series of finite-order p is strongly convergent if it is
weakly convergent and if its sum is depends only on the sum of the series in E, i.e.

= S (Zugx...,u,@) — 9 (Zv,gn, . ..,Ugm) . Vie[ly]

Definition 1.4. [22] (Decomposition Scheme) Let > Ci(zo, ..., xx) be a strongly
convergent decomposition series. The decomposition scheme associated with »_ C
is the recurrent scheme ug = 0, w1 = Cy(ug, - .., Uy),
which constructs a series Y C,, in a Banach space E.

Definition 1.5. [22] (Decomposition Method) Is the method consisting of
constructing the solution of an equation with a decomposition scheme

The ADM consists of decomposing the unknown function u(x,t) of any equation
into sum of infinite number of components defined by

u(z,t) = Z Un(x,t).

The ADM consists of splitting the given equation into linear and nonlinear parts,
inverting the highest-order derivative operator contained in the linear operator on
both sides, identifying the initial and/or boundary conditions and the terms
involving the independent variable alone as initial approximation, decomposing the
unknown function into a series whose components are to be determined,
decomposing the nonlinear function in terms of special polynomials called
Adomian polynomials and finding the successive terms of the series solution by

recurrent relation using Adomian polynomials.
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Adomian polynomials are the key in solving nonlinear equations, and which notion
was named the Adomian polynomials by Rach [19]. The Adomian decomposition
technique suggests that the unknown solution u(x,t) can be represented by the

following decomposition series

u(z,t) = Z un(z,t),

with u, being computed recursively in an elegant way. However, the nonlinear

3

term F(u), such as u?, u?. sinwu, e*, uu,, etc, can be expressed by an infinite series
) b ) ) b X b

of the Adomian polynomials A,

F(u) :ZAnzo(Uo7U1,U2,---,Un), (1.1)

where the Adomian polynomials A,, can be evaluated for all forms of nonlinearity.

Definition 1.6. [19] (Adomian Polynomials) Let F be an analytical function and
> u, a convergent series in a Banach space E. Then the Adomian polynomials A,
for the nonlinear term F(u) can be evaluated by the following expression

1 d" -
Ay =—— | B3 A"

A=0

Example 1.1. The Adomian polynomials for F(u) = u? are

Ay = ug,

Al = 2u0u1,

Ay = uf + 2ugus,

As = 2uqus + 2ugus,

Ay = Ui+ 2uius + 2uguy,
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Example 1.2. The Adomian polynomials for F(u) = sinu are

Ay = sinug,

Ay = 1wy cosug, (1.2)
1 5.

Ay = wupcosug— Eul sin ug,

Remark: In ADM, the solution u(x,t) is decomposed in the form of an infinite

series given by

u(z,t) = Z Un(x,t).

Further, the nonlinear function N(u) is assumed to admit the representation
[e o]
N(u) = ZAn(uo,ul, Cy Uy,
n=0

where A!s are called k — th order Adomian polynomials. In the linear case
N(u) = u, A, simply reduces to u,. Adomian’s method is simple in principle, but
involves tedious calculations of Adomian polynomials. Adomian gave a method for

determining these Adomian polynomials by parameterizing u(z,t) as

ux(z,t) = Z U (, T)A",
n=0

and assuming N (uy) to be analytic in A\, which is decomposed as

N(uy) = Z A (g, uy, . . ., up) A
n=0

Hence, the Adomian polynomials A,, are given by

1 0™N(u
A 1) = -]

, ‘v’mENUO,

A=0

Theorem 1.1. [15] Let ¢pand ¢ be functions of the parameter A
O = p gUn N, Y=Y 1 Jwp N, then it holds
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<Z> Am<¢) = Um,
(”) Am()‘k(b) = Am#f((b)

(iid) Am(@0) =D Ap(@) Am—r() =D Ap(¥) A (9),

() An(@") =D Ap(@)Am—r (") = Ami(¢) Ak(¢")

where m > 0 and 0 < k < m are integers.

Proof. (i) According to Taylor theorem, the unique coefficient w,, of the Maclaurin
series of ¢ is given by

10"

tm =l oam

which gives (i) by means of the definition of A,,(¢).

(ii) Tt holds
Nop = A u\' = Z WA = Z Uy s N,
=0

which gives by means of (i) that

)

A=0

(iii) According to Leibnitz’s rule for derivatives of product, it holds

I (V) ml 090" & m! 9o
o Z il(m — )l OXE OAm—i Z il(m —4)! ON OAm—t’

which gives that

1 om(0)
m! O\™

Am(ﬁbw) =

[ 10%¢ 1 0™ (y)
z%(k;‘ ON |”) ((m—k:)! DN

V) =) Ap() A

(iv) Write ® = ¢". According to (iii), it holds

A=0

Similarly, it holds

Am(¢n+1) (I)n¢ Z Ak
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Similarly, it holds
A (") = Ak(¢) A (D).
k=0

O

Theorem 1.2. [18] For function f(u) = u®, the corresponding mth-order Adomian
polynomial is given by

m r1 (&) Tk—3 Tk—2
kY _
Am(“ ) - E Um—ry E Upy—ry E Upy—rg * " E : Uy _5—rp_o E : WUrp_g—rgp_1 Ur_y>
r1=0 ro=0 r3=0 Tk,2=0 T‘k,1=0

(1.3)

where m > 0 and k > 0 are positive integers.

Proof. The statement can be proved by the method of mathematical induction.
(i) According to (1.1), it is obvious that the statement holds when o = 2.
(ii) Assume that the statement holds when o = 2, i.e.

m 1 T2 Tk—3 Th—9
Am(u ) - Uy —rq Upy—ry Upg—rg * Upy,_g—r)_o Upp_g—r_1Ur_15
7‘120 T2=0 T3=0 Tk,2=0 T‘k,1=0

where m > 0 and k > 2 are integers. Replacing r; by %, and m by 77, the above
expression reads

& ) "3 Tho1
Ar’l (’LL ) - Ut —rt, Uty —rt A A Upt = Ut
rh=0 ri=0 =0 r1.=0
using the above expression and by means
m
k+1\ E k
Am(u ) = Am—r’l (u)Ari (u )
ri=
m " " -
=D Umery D Uy D U, Y U D Ul U
r;=0 r5,=0 r=0 ry=0 r7.=0

Therefor, the statement holds for 0 = k + 1.
(iii) According to (i) and (ii), the statement holds for any positive integer
o> 2. O
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Theorem 1.3. [18] For a parametric series w(X) = >~ u,\", it holds

Lo"f(u(h) _ 1 0" [~
o mioan! z;“ ’ (1-4)
where f is a smooth function.

Proof. Suppose f(u) is a nonlinear function, since

U= iui)\i = zm:ui)\i + f: wN,
i=0 i=0

i=m-+1

we have such result as following:

ofuN) o, f)m)

O™ O™
o - . > ‘
= — UZ)\Z—F Ui)\z

o™ = ;

Therefore, we obtain

amf(u()\))_am - i _a_m - i
oA _8)\mf<;u1>\>_a)\m < 0“”)'

Corollary 1.1. From Thm. (1.2), we find
oo k [e.e]
uF(\) = <Z un)\"> = ub + Z Ay, (uH)A™, (1.5)
n=0 m=1
Example 1.3. For F(u) = u?

we first set
u= Z U, (1.6)
n=0

Substitute equation (1.6) into F'(u) = u? gives
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F(u) = (uo+uy+up + ug + ug +us +...)°
= U(2)+2U0U1+2U0U2+u%+2uou;»,+2u1u2+...

= ug +2u0u1+2u0u2+u%+
~ N N——

AO Az As

2ugus + 2uius + 2uguy + 2uqus + ug )
N > N J/
VvV Vv

AS A4

This is consistent with the results obtained before using Adomians algorithm.

Theorem 1.4. [18] Assume that f(u) has the Taylor expansion with respect to uy,

then © -
_ o~ W (uo) 1O (0w
k=1 =
Proof. Expanding f(u) in Taylor series with respect to ug, one has
= R (u
) = ) + 3 T g (1)
k=1

From (1.8), we have

o ) (ug
1 o (Zk:l %(U()‘) - Uo)k>
m) o™

A=0
Corollary 1.2. From Thm. (1.4), we find

F(u(N) = fluo) + Y Am(f(w)A™

Example 1.4. Take F(u) = sinu.

Note that it is impossible to perform algebraic operations here. Therefore, our
main aim is to separate Ay = F'(ug) from other terms. To achieve this goal, we

first substitute

u = Zun (1.9)
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into F'(u) = sinu to obtain

F(u) = sin(up + uy +uz +...) = sin(ug + [ug + us +...]).

Thus

sin(ug + [ug + ug + .. .]) = sinugcos(uys +uz + ...) + cosugsin(uy +ug + . ..)

Applying the Taylor expansion for sin(u; + us + ...) and cos(u; + us + .. .).

2 4
F(u) = sinug [1_(u1+u22'+...) +(U1+ui'+'”) —...]+

up +ug +...)°
cosuol(u1+u2+...)—<1 2 ) +}

3!
= sinug [1 u1 + 2ugug +...) +. ] + (1.10)
1
cosuo|(ur + up + ...) — = (ud + 3uduy + 3ufus +...) +.. ]

3!

1
= smu0+u1cosu0+u2003uo——u%smu0+...
M~ —— 21 B
AO A1 v

A2
When we compare the Adomian polynomials found in eq. (1.10) with the ones
found in eq. (1.2) we see that we have the same Adomian polynomials computed

using two different methods.
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1.3 ADM and Taylor series method

In this section an important observation can be made here. If we substitute

Adomian polynomials into eq. (1.1) we obtain

F(u) = Ag+ A1+ As+ Az + Ay + -+

= Up + (U1 + U2 + U3)F/(U0) +

%(u? + 2uyuy + 2ugus +ui + - - ) F" (ug) +
%(ui’ + 3utug + 3udus + 6ujugus + - - ) F" (o)
= Fl(ug) + (u —ug)F'(ug) + %(u —uo)?F" (ug) +
%(u — o) F" (ug) + -+
- > By
n=0 '

The last expansion confirms that the series of A,, polynomials is a Taylor series

expansion about a function uy and not about a point as usually used.

Proposition 1.1. [5] Consider the differential equation

d
= = N(u(x). (1.11)
together the initial condition
u(xo) = uo. (1.12)

Then, the general solution given by the Taylors series method is precisely the

ADM, where

u®) (1)
k!

and uy, k=0,1,..., come determined by the iterative scheme:

ug(x) = (x —z)*, k=0,1,2,...

uy = u(xp),

up(z) = /Anl(s)ds, n=123,...

zo
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where Ay, k=0,1,2,. .., satisfies

Ag(x) = %%(N(u(:p))) (x—20)" ', k=1,2,...

Proof. Replacing the initial condition (1.12) into eq. (1.11) to get

u'(zo) = f(xo,u0) = N(up),

so that
AO = UI<SL’0).

Now, by differentiating eq. (1.11) with respect to =, we obtain

(2) = “CIN(u(r))] = N'(u(e))ul(2) (113)

by using the initial conditions: u(zg) = uy and u'(x¢) = N(ug) we obtain
u"(xg) = N'(ug)u' (o). (1.14)
Then, by multiplying (z — x¢) both sides of eq.(1.14), we have
u(z0)(z — x0) = ' (20)(x — o) N'(u0) = uy () N'(ug) =: Ay (). (1.15)

Now, the next step is to integrate eq.(1.15) over [z, x]

/ " (20) (5 — 30)ds = / " Ay (s)ds.

o zo

That is, since

we have

us(z) = / " Ay (s)ds.

o

By differentiating eq. (1.13) again, we obtain

(@) = L M)

dx?
= N (u(@) (W () + N () (@) (), (1.16)
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Let © = x¢ in eq. (1.16) and divide by 2!, then multiplying by (z — x()? we have

1 1

" (o) (x = x0)? = 51 (N (u(zo))[u' (z0)]? + N'(u(xo) )’ (zo)u" (20)) (x — 20)?
= o) = )N (o) + (5 = ) ) o)
Now,
%u”/(xo)(x ) = %uf(x)zwuo) Fus(@) N (1) = As(2), (1.17)

and integrating both sides of eq. (1.17) over [xg, ], we obtain

u/// (1,0) u/// (1,0)

us() = — (x—xo)?’:/; 5 (s—xo)QdSZ/;AQ(s)ds.

Then, )
uz(z) = / Ay(s)ds.

o

By continuing of the same way this process, one gets

u("+1)(x0)

n!

L

nl dzn (z — 20)" = An(2). (1.18)

T=x0

N(u(z))

(z —x0)" =

Integrate both sides of eq. (1.18) over [xg, 2|, we have

un(x):/ An_1(s)ds.
zo
Therefore,

uy = u(xo),

up(z) = /Anl(s)ds, n=123,...

o
where A;(z), i =1,2,3,... verifies

Au(a) = TN ()




Chapter 2

ADM for Ordinary Differential
Equations

2.1 Analysis of ADM

The discussion of decomposition technique for solving nonlinear differential

equation will be discuss in this section.

Consider equation

Fu(t) = g(). (2.1)

where F' represents a general nonlinear ordinary or partial differential operator
including both linear and non linear terms. The linear terms are decomposed into
L + R, where L is easily invertible (usually the highest order derivative) and R is

the remained term of the linear operator. Thus, the equation can be written as
Lu+ Nu+ Ru=g, (2.2)

where Nu presents the nonlinear term. By solving this equation for Lu, since L is

14
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invertible, we can write
L 'Lu=L"'g— L 'Ru— L 'Nu, (2.3)

u=h+L'g— L 'Ru— L 'Nu, (2.4)

where h is the solution of the homogeneous equation Lu = 0, with the prescribed
initial or boundary conditions in some suitable way. The problem now is the
decomposition of the nonlinear term Nu. To do so, Adomain develop a technique

in which he parametrized A in a suitable way using

u = zn: N, (2.5)
=0

then Nu will be a function of A\, ug, u1,.... Suppose the nonlinearity term is of the

form Nu = f(u) which is analytic in A\, expanding Nu with respect to A to obtain

Flu(N) = Z N'A;, (2.6)

then A,, are polynomials defined such that each A; depends only on uy, ..., u,,

A, = An(uo, ..., u,) and they can be calculated from the following expression

A, = % (%N <kzzo )\"“uk>> _ %dd;uf(u()\)) | (2.7)

A

using that

then each
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is evaluated at A = 0 and dividing by n!. Hence,

d df du

ﬁf(u) = dudy

L N C A Y

d)\? du? \ d)\ du d\?’

Py P (A A P
d\3 dud \ d\ du? d\d)\2  dud)\3’

for the nt" derivatives

df & dif
v ;C(z’j)dui’

where
cli, 1) = ~(elin] — 1) + To(eli 1,5 1),
such that ¢(0,0) =1, ¢(0,1) = 0, and noting that c(i,7) = 0, 7 > j, and ¢(0, j) = 0,
7 >0.
If i = j =2, then ¢(2,2) = (%) = u.
c(2,3) = %ZQTZ = 3ujuy Now, by (2.5)

u =y + My + Nug + -+,

the following are useful relations

dn
—u(\ =nl
(Wm >)M ol

(Geron) =97,

n
du A=0

and
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hence, by eq. (2.7)

AO = f<u0)7
(N (e
Al B (d)\f(U))AO a <dU‘d)\))\0 B 1f( 0)’

1(d BPf (du\® df & u?
A = — _— — - - — / 1 pn
’ 2 <d)‘2 <U)))\:0 <du2 (d)\) + du d)\? —o u2f <u0> + 9 f (uo)u

3
! ! U "
Az = wusf'(uo) + uyua f” (ug) + jf/ (uo)-

In general, a convenient computational form for A/ s polynomials is

1 (< d’f
A, = o (Z c(v,n) du”)

v=1

A=0

Parameterize eq. (2.4) in the form
u=h+L"'g—AL"'Ru— AL "'Nu, (2.8)

where A is just an identifier for collection the terms in a suitable way such that w,
depends on wug, uq, ..., Up_1
> Nuy=h+L'g=ALT'RY AN'Ay = ALY N'u,. (2.9)
n=0 n=0 n=0

Equating the coefficients of equal powers of A\, we obtain
up =h + Lilg7

Up = —LilRU,nfl — LilAnfl.

Hence, u, is calculable for n > 1, as well u =) > ; u,. But when we tried to solve
the equation in analytical form, the process is longer. However, all the terms of

(2.9) can be determined and the solution is approximated by the truncated series

u=S""Nu,, see [3].
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2.2 Examples

Example 2.1. As a simple example, consider the nonlinear, initial value problem

dy 2
— = 2.10
dr V7 (2.10)
with the initial condition y(0) = 1.

This differential equation has the exact solution of

the inverse operator is then

L= /OI(.)dx,

rewriting the differential equation (2.10) in operator form, we have
Ly = Ny,

where N is a nonlinear operator such that
Ny =y,

next we apply the inverse operator for L to the equation. On the left hand side of
the equation, this gives

L™ Ly = y(x) — y(0),

using the initial condition, this becomes

L_lLy = y(l‘) - ]-7
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returning this to equation (2.5), we now have

y(z) =1 =L (Ny),
or

y(z) = 1+ LY(Ny).

Next, we need to generate the Adomian polynomials, A,

infinite series
y(t) =) yalt),
n=0
and define
n=0

To find A,,, we introduce the scalar A such that,

Zyn(t) =1+ L_l(z An),

y(A) =D Xy,
n=0

From the definition of the Adomian polynomials,

1 d"

A, = v (Ny(A)) [r=o0,

. Let y be expanded as an

(2.11)
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we find the Adomian polynomials.

Ay = yg,

Ay = 2yoy1,

Ay = 2yoy2 + Yo,
As = 2yoys + 2u192,

Ay = 2yoys + 2y1y3 + v,

Returning the Adomian polynomials to equation (2.11), we can determine the

recursive relationship that will be used to generate the solution

Yolx) = 1,

ynrr() = L7(An),

solving this yields

Yo = 1,
Yyi =
Y2 = a?,
Ys = 903,
Yo = 904,

we can see that the series solution generated by this method is

y(:p):1+x+x2+x3+x4+...22x",
n=0
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which we recognize as the Taylor series for the exact solution

Example 2.2. If we consider the anharmonic oscillator described by

2
Z—tf + k*sin(6) = 0 (2.12)

with k* = g\l and large amplitude motion and assuming 6(0) = v and 6'(0) = 0.
g

we write
LO+ NO =0.
We obtain
0=0(0)—L7'No=00)—L"> A,
n=0
where
N6 = k*sin 6,
since for
N6O =sin 6,
we have
AO = sin 90,
Ay = 0 cosby,
92
Ay = —51 sin 6y + 64 cos 6y,

3
Ay = —%COSQO—910281n90+9300590,
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we get

90 = 7
0, = —L'K*A,,
0, = —L'K%A;,

Since L~! represents a twofold definite integration from 0 to ¢,

2N
0, = —(7> sin 7,

kAt
Oy = (T) sin 7y cos 7,

k0t6
0y = — (F) (sin70052 v — 3sin® 7) ,

For more example see [11].

2.3 A comparison between ADM and Taylor series
method

In this section, we will compare the performance of the ADM and the Taylor series

method applied to the solution of linear ordinary differential equation.

Example 2.3. For comparison purposes, consider the linear initial value problem
e“u”" + xu =0, (2.13)
subject to the initial conditions

uw(0) = a, u'(0) = . (2.14)
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We will use two different methods to solve this example.

ADM method:-

Eq. (2.14) can be written in an operator form as
Lo,u = —ze *u, (2.15)

where Ly, (.) = <;(.). Then the inverse of L,, is, L;}(.) = [ ["(.)dzdz. Applying

L.} to both sides of (2.15) we find that

u(z) = a+ Br — L} (we "u). (2.16)

T

The decomposition method consists of decomposing u(z) into a sum of

components given by the infinite series

u(z) = Zun (2.17)

Substituting (2.17) into (2.16) yields

f: Un(x) = a4 fr — L} (:pe_x i un> : (2.18)
n=0 n=0

Next, we equate selected components on both sides using the following recursive
relationship:

UOIOZ+6.T,

wt = —LiMae " Y w(@)), (k> 0).
n=0
Accordingly, we find

uy = o+ fx
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wo= et = ~le ) 53 Bl

n=0

_ S (=" n+3 _ _l)n n-+4
- O‘nzzo<n+3)<n+2)n!‘” 52 (n+4)(n+3)ml"

1, 1 1 1
6:16—5:10 +E:p+ )+ﬁ( x—%:er ).

:a(

1 1 1 1 1
1— = —at— — - — 2.1
u(x) = af 6:c + T 4056 +...)+p6(1 :1: +20 S (2.19)

As can be verified by the above computation, two components only were used to
obtain the approximation. Furthermore, the accuracy level of the approximation

can be increased by evaluating further components.

The Taylor series method:-

The Taylor series method introduces the solution by an infinite series given by

= i anx". (2.20)
n=0

Substituting eq. (2.20) into eq. (2.13) gives
o o
e” (Z n(n — 1)anx”2> =— Z anpe™
n=2 n=0
or, equivalently
o xn o o
(Z H) (Z n(n — l)anx"_2> =—> aamth (2.21)
n=0 n=0 n=0
The coefficients a,,, n > 0, are determined by equating coefficients of like powers of
x through determining a formal recurrence relation. It is obvious that an explicit
recurrence relation is difficult to derive. Alternatively, we multiply the series

involved, term by term, to find ag = «, a1 = 8, ay =0, a3 = —%a,
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ay = %Oz — 1—126 and a5 = —4—1004 + %B. In view of eq. (2.21), the series solution eq.
(2.20) follows immediately. At this point, it should be noted that using the Taylor
series method, six iterations were evaluated to obtain the same result provided by

the decomposition method where two components only were computed.

The two series methods were applied separately to linear and nonlinear ordinary
differential equations. The study showed that the decomposition method is simple
and easy to use and produces reliable results with few iterations used. The method
also minimizes the computational difficulties of the Taylor series in that the

components are determined elegantly by using simple integrals [5].

2.4 Convection between two parallel walls

In many physical applications two parallel walls are maintained at uniform
temperatures. The transport phenomenon occurring as a result of a convective

flow between the vertical walls is given by the following differential equation:

d*u du>
prri Rau =€ (%> , e<<l1 (2.22)

where u represent the velocity of the particles’ between the parallel walls and Ra is

Rayleigh number, associated with the boundary conditions

u(0) = u(1l) =0,u"(0) ="(1) = 1. (2.23)

Method of solution

We first write (2.22) in the form

du\ 2
Lu=c(=) . (2.24)
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where b denotes the linear operator

we choose the linear operator to be (2.25) rather than

d4

dx?

as it is usually done in this method, since we are interested in oscillatory solutions
and these are generated by (2.25) more easily.

The operator L is invertible and its inverse is given by

Ll[.]:/o g(x, s)[.]ds, (2.26)

where g(x, s) is the Green’s function which satisfies the boundary value problem

Lg=06(z —s), (2.27)
g(0,8) =g(1,5) =0, ¢"(0,s) = ¢"(1,s) = 0. (2.28)
The homogeneous equation
d*u
@ — Rau =10

has the four linearly independent solution sinh((Ra)"/*z), sin((Ra)"*z),

cosh((Ra)"*z) and cos((Ra)"*z), therefor we take the value of g(z, s) to be

c1 cosh(bx) + cosinh(bz) + ez sin(bz) + ¢y cos(br), = <s
g(z,s) = (2.29)

ay cosh(bx) + ag sinh(bz) + assin(bx) 4+ a4 cos(bx), = > s

where

b= (Ra)"*,
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applying the boundary conditions
g(0,8) =0 gives ¢1 + ¢4 = 0,

g(1,s) = 0 gives ay cosh(b) + as sinh(b) + ag sin(b) + a4 cos(b) = 0,
g"(0,s) =0 gives ¢; + ¢4 = 0,

g"(1,s) = 0 gives a; cosh(b) + ag sinh(b) + az sin(b) + a4 cos(b) = 0,

which gives ¢; = ¢4, =0, a3 = —ay Z?j((z)) and a; = —as ig;}ﬁ%?) thus,the relation (2.29)
becomes
o sinh(bx) + 3 sin(bx) , T < S
g(x,s) = { - o (2.30)
iy Sinh(b(z — 1)) + Gt sin(b(l —z)) , x> s

The remaining constants are determined by applying the matching conditions at

. . 2
x = s, continuity of g, % and % at x = s,

sinh(b(s — 1)) sin(b(1 — s))

Qy

co sinh(bs) + cgsin(bs) = as

cosh(b) sin(b)
¢y cosh(bs) + ¢ cos(bs) = ag%&b—)l)) - a4%1(b_)8))7
co sinh(bs) — c3sin(bs) = as Sin}li)bs(}f(;) 1) ay Sin(:i(nl(b—) s))

and the value of the jump in the third derivative g is

cosh(b(s — 1)) cos(b(1 — s))

1
cosh(b) 4 sin(b) — ¢y cosh(bs) + czcos(bs) =

b3’

solving these four equations gives

sinh(b(s — 1))
2b% sinh(b)

Cy =

o sin(b(s — 1))
> 23sin(b)
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sinh(bs)cosh(b)
Ao =
> 7 T 2Bsinh(b)
sin(bs)
M T
hence,
sinh(b(s— . sin(b(1—s .
g(;L‘ 5) — L W Slnh(b{L‘) + % Sln(bl‘) , T <S8 (2 31)
| 25 s;zrlslfl()lf)) sinh(b(z — 1)) + % sin(b(1 —xz)) ,x>s

Clearly, g(z, s) is symmetric and not defined for Ra = (k7)?, which are known as
the critical frequencies. In this section, we treat only the case Ra # (km)* for
which g(z, s) is defined and unique.To find the inverse, L™1, of the operator L,
solving the homogenous differential equation of (2.22) with prescribed boundary
conditions (2.23)

d*u

w—R(IUZO

with «(0) = u(1) =0, «"(0) = u”(1) = 1 gives,

_ 1 ( sinh(bx)—sinh(b(z—1)) sin(b(1—x))+sin(bx)
uc(x) - 22 ( sinh(b) - sin(b) )

applying L™! on both sides of (2.24) and using the solution of homogenous

equation with given boundary conditions gives

u(z) = 1 (sinh(b:p) —sinh(b(z — 1)) sin(b(1 — 1)) + sin(bx))

202 sinh(b) sin(b)
+ 8/01g(:c, s) (Z—Z) ds, (2.32)

write u in the decomposition form

u= f: Un, (2.33)
n=0
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and expand the nonlinear term (g—;)z as

<3—Z)2 = ni;oAn, (2.34)

as follows

Aofz) = (%)

dug du
Al(x) = d—;d—l'l’
dug du duy \ 2
Az(e) = Qd—;d—;Jr(d—xl) ’
dUO dU3 dU1 dUQ
A = 27 et ket
3(7) dr dz + de dx’

dUO dU4 dU1 dU3 dUQ 2
() dv de | dw dr (dx) ’

next, substituting (2.33), (2.34) into (2.32) we get:

up(x) =

B (sinh(bx) —sinh(b(z — 1)) sin(b(1 —z)) + sin(bx))
202 sinh(b) sin(b) ’

up(x) = 5/0 g(x,8)An_1(s)ds, n>1.

See [3]



Chapter 3

ADM for Partial Differential
Equations

3.1 ADM for linear partial differential equations
For instance, in order to solve a linear PDE with two operators
L,u+ Lyu =g,

three general algorithms can be used. The first of them inverses the operator L,:

Uy = —L;lLyun,l, Vn > 1,
the second inverses L,:

Uy = —Ly_leun_l, Vn > 1,
and the third uses a double inversion:

| —1
Uy, = —§(Lm Ly+ L, Ly)u,—1, Vn2>1,

we can implement these general algorithms with or without calculating integral
constants. The algorithm choice doesn’t depend only on the considered equation

but also on the boundary or initial conditions. When someone is unfamiliar with

30



3.1. ADM for linear partial differential equations 31

this method, solutions of equations often calculated don’t verify the conditions and
so they can make believe that the method is not efficient. This is because most of
the algorithms don’t use all the conditions and so don’t directly impose them on
the solution. Of course, this problem doesn’t exist when the equation is a
differential equation because the integration constants only have to be correctly
identified. In the following we present the illustration of the implementation of

several scheme on a simple case [7].

Consider the equation:

Lyu+ Lyyu =2z + v,

where u is a function of the two variables = and y, L, is the first order derivation
operator concerning the variable x and L,, is the second order derivation operator

associated to the variable y. Consider also the initial conditions:

u(x:O):O,u(y:O):O,g—Z(y:m:O.

One of the algorithms consists in inverting the operator L! and to calculate the

integration constant created by this operation. So we can implement this scheme:

uy = L2z +y7) + ao(y),

Upy1 = Lx_lLyyun + an+1(y)7 vn > Oa
the first term of the series is

ug = 2% + xy* + ao(y),
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where ag(y) is a constant function that is calculated with the first condition. We
obtain:
Uy = 2 + xyg.
Then we have
u = —L;'(22) = —2” + ai(y),
and the integration constant is still null,

Uy = —1’2,

the next term is

UQZCLQ:O.

So the terms of the series are null after the second rank:
u, =0, Vn>2.

The final result is:

o

2

u = E Uy = Ug + U] = XY,
n=0

which is actually the solution of our equation. A similar method consists in
inverting the other differential operator L,, and to implement the following

scheme:

wp = Ly, (20 +y%) + ao()y + bo (),

Upy1 = L;;Lxun + ani1(z)y + bpsa(z), Vn>0.

The calculation is a bit longer because a double integration has to be made at each

step and because the two integration constants generated have to be identified
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with the two last conditions. We successively obtain:

4

4

2 Y _ .2 Y
uy = Y —|—12—|—a0y+bo—xy —|—12,
4 4

uy = —%+a1y+b1:—%,

uy = agy+by =0,

u, = 0, Vn>2,
and finally the accurate solution is obtained:

oo
U = E un:u0+u1::py2.
n=0

A third method consists in simultaneously inverting the two derivation operators

without calculating any integration constants:

I -
Uy = §(L11+Lyyl)<2x+y2>7

1, _
Uns1 = _§(Lx1Lyy+Ly;Lmun),

Simple calculations lead to:

_ v 2, Y

Uy = 5 +zy —|—24,
B 2 1, oyt
R LAY
22 1, oyt

Uo = Z+§xy _'_4_8’
T

Vn > 0.
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and with an immediate recursion:

2
_ E : _ 7 2 Y
()02]) - un - 2p+1 _'_ xy _'_ 3 % 2p+37

1
Popt1 = Z un = (1= 2p+1)$yz’

so we have:

lim PYop = lim Pop+1 = 1’1927

giving the expected result:

U= Zun = lim p,, = zy*

n=0

3.2 ADM for second order linear partial
differential equations

Hyperbolic Equation

Consider the hyperbolic equation
Lttu = 9[/3333’&, (31)

with the associated conditions

The analytical solution of this equation is
u(z,t) = cos(3mt) sin(mzx).

Here we are going to prove that this solution can be obtained with the
decomposition method. As a first term of the series, we can use the function ug

that verifies the boundary conditions and the equation L; = 0. Then we can



3.2. ADM for second order linear partial differential equations 35

implement the recurrent and invert Ly:
uy = sin(wz),

1
Upt1 = Ly Lygttny, 1 >0,

so we calculate:

uy = sin(mx),

w = - (7t)? sin(7x),

u = o (mt)* sin(mz),
81

us = —g5 (7t)% sin(7z),

n

Uy & (—1)"(7t)*" @n)

sin(mz).

We can notice that we have the first terms of the development as an entire series of
a cosinus function. As n increases towards infinity, we obtain the exact solution of

our hyperbolic equation:

u = Z Uy, & cos(3mt) sin(mz).

n=0

Elliptic Equation
Now consider the elliptic equation

Lyzu+ Lyyu=0. (3.2)
Consider also the conditions:

uy=0)=u(ly=1)=u(zx=0) =0, u(x = 1) = sin(ry).
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It can be solved by inverting the second order derivation operator concerning the

variable z, if the integration constants are calculated.

ug = L;*(0) + ao(y)z + bo(y),

Uns1 = —L 2Ly + a1 ()2 + bpga(y), n>0.
So we calculate:

uy = sin(my)z,
1, 1

U = (éx - 63:) 72 sin(7y),
1 1 7

Uy = (mf — —2* + —x) 7 sin(my),
1.1

7 31
us = (—x — 1z’ 4 3

—— 6 ]
50400 7200 T 2160 15120) wsin(my),

In this case, a simple expression of u,,, can’t be found. This observation is the
result of the calculation of the integration constants and particularly of the term
that is proportional to x and which has been created by the condition at x = 1.
Finally, we can’t obtain a general expression of ¢,, for all integers n nor

consequently an accurate expression of u.

Parabolic Equation

We can try to solve, on the field that is defined by x > 0, 0 <y < 1, the
hyperbolic equation
L,u = Ly,u (3.3)

associated to the boundary conditions

u(z=0)=0,u(y =0)=1—e u(y =1) = sin(x)
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The decomposition method can be implemented by inverting the operator LZ but
without calculating the integration constants. We have to initialize the recurrent

with ug that verifies the conditions and the equation L,,u:
up=(1-y)(1 —e*) +ysin(z),

Upt1 = Ly_yleun, Vn > 0.

The calculation is easy and leads to:

u = —e “(1-y)+ysin(z)+1-y,
2 3 3
u = e° (% — %) + % cos(x),
4 5 5
— e _Y \_Y
v = =05 T 1gg) T 1z )
ug = e° y—ﬁ — v’ - v’ cos(x)
720 5040 5040 ’
y — e y4n B y4n+1 B y4n+1 Sin(x)
(4n)!  (4n+1)! (4n + 1)! ’
—_— - y4n+2 B y4n+3 B y4n+3 COS(:L,).
n+2)! (@n+3)!) (n+3)

We can’t find an analytical expression of the sum of this series but we can assert
that there are two functions f and g of the variable y so that this sum can be

written

u(t,y) = e " (sin(y) — cos(y)) + sin(z) f(y) + cos(x)g(y),

where f and g verify f” = —g and ¢" = f, see [7]
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3.3 A diffusion of oxygen in absorbing tissue

The successful treatment of cancer by radiotherapy is dictated primarily by the
ability to apply a radiation dosage large enough to do substantial damage to the
cancerous cells without damaging surrounding healthy cells, and still remain
within the tissue tolerance level of radiation. The susceptibility of cancerous cells
to radiation has been shown to increase with increasing oxygen concentrations
within the tumor. Many experiments have shown that the dependence of tissue
radiosensitivity, for bacterial cells, indicates a 2-3-fold increase in the radiation
dosage would be required to obtain the degree of destruction for cells in the total
absence of oxygen in comparison with oxygenated cells. This effect of oxygen
allows the use of smaller radiation doses to achieve the desired percentage of
destruction of cancerous cells. It should be noted that the solution of the diffusion
of oxygen in absorbing tissues here is not limited to cancerous tumors, but may be
used in the diffusion of oxygen in absorbing tissues in general [4].

The solution of the oxygen diffusion problem in a medium, which simultaneously

absorbs the oxygen, consists of finding v and s such that

ou  u
E — @ - ]_, (3.4)
subject to
ou
3_x<t’ 0) =0,
u(t,s(t)) =0, (3.5)
ou
Ch( (1) =0, (3.6

and the initial condition

(0, z) = %(1 _ 22,0 <z < s(0) = 1. (3.7)
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Method of solution

Consider the general problem:

ou  O%u

which is the governing equation, subject to the boundary condition

ou
5, (1 0) = h(t),

the Dirichlet boundary condition

u(t, s(t)) = p(t),

the Neumann boundary condition

and the initial condition
u(0,z) = p(x), 0<az<s(0).

Our problem contains, as a special case, the above system which describes the
oxygen diffusion problem. Based on the ADM, we write (3.4) in Adomians

operator-theoretic notation as

ou

where
92
L., = EyeR (3.10)
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Applying the inverse linear operator

s(t)  ps(t)
/ / (\)dxdx

to (3.10) and taking into account that

u(t, s(t)) = p(t)

and
(Ou/0x)(t, s) = q(t),

we obtain

s(t)  ps(t) s(t)  ps(t) ou
u(t,x) = p(t) — q(t)(s — z) +/ / g(z)dzdx +/ / Edwdw.

Define the solution u(¢,z) by an infinite series of components in the form

u(t,x) = Z un(t, x).

Consequently, the components u,, can be elegantly determined by setting the

recursion scheme:

s(t)  ps(t)
w=pt) - a®-0+ [ [ ga)dods

s pst) g
Upy1(t, ) = / / ;t"d:cd:c, n >0,
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for the complete determination of these components. Replace p(t) = ¢(t) = 0 and

g(x) = 1 into the recursion scheme to get

uy = 5(3 —x)?,

S/
up = 5(3 —x)?,

8/2 4 8// 5
uy = Z(S—w) +§(5—$),

A polynomial profile of fifth degree is now obtained by the ADM, which is the

truncated decomposition series
U(t, .CL’) = Uo(t, .CL’) + ul(tv .CL’) + u2<t7 .T),

so that

1 S/ 8/2 8//
u(t,z) = 5(8 —z)* + 5(3 —z)*+ Z(s —z)* + E(S —x)°, (3.11)

and which automatically satisfies the boundary conditions (3.5) and (3.6). We can
now obtain an expression for the location of the moving boundary, s(¢). This is
derived from integrating (3.8) with respect to x from 0 to x and taking into

account that (2%)(¢,0) = h(t); we obtain

ou * * Ou
— = —dz. A2
o h(t) + /0 g(x)dz + /0 5 dx (3.12)

Substitute z = s into (3.12) and using the fact that (Ou/0x)(t, s) = q(t). Thus
s(t) s(t) ou
/ g(x)dx + / 8—dx = q(t) — h(t), (3.13)
0 0 t

s(0) = 1.
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Using the following Leibniz’s rule for differentiation under the integral sign:

d [*® ) gy ds
— t,x)dx = —d t,s(t))—
G e = [ S ate )G

and taking into account that wu(t, s(t)) = p(t), we obtain

) gy d [*® ds
—dr = — t,x)dx — p(t)—. 3.14
| G- 5 [ weoe -0 (3.14)

substituting (3.14) into (3.13), we get

s(t) d @ ds
d — t,x)dr — p(t)— = q(t) — h(t
| s@an+ 3 [ uttavde =05 = att) = hee),
where s(0) = 1. If we consider p(t) = ¢(t) = h(t) = 0 and g(z) = 1, then (1.8)

becomes
d s(t)

i, u(t, z)dr = —s, (3.15)

substitute the profile equation (3.11) into (3.15) gives an ODE to solve for s(t),

namely,
828, 838/2 848” 848’3 858/8” 868///
o T T T T e T
with s(0) = 1. So that
ss’ 828’2 838” 838’3 848/8” 858///
o + 3l + 1 + 1 + 3 5 + Gl +1=0, (3.16)

we now can determine the location of the moving boundary s(¢) as a function of
time by solving the nonlinear equation. Indeed, the solution s(t) follows

immediately by setting the following form:

V14 2\, (3.17)
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where A € R is a parameter to be determined. Simple computations lead to

58’ =\,
8/183 — _)\2’
81/185 — 3)\3’

8”8/84 — )\3

Substituting these expressions into (3.16), we obtain A3 + 6\% + 24\ + 48 = 0.
Consequently, we find A &~ —3.19 which is a real root of this equation. Hence, the
concentration and the location of the moving boundary for 0 < ¢ < 1/6.4 can be
represented fairly accurately by the approximate expression equation (3.11) and
V1 — 6.4t, respectively.

It should be noted that this solution is applicable for the time 0 < ¢ < 1/6.4 only.
An important note can be made here that the t-solution can be obtained by using
the initial condition equation (3.7) only. To do this, we apply the inverse linear
operator L; '(.) = fot(.)dt to both sides of (3.8) and use the initial condition
equation (3.7) to obtain

t9%u

dt
0 8.T2 ’

where
p(@) = (1/2)(1 = 2)? and g(x) = 1.

So that the decomposition method consists of decomposing the unknown function
u(z,t) into a sum of components defined by the series u(t,z) = > 7 u,(t, x).

Thus the components can be elegantly determined in a recursive manner as will be



44 Chapter 3. ADM for Partial Differential Equations

discussed later; we therefore set the recurrence scheme:

uo = (1/2)(1 —2)* —t,

t a2
Un+1=/ aaundt,nz().
0

2

3.4 ADM for nonlinear wave equation

In this section, we will again make use of the ADM in order to obtain analytic

nonhomogeneous solutions of the nonlinear partial differential equation
Uze — Uy = (2, 1), (3.18)

with initial conditions
u(0,4) = £(t),us(0,) = g(0). (3.19)

To apply the decomposition method, we write equation (3.18) in an operator form

with nonlinear term Nu = uwuy and L, = 88—52 are the differential operators. It is
clear that L_! is the two fold integration from 0 to x, Applying the inverse

operator to (3.20) yields

Loy Lua(u(2, 1)) = Ly (9(@,1)) + Ly, (Nu),

Tx

from which it follows that

u(w,t) = f(t) +zg(t) + Ly, (p(z, 1) + Lgy (Nu). (3.21)
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The decomposition method consists of decomposing the unknown function u(x,t)

into a sum of components defined by the decomposition series

u(z,t) = Zun(az,t), (3.22)

and the nonlinear term Nu = uuy can be expressed in the A, Adomian’s

polynomials, thus;

Nu = iAn,
n=0

where
o2
Ay = UO@UO,
0? 0?
A = UO@UI_FUI@Um
0? 0? 0?
A2 = U/O@UQ—'—U/l@Ul—'—UQﬁUO,

which leads to the recursive relationship

ug = f(t)+azg(t) + L, ¢(x,t),
w = L, (A),

uy = Lo, (Ay), (3.23)

Unr = L Y(A,), n>0.

Example 3.1. Let us consider a nonhomogeneous nonlinear wave equation. The
equation of the form
Upy — gy = 2 — 2(t* + 27), (3.24)

the initial conditions posed are
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ug(0,1) = 0. (3.27)

Using (3.23) to determine the individual terms of the decomposition, we find

1
uO:x2+t2—x2t2—6x4, (3.28)
and
1, 1 7 2 1
YA = 22 st iz e 262 L8
i e (Ao) = @7 4 ot — gttt — guat o eatt o+ et
1 7 2 1
= YA = M2 L6262 L8
U2 e () = g2t 4 goat = o 16" ’

and so on for other components. It can be easily observed that the self canceling
noise terms appear between various components. Canceling the third term in wu
and the first term in u; , the fourth term in uy and the first term in u; , in keeping

the non canceled terms in g yields the exact solution of (3.24) given by
u(z,t) = 2> + 2. (3.29)

This can be verified through substitution, see [12]

3.5 One dimensional nonlinear Burgers’ equation

The study of Burgers’ equation is important since it arises in the approximate
theory of flow through a shock wave propagating in a viscous fluid and in the
modeling of turbulence [10]. The exact solutions of Burgers’ equation have been
surveyed by Benton and Platzman [20]. In many cases these solutions involve
infinite series which may converge very slowly or for small values of the viscosity
coefficients.

Consider the one-dimensional nonlinear Burgers’ equation for a given field u(z,t)

and diffusion coefficient (or viscosity, as in the original fluid mechanical context) v,
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see [6].
Uy + € Uy — VUge =0, a <z <D, (3.30)
with initial conditions:
u(z,0) = f(z) (3.31)
u(a,t) = P, u(bt)=p0y Vt>0, (3.32)

In this section, the use of tanh function method is demonstrated to get an
analytical solution of eq. (3.30) which is not of series form. Secondly, an
approximate solution is obtained by applying ADM using the initial condition
u(z,0) = f(x) only. Then, a test example is given to demonstrate the accuracy of
the method and to illustrate its pertinent feature, another approach for using ADM

with the boundary conditions is proposed to get a numerical solution of eq. (3.30).

Analytical solution using the tanh function method for
Burgers’ equation

we find particular solutions for Burgers’ eq. (3.30) using the recent tanh function

method. For this, consider the transformations:

u(x,t) = f<§)7 (333)

where { = c¢(xz — At), where ¢ and X are arbitrary (real) constants. Based on this

we use the following change of variables

) d . 0 d, . 0 , d?
i) = A0, 50 =) gm0 =g (3.34)
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Applying the change of variable to Burgers’ eq.(3.30), the following ordinary

differential equation is obtained.

—cx—d";f) +ecf () —d‘l;f) — C%L({ 5(25) =0, (3.35)
Integrating eq. (3.35), we get
d
—cAf (&) + % f2(&) — v J;éé) = B, (3.36)

where B is the constant of integration. Now we introduce a new independent

variable:

y = tanh (¢)

that leads to the change of derivative

d o d
&V =0-v)5.0) (3.37)

We introduce the following tanh series

m

F&)=s) =) ay, (3.38)

=0
where m is a positive integer. From eqns. (3.37) and (3.38) we get

d
—cAs + %52 — v (1-y°) d—: = 0. (3.39)

To determine the parameter m we balance the linear term of highest order in eq.

(3.39) with the highest order nonlinear term. This in turn gives m—1, so we get

s (y) = ap + a1y. (3.40)
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Substituting s(y), and s'(y), from eq. (3.40) into eq. (3.39) yields the system of
algebraic equations for ag ,a;, ¢, and A :

yo - —c*vay + 0.505@3 —chag = 0,

y' :apaice — arch = 0, (3.41)
y* : 0.5cea® + c*va; = 0,

with the aid of Mathematica we find two solutions:

—2 —2
ag = CU,al = CU,)\:—QCU,
2cv —2cv
ag=—,a1 = A = 2c0.
€
So we obtain the solutions
2
u(z,t) = v (—1 — tanh [c (z + 2cut)]),
. (3.42)
u(z,t) = — (1 — tanh [c (z — 2cvt))]) ,
€

The ADM for Burgers’ equation using the initial condition

Let L (L() = %) is a linear operator. Then the approximate solution of the

nonlinear Burgers’ equation (3.30) is rewritten in the operator form with the initial
condition u(x,0) = ug = f(x), can be determined by Adomian’s polynomials with

the iterative process:

Ug (l‘,t) = f(:L‘),
Upir (2,t) = L' (g(t) — R(u,) —A,), n>0. (3.43)

Applying the inverse operator L~! on both sides of eq. (3.30) we get:

u(x,t) = f(2) — L7 (uty — Vi) - (3.44)
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Zun (z,t) = f(x) — L* (Z A, —v (Z un> ) (3.45)

Identifying the zeroth component ug(x,t) as f(z), the remaining components

Now, we get

un(z,t),n > 1 can be determined by using the recurrence relation (3.45). That is,

u(](:L’,t) = f(a:),

Unyr (2,1) = L7 (A, —v(un),,),n > 0. (3.46)

where A,, are adomian’s polynomials that represent the nonlinear term (uu,). One

can see that the first few terms of A, are given by:

Ag = uguy,

Al = uppUy + Uiz,

Ay = UgplUs + Uizt + Uz,

Az = UggUs + Uipls + Upply + Uy lo.

The rest of polynomials can be generated in a similar way. The scheme in (3.46)
can easily determine the components w, (z,t), n > 0 and the first few components

of u,(z,t) take the following form

u (z,t) = fl(z),

up (z,t) = L7 (Ag—v(ug),,),

ug (z,t) = L7 (A —v(w),,), (3.47)
uz (2,t) = L7 (A — v (ua),,),

ug(z,t) = L7 (A3 —v(ug),,)
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Calculating more components in the solution series can enhance the numerical
solution obtained by decomposition series. Consequently, one can recursively
determine each individual term of the series >~ u,(z,t), and hence the solution
u(z,t) is readily obtained in a series form. For numerical purposes to test the
accuracy of the proposed method, based on ADM, we consider two test cases for
the Burgers’ equation. The obtained numerical approximate solution for each case,

Ugppr. (2, 1), is compared with the exact solution where

Uappr (2, 1) = up(x,t) + i (z,t) + us(z, t)
(3.48)
tug(z,t) + ug(x, t) + ...

Test Case :

Consider the following analytic solution of Burgers’ eq. (3.30):

1 1 1
u(z,t) 5 [ tan {41} (:c 5 2t> H , t>0,
and the initial condition
1 — tanh 1 ( 15) t>0
—tanh< — (z —
4v ’ -

This test problem has known initial conditions and applying ADM one needs initial

u(z,0) =

N —

where z € [0, 28]

conditions only the According to this example and the scheme in (3.47), we get:

0625t 1

v
0.0078125¢> 5 [ 1 1
- e Z (-1 hd = (z—1
U 2 sec h {42} (x 5)} tan {42} (x 5)} :
t3 , [ 1 5 1
uz = —Wsech @(x—15) 1 — 3tanh @(x—15) .

We obtain a numerical approximate solution for Burgers’ equation. The obtained
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numerical results are summarized in Tables 1-4. From these results, we conclude
that the proposed method, to calculate the approximate numerical solution of the
Burgers’ equation, gives remarkable accuracy in comparison with the exact

solution for some values of time t.
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‘ T H U Approximate ‘ U Exact, ‘ Absolute error
4 0.99998986 0.99998987 | 4.00932 % 10~
8 0.99944700 0.99944722 | 2.13127 % 1077
12 0.97068831 0.97068776 | 5.45743 % 10~"
16 0.37754702 0.37754066 | 6.35561 * 10~°
20 0.01098545 0.01098694 | 1.48505 * 10~°
24 0.00020339 0.00020342 | 3.48687 * 1078
28 3.726 % 107 3.7266 * 107° | 6.4136 % 1010

Table 3.1: Absolute errors at t = 1 and v = 0.5.

‘ T H U Approximate ‘ U Exact ‘ Absolute error ‘
4 0.99999543 0.99999627 | 8.39849 x 10~
8 0.99975179 0.99979657 | 4.47788 % 107
12 0.98891035 0.98901305 | 1.02707 % 10~*
16 0.62015142 0.62245933 | 2.30791 % 103
20 0.02890743 0.02931223 | 4.04797 % 10~*
24 0.00054256 0.00055277 | 1.02176 % 107>
28 || 9.9418 x107% | 1.013% 107" | 1.88157 % 10~ 7

Table 3.2: Absolute errors at t = 3 and v = 0.5.

‘ T H U Approximate ‘ U Exact, ‘ Absolute error
4 0.99999942 0.99999942 | 7.6743 % 10~1Y
8 0.99991507 0.99991518 1.1337 % 1077
12 0.98756129 0.98756834 7.0518 % 107
16 0.34871176 0.34864513 | 6.66311 % 10~°
20 0.00359200 0.00359360 1.5927 % 107°
24 0.00002428 0.00002430 1.1512 % 1078
28 || 1.6366* 1077 | 1.6373* 107" | 7.7609 * 10~

Table 3.3: Absolute errors at t = 1 and v = 0.4.
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The following figures (3-1-3-3) show the behavior of the approximation solutions

for the first test case.

Figure 3-1: The numerical solution (v=0.5 from t=0 to t=1).

Figure 3-2: The numerical solution (v=0.5 from t=0 to t=3).
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Figure 3-3: The numerical solution (v=0.4 from t=0 to t=1).

The ADM for Burgers’ equation (considering the boundary
conditions)

Let R = 59—9:2. Then eq. (3.30) can be expressed as
1
Ru = —[u; + uu,], x € [a,b]. (3.49)
v
Applying the inverse operator R~* on both sides to eq. (3.49) yields
1
u(z,t) = p+ ;[ut + uu,l, (3.50)
where R™' = [ [(.)dzdz and p = C(t) + xB(t). Using eq.(3.50) becomes

Ez:unt+’§£:14n
n=0 n=0

where A, =" _ Up_pmlm,. Now we decompose p into = > "7 fin.

)

- 1

E Up(2,t) = p+—R*
v

n=0

We have

)

iun(:c,t) = iun + %Rl
n=0 n=0

5;:1Mn +'§§:fqn
n=0 n=0
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Identify ug = po = Cy(t) + xBy(t), all other components are determined by
L,
Up+1 = Un+1 + ;R [unt + Am] 5

where pi,11 = Chi1 + xBui1, n > 0. The integration constants C’s and B’s are
determined by satisfying the boundary conditions with the approximate

solutiong,, 1 = >, _,ug, n > 0; Thus,

¢n+1(a7t) = u(a’vt):Blv
¢n+1(b’t) = u(b’t):ﬁQ-

Our first approximation is ¢y = ug, or¢y = Cy(t) + xBy(t). Since
(bl(a’v t) = U(CL, t) = 617 ¢1<b7 t) = U(b, t) = 62'

Therefor,

Co + (IBO = 51, (351)

Co + bBy = ps. (3.52)
Solving (3.51) and (3.52), we get

P2 — B
B pu—
0 b—a )
Cy = b3 — aﬁz.
b—a

Hence,
(z —a)bBs — (b—x)B
b—a '

Uy =

To calculate u;, we have

1
Uy = Cl + I‘Bl -+ ;R_l [um + AQ] .
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A two term approximation is given by
P2 = ¢o + u1 = up + u1.
Hence,
—a)bBy — (b— 1
¢2 = (l‘ a) 5;_ a,( x)ﬁl + Cl + I‘Bl + ;R_l [U()t + Ao] . (353)
Since ¢9(a,t) = f1 and ¢o(b,t) = [a, we have
§a+Ci+aB; =0, (3.54)
&+ C1+ 0By =0, (3.55)
where,
1
ga = ; [Ril <u0t + AO)} ‘:B=a7
and
L
& = ; [R (uoe + Ao)} o= -
Eqns. (3.54) and (3.55) give
éa - éb
B, = 3.56
1 b—a ) ( )
ala — &y
C . 3.57
! b—a (3:57)

Using(3.56), (3.57) and (3.53), we get

—b — 1
U = aga Sb +x§a gb 4+ =

b—a T o R (o + Ao

we can continue in this manner to calculate us, ug, . . .
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