Archiv der Mathematik

Norm attaining operators from $L_1(\mu)$ into $L_{\infty}(\nu)$

By

RAFAEL PAYÁ*) and YOUSEF SALEH

Abstract. Given an arbitrary measure μ and a localizable measure ν , we show that the set of norm attaining operators is dense in the space of all bounded linear operators from $L_1(\mu)$ into $L_{\infty}(\nu)$.

1. Introduction. Bishop and Phelps [1] have asked the general question, for which Banach spaces X and Y is the collection of norm attaining operators dense in the space L(X, Y) of all bounded linear operators from X into Y. An operator $T \in L(X, Y)$ attain its norm if there is $x \in B_X$ (the closed unit ball of X) such that

$$||Tx|| = ||T||.$$

We denote the set of all norm attaining operators by NA(X, Y). After the pioneering work of J. Lindenstrauss [8], the question of the denseness of NA(X, Y) in L(X, Y) has received a lot of attention. Let us only mention the results dealing with the case when X and Y are L_1 -spaces or C(K)-spaces. It was shown by J. Uhl [10] that given a strictly convex Banach space Y, $NA(L_1[0,1],Y)$ is dense in $L(L_1[0,1],Y)$ if and only if Y has the Radon-Nikodým property, and A. Iwanik [5] proved that $NA(L_1(\mu), L_1(\nu))$ is dense in $L(L_1(\mu), L_1(\nu))$ for arbitrary measures μ and ν . Moreover, J. Johnson and J. Wolfe [6] showed that NA(C(K), C(L)) is dense in L(C(K)), C(L) for arbitrary compact spaces K and L. In [9] W. Schachermayer proved that $NA(L_1[0,1], C[0,1])$ is not dense in $L(L_1[0,1], C(K))$ is dense in $L(L_1[0,1], C(K))$. Recently C. Finet and R. Payá [4] have shown that $NA(L_1[0,1], C(K))$ is dense in $L(L_1(\mu), L_{\infty}[0,1])$, for every σ -finite measure μ , so giving a new example of a compact Hausdorff space K such that $NA(L_1[0,1], C(K))$ is dense K and L. In [9]

In this note we extend the result in [4], to prove the following

Theorem 1. $NA(L_1(\mu), L_{\infty}(\nu))$ is dense in $L(L_1(\mu), L_{\infty}(\nu))$ for every measure μ and every localizable measure ν .

By using the isometric classification of L_1 -spaces and a technical lemma which deals with the denseness of norm attaining operators from an arbitrary ℓ_1 -sum into an arbitrary ℓ_{∞} -sum of Banach spaces we reduce the proof of the above theorem to the case when μ is

Mathematics Subject Classification (1991): 46B25, 47B38.

^{*)} Research partially supported by Spanish D.G.E.S. Project No. PB96-1406.

Vol. 75, 2000

finite and ν is the product measure on a (possibly infinite) product of copies of [0, 1]. For this case we use a natural representation of norm attaining operators and the martingale convergence theorem.

If a compact Hausdorff space K is hyperstonian, then there is a localizable measure ν such that C(K) is isometric to $L_1(\nu)^* = L_{\infty}(\nu)$ (see [2; pp. 493].) Conversely, if the measure ν is localizable, then $L_{\infty}(\nu)$ is isometric to C(K) for suitable hyperstonian K. Therefore, our result can be equivalently stated by saying that $NA(L_1(\mu), C(K))$ is dense in $L(L_1(\mu), C(K))$ for every measure μ and every hyperstonian compact Hausdorff space K.

2. Proof of the main result. We start by proving a lemma which will allow a reduction to the case when μ and ν are finite measures. Given an arbitrary family $\{X_i : i \in I\}$ of Banach spaces, we denote by $\left(\bigoplus_{i \in I} X_i\right)_{\ell_1}$ its ℓ_1 -sum, i.e, the Banach space of all families $(x_i)_{i \in I}$ such that $x_i \in X_i$ for all i, and

$$\|(x_i)_{i\in I}\| := \sum_{i\in I} \|x_i\| < \infty$$

Similarly $\left(\bigoplus_{j\in J} Y_j\right)_{\ell_{\infty}}$ denotes the ℓ_{∞} -sum of a family $\{Y_j : j \in J\}$ of Banach spaces, i.e, the Banach space of all families $(y_j)_{i\in J}$ with $y_j \in Y_j$ for all *j* and

$$\|(y_j)_{j\in J}\| := \sup \{\|y_j\| : j \in J\} < \infty.$$

We recall for later use the well known fact that the dual of an ℓ_1 -sum is the ℓ_∞ -sum of the dual spaces:

$$\left(\mathop{\oplus}\limits_{i\in I} X_i
ight)^*_{\ell_1} = \left(\mathop{\oplus}\limits_{i\in I} X_i^*
ight)_{\ell_\infty}$$

Lemma 2. Let $\{X_i : i \in I\}$ and $\{Y_j : j \in J\}$ be arbitrary families of Banach spaces, $X = \left(\bigoplus_{i \in I} X_i \right)_{\ell_1}$ and $Y = \left(\bigoplus_{j \in J} Y_j \right)_{\ell_{\infty}}$. Then the following statements are equivalent

- (1) NA(X, Y) is dense in L(X, Y)
- (2) $NA(X_i, Y_j)$ is dense in $L(X_i, Y_j)$ for every $(i, j) \in I \times J$.

Proof. The key fact here is the natural identification of L(X, Y) with the space $\left(\bigoplus_{(i,j)\in I\times J} L(X_i, Y_j) \right)_{\ell_{\infty}}$ which we now describe. For $i \in I$ and $j \in J$ let E_i and F_j denote the natural isometric embeddings of X_i and Y_j into X and Y, respectively. Similarly, let P_i and Q_j denote the natural norm-one projections from X and Y onto X_i and Y_j , respectively. For $T \in L(X, Y)$, it follows clearly from the definition of the ℓ_{∞} -sum that $||T|| = \sup \{||Q_jT|| : j \in J\}$. On the other hand, every $x \in X$ can be written as $x = \sum_{i \in I} E_i P_i x$, the family $\{E_i P_i x\}$ being absolutely summable with $||x|| = \sum_{i \in I} ||E_i P_i x|| = \sum_{i \in I} ||F_i x|| = \sum_{i \in I} ||SE_i P_i x|| \le \sup \{||SE_i|| : i \in I\} \sum_{i \in I} ||P_i x||$, which shows that $||S|| = \sup \{||SE_i|| : i \in I\}$. In particular we have $||Q_j T|| = \sup \{||Q_j TE_i|| : i \in I\}$ for every $j \in J$, so

and $T \mapsto (Q_j T E_i)_{(i,j) \in I \times J}$ is the above mentioned identification. More concretely, if we are given operators $T_{ij} \in L(X_i, Y_j)$ with $\sup \{ \|T_{ij}\| : i \in I, j \in J \} < \infty$, then there is a unique $T \in L(X, Y)$ such that $Q_j T E_i = T_{ij}$ for every $(i, j) \in I \times J$.

 $(1) \Rightarrow (2)$ Let $h \in I$ and $k \in J$ be fixed. To show that $NA(X_h, Y_k)$ is dense in $L(X_h, Y_k)$, fix $u \in L(X_h, Y_k)$, assume without loss of generality that ||u|| = 1 and let $0 < \varepsilon < 1$ be given. Consider the operator $U = F_k u P_h \in L(X, Y)$. Note that $Q_j U = 0$ unless j = k and $Q_k U E_i = 0$ unless i = h, while $Q_k U E_h = u$, so ||U|| = ||u|| = 1. By (1) we get an operator $T \in NA(X, Y)$ such that ||T|| = 1 and $||T - U|| < \varepsilon$. Then we take $t = Q_k T E_h \in L(X_h, Y_k)$, which clearly satisfies $||t|| \le 1$, $||t - u|| \le ||T - U|| < \varepsilon$ and we are left with showing that t attains its norm. Let $x \in S_X$ be such that ||Tx|| = ||T|| = 1. For $j \in J, j \neq k$ we have

$$\|Q_jTx\| = \|Q_jTx - Q_jUx\| \le \|T - U\| < \varepsilon < 1$$

so $||Tx|| = ||Q_kTx|| = 1$, which shows that $||Q_kT|| = 1$ and Q_kT also attains its norm at *x*. Now, for $i \in I, i \neq h$ we have

$$\|Q_k T E_i\| = \|Q_k T E_i - Q_k U E_i\| \le \|T - U\| < \varepsilon < 1, \qquad \text{so}$$

$$1 = \|Q_k T\| = \|Q_k T E_h\| = \|t\|.$$

By writting $x = \sum_{i \in I} E_i P_i x$ with $\sum_{i \in I} ||P_i x|| = ||x|| = 1$, we get

$$1 = \|Q_k Tx\| \leq \sum_{i \in I} \|Q_k TE_i P_i x\|$$

$$= \|tP_h x\| + \sum_{i \in I \setminus \{h\}} \|Q_k TE_i P_i x\|$$

$$\leq \|P_h x\| + \varepsilon \sum_{i \in I \setminus \{h\}} \|P_i x\|$$

$$\leq \|P_h x\| + \sum_{i \in I \setminus \{h\}} \|P_i x\| = 1.$$

It follows that $P_i x = 0$ for $i \in I \setminus \{h\}$, so $||P_h x|| = 1$ and the equality $||tP_h x|| = ||P_h x|| = 1$ shows that *t* attains its norm, as required.

(2) \Longrightarrow (1). Let $T \in L(X, Y)$ with ||T|| = 1 and $0 < \varepsilon < 1$ be given. We first find $h \in I$ and $k \in J$ such that $1 - \frac{\varepsilon}{3} < ||Q_k T E_h|| \le 1$. Then we use (2) to find an operator $s_0 \in NA(X_h, Y_k)$ such that $||s_0 - Q_k T E_h|| \le \frac{\varepsilon}{3}$ and it follows that

$$1 - \frac{2\varepsilon}{3} \le \|s_0\| \le 1 + \frac{\varepsilon}{3}.$$

By taking $s = \frac{s_0}{\|s_0\|}$ we have $s \in NA(X_h, Y_k), \|s\| = 1$ and $\|s - Q_k TE_h\| \leq \varepsilon$. Finally let $S \in L(X, Y)$ be such that $Q_k SE_h = s$ and $Q_j SE_i = Q_j TE_i$ for $(i, j) \neq (h, k)$. We have clearly $\|S\| = 1, \|S - T\| \leq \varepsilon$, and we are left with showing that $S \in NA(X, Y)$. Actually if $x_h \in X_h$ is such that $1 = \|x_h\| = \|sx_h\|$, for $x = E_h x_h$ we have

$$||Sx|| \ge ||Q_k Sx|| = ||Q_k SE_h x_h||$$

= $||sx_h|| = 1$,

and S attains its norm, as required. \Box

Vol. 75, 2000

Recall that if μ is an arbitrary measure, $L_1(\mu)$ can be decomposed in the form

$$L_1(\mu) = \Big(\bigoplus_{i \in I} L_1(\mu_i) \Big)_{\ell_1}$$

where μ_i is a finite measure for all $i \in I$ (see [2, Appendix B] for example). On the other hand if ν is a localizable measure we have that $L_{\infty}(\nu) = L_1(\nu)^*$ and we get also finite measures $\{\nu_j : j \in J\}$ such that

$$L_{\infty}(\mathbf{v}) = \left(\bigoplus_{j \in J} L_{\infty}(\mathbf{v}_j) \right)_{\ell_{\infty}}$$

In view of the above lemma, to prove Theorem 1 we may assume without loss of generality that μ and ν are finite measures. In this case we have a characterization of the operators in $NA(L_1(\mu), L_{\infty}(\nu))$, which was essentially obtained in [4]. For the sake of completeness we state and prove it for our formally more general case. To this end we recall a well known representation of the operator space $L(L_1(\mu), L_{\infty}(\nu))$.

If $(\Omega, \mathscr{A}, \mu)$ and (K, \mathscr{B}, ν) are finite measure spaces we have an isometric isomorphism

$$L(L_1(\mu), L_{\infty}(\nu)) \equiv L_{\infty}(\mu \otimes \nu)$$

where $\mu \otimes \nu$ denotes the product measure on $\Omega \times K$, the operator \hat{h} corresponding to an essentially bounded function h being given by

$$[\hat{h}(f)](t) = \int_{\Omega} h(w, t) f(w) d\mu(w)$$

for $[\nu]$ -a.e. $t \in K$ and every $f \in L_1(\mu)$ (see [4].) We now characterize those functions h such that the operator \hat{h} attain its norm.

Proposition 3. Let $(\Omega, \mathcal{A}, \mu)$ and (K, \mathcal{B}, ν) be finite measure spaces and let

 $h \in L_{\infty}(\mu \otimes \nu)$. Consider the following statements.

(1) There is a set $A \in \mathcal{A}, \mu(A) > 0$, and a sequence (B_n) in $\mathcal{B}, \nu(B_n) > 0$ for every n, such that

$$\lim_{n\to\infty}\frac{1}{\mu(A)\nu(B_n)}\Big|\int_{A\times B_n}hd(\mu\otimes\nu)\Big|=\|h\|_{\infty}.$$

(2) There are sets A, B_n like in (1) and a measurable function φ on Ω such that $|\varphi(w)| = 1$ for all $w \in \Omega$ and

$$\lim_{n\to\infty}\frac{1}{\mu(A)\nu(B_n)}\Big|\int_{A\times B_n}h(w,t)\varphi(w)d\nu(t)d\mu(w)\Big|=\|h\|_{\infty}$$

(3) The operator $\hat{h} \in L(L_1(\mu), L_{\infty}(\nu))$ corresponding to h attains its norm. Then $(1) \Rightarrow (2) \Leftrightarrow (3)$. Moreover, in the real case all three statements are equivalent.

Proof. (1) \Rightarrow (2) is clear. For (2) \Rightarrow (3), just consider the function $f = \frac{\varphi \chi_A}{\mu(A)}$ where χ_A denotes the characteristic function of A. Then $||f||_1 = 1$, and it follows clearly from (2) that $||\hat{h}(f)||_{\infty} = ||\hat{h}||_{\infty} = ||\hat{h}||_{\infty}$

 $(3) \Rightarrow (2)$. Let us start with a general remark on norm attaining functionals on $L_1(\mu)$. Suppose that a function $g \in L_{\infty}(\mu)$ attains its norm as a functional on $L_1(\mu)$ and, without loss of generality, that $||g||_{\infty} = 1$. Then there is a function f in the unit sphere of $L_1(\mu)$ such that

$$1 = \int_{\Omega} fgd\mu \leq \int_{\Omega} |fg|d\mu \leq \int_{\Omega} |f|d\mu = 1$$

hence fg = |f|, $[\mu]$ -almost everywhere. Let us write $f = \varphi|f|$ where φ is a measurable function on Ω and $|\varphi| = 1$. Then $\varphi g = 1$, $[\mu]$ -a.e in the set $C := \{w \in \Omega : f(w) \neq 0\}$. Therefore, if A is any measurable subset of C with $\mu(A) > 0$, we have

$$\int_{A} \varphi g d\mu = \mu(A),$$

which shows that g also attains its norm at the function $\varphi_A := \mu(A)^{-1} \varphi \chi_A$, which is in the unit sphere of $L_1(\mu)$. In the real case, since φ only takes the values ± 1 , we may choose the set A so that φ is constant on it.

By using the Hahn-Banach Theorem we can now extend the above remark to operators. Let T be a norm attaining operator from $L_1(\mu)$ into an arbitrary Banach space (say Y) with ||T|| = 1. Then there are $f \in L_1(\mu)$ and $y^* \in Y^*$ such that $||f||_1 = ||y^*|| = 1$ and $y^*(T(f)) = 1$, but this means that the functional $T^*(y^*)$ attains its norm, where T^* is the adjoint operator. Thus, there are a measurable set $A \subset \Omega$ with $0 < \mu(A)$ and a measurable function φ on Ω with $|\varphi| = 1$ such that

$$1 = |y^*(T(\varphi_A))| \le ||T(\varphi_A)||.$$

Back to the proof of the desired implication, assume that (3) holds and find a set A and a function φ as above, such that

$$\|h\|_{\infty} = \|\hat{h}\| = \|\hat{h}(\varphi_A)\|_{\infty}.$$

Now recall that the unit ball of $L_1(\nu)$ is the closed absolutely convex hull of the set

$$\{\nu(B)^{-1}\chi_B: B\in \mathscr{B}, \nu(B)>0\},$$

equivalently,

$$\|g\|_{\infty} = \sup\left\{\frac{1}{\nu(B)}\Big|\int\limits_{B} gd
u\Big|: B \in \mathscr{B}, \nu(B) > 0\right\}$$

for every $g \in L_{\infty}(\nu)$. Thus we may find a sequence (B_n) in \mathscr{B} with $\nu(B_n) > 0$ for every n, such that

$$\begin{split} \|h\|_{\infty} &= \|\hat{h}(\varphi_A)\|_{\infty} = \lim_{n \to \infty} \frac{1}{\nu(B_n)} \Big| \int_{B_n} \hat{h}(\varphi_A) d\nu \Big| \\ &= \lim_{n \to \infty} \frac{1}{\mu(A)\nu(B_n)} \Big| \int_{A \times B_n} h(w,t)\varphi(w) d\mu(w) d\nu(t) \Big| \end{split}$$

which shows that (2) holds. Recall that in the real case we can arrange that φ is constant on A, hence we actually get that (1) holds. In [4] the reader may find an example showing that (2) is strictly weaker than (1) in the complex case. \Box

In the special case $h = \chi_E$, the characteristic function of a measurable set, we get

Corollary 4. Given a measurable set $E \subset \Omega \times K$, with positive measure, the operator $\hat{\chi}_E$ attains its norm if and only if

$$\lim_{n \to \infty} \frac{[\mu \otimes \nu]((A \times B_n) \cap E)}{\mu(A)\nu(B_n)} = 1$$

for some measurable set $A \subset \Omega$, with $\mu(A) > 0$ and some sequence (B_n) of measurable subsets of K with $\nu(B_n) > 0$ for every n.

In a special case, namely when K is a product of unit intervals, we will show that every measurable set $E \subseteq \Omega \times K$ satisfies the condition in the above corollary, and this will provide a fairly large set of norm attaining operators. Let us first show that we can reduce the proof of our theorem to this special case. This is a consequence of the representation theory for L_1 -spaces. Indeed, if ν is a finite measure, we may write

$$L_1(\nu) = \left(\bigoplus_{i \in I} X_i \right)_{\ell_1}.$$

Where each space X_i is either 1-dimensional or of the form $L_1([0,1]^A)$ where Λ is a finite or infinite set, for each coordinate interval we consider Lebesgue measure on the Borel subsets of [0,1], and $[0,1]^A$ is provided with the product measure on its Borel σ -algebra (see [7].) It follows that

$$L_{\infty}(\nu) = \left(\bigoplus_{j \in J} Y_j \right)_{\ell_{\infty}}$$

where each Y_j is either 1-dimensional or of the form $L_{\infty}([0,1]^A)$. By Lemma 2, to show that $NA(L_1(\mu), L_{\infty}(\nu))$ is dense in $L(L_1(\mu), L_{\infty}(\nu))$ it is enough to show that $NA(L_1(\mu), Y_j)$ is dense in $L(L_1(\mu), Y_j)$ for every $j \in J$, and the Bishop-Phelps Theorem takes care of the case when Y_j is 1-dimensional, so we may restrict our attention to the case $L_{\infty}(\nu) = L_{\infty}[0,1]^A$. Therefore, *in what follows we will take* $K = [0,1]^A$ *where* Λ *is an arbitrary set,* \mathcal{B} *will be the Borel* σ *-algebra on* K *and* ν *will be the product measure on* K *each coordinate interval being provided with Lebesgue measure.*

Proposition 5. Let $(\Omega, \mathscr{A}, \mu)$ be a finite measure space and let $E \subseteq \Omega \times K$ be a measurable set with positive measure: $E \in \mathscr{A} \otimes \mathscr{B}, (\mu \otimes \nu)(E) > 0$. Then there are measurable sets $A \in \mathscr{A}, B_n \in \mathscr{B}$, with $\mu(A) > 0, \nu(B_n) > 0$ for all n, such that

$$\frac{[\mu \otimes \nu]((A \times B_n) \cap E)}{\mu(A)\nu(B_n)} \longrightarrow 1.$$

Proof. We start with the case when Λ is countable and use an analog of Lebesgue Density Theorem. Let us fix a sequence $(\Pi_n)_{n=1}^{\infty}$ of finite partitions of $K = [0, 1]^{\Lambda}$ into sets of positive measure, such that Π_{n+1} is a refinement of Π_n for each n, and the σ -algebra generated by $\bigcup_{n=1}^{\infty} \Pi_n$ is the Borel σ -algebra \mathscr{B} . For each $y \in K$ and $n \in \mathbb{N}$, let B(n, y) be the set in Π_n containing y.

Now, given a Borel set $F \subseteq K$, define

$$\delta(F) = \bigg\{ y \in K : \lim_{n \to \infty} \frac{\nu(F \cap B(n, y))}{\nu(B(n, y))} = 1 \bigg\}.$$

As a special case of the martingale almost everywhere convergence theorem (see [3; \S 17], for example) we have that

(*)
$$\nu(F \setminus \delta(F)) = \nu(\delta(F) \setminus F) = 0.$$

Let us now consider a measurable set $E \subseteq \Omega \times K$ with $(\mu \otimes \nu)(E) > 0$. For each $w \in \Omega$ take the vertical section

$$E_w = \{x \in K : (w, x) \in E\}$$

and define a new set $\hat{E} \subseteq \Omega \times K$ by

$$\hat{E} = \{(w, y) : w \in \Omega, y \in \delta(E_w)\}.$$

We claim that \hat{E} is also measurable. Indeed, consider for each $n \in \mathbb{N}$ the measurable set $H^{(n)} \subseteq \Omega \times K \times K$ given by

$$H^{(n)} = \left\{ (w,y,z) : (w,z) \in E, (y,z) \in \bigcup_{B \in \varPi_n} (B \times B) \right\}.$$

Then, for each $(w, y) \in \Omega \times K$ the corresponding section of $H^{(n)}$ is given by

$$H_{(w,y)}^{(n)} = \{ z \in K : z \in E_w, B(n,y) = B(n,z) \}$$

= $E_w \cap B(n,y)$

and it follows from Fubini's theorem that the function φ_n defined on $\Omega \times K$ by

$$\varphi_n(w,y) = \nu(E_w \cap B(n,y))$$

is measurable. Since $\psi_n(w, y) = \nu(B(n, y)) > 0$ is measurable as well, we see that the set

$$\hat{E} = \left\{ (w, y) : \liminf_{n \to \infty} \frac{\varphi_n(w, y)}{\psi_n(w, y)} = 1 \right\}$$

is measurable, as claimed. It follows from (*) and Fubini's Theorem that

$$(\mu \otimes \nu)(\hat{E}) = \int_{\Omega} \nu(\delta(E_w)) d\mu(w) = \int_{\Omega} \nu(E_w) d\mu(w) = (\mu \otimes \nu)(E) > 0$$

but we have also

$$(\mu \otimes \nu)(\hat{E}) = \int\limits_{K} \mu((\hat{E})^{y}) d\nu(y)$$

where \hat{E}^{y} is now the horizontal section:

$$\hat{E}^{y} = \{ w \in \Omega : y \in \delta(E_w) \}.$$

It follows that $\mu((\hat{E})^{y_0}) > 0$ for some $y_0 \in K$. Take $A = (\hat{E})^{y_0}$ and note that $y_0 \in \delta(E_w)$ for every $w \in A$. Take also $B_n = B(n, y_0)$ for all n. Then we have

$$\lim_{n \to \infty} \frac{\nu(E_w \cap B_n)}{\nu(B_n)} = 1$$

for every $w \in A$. By integrating over $w \in A$ and using the dominated convergence theorem

Vol. 75, 2000

we finally get

$$\frac{(\mu \otimes \nu)(E \cap (A \times B_n))}{\mu(A)\nu(B_n)} \longrightarrow 1$$

as required.

It remains to consider the case when Λ is uncountable. This case can be easily reduced to the previous one by using well-known properties of the product measure. More concretely, if Λ is uncountable and $E \subseteq \Omega \times [0,1]^{\Lambda}$ is measurable, then E differs by a null set of a measurable set F which only restricts a countable number of coordinates, that is

$$F = F_0 \times [0, 1]^{A \setminus J}$$

where $J \subseteq \Lambda$ is a countable set and $F_0 \subseteq \Omega \times [0,1]^J$ is measurable. By the first part of our proof we have measurable sets $A \subseteq \Omega$ and $B_n^{(0)} \subseteq [0,1]^J$ such that

$$\frac{[\mu \otimes \nu](F_0 \cap (A \times B_n^{(0)}))}{\mu(A)\nu(B_n^{(0)})} {\longrightarrow} 1$$

By taking the same A and $B_n = B_n^{(0)} \times [0,1]^{A \setminus J}$ we have clearly

$$\frac{[\mu \otimes \nu](E \cap (A \times B_n))}{\mu(A)\nu(B_n)} = \frac{[\mu \otimes \nu](F \cap (A \times B_n))}{\mu(A)\nu(B_n)} = \frac{[\mu \otimes \nu](F_0 \cap (A \times B_n^{(0)}))}{\mu(A)\nu(B_n^{(0)})} \longrightarrow 1,$$

as required.

End of the proof of Theorem 1. Recall that the proof was reduced to the case when μ is finite and ν is the product measure on a product K of copies of [0, 1], so we just work in this case.

Let $h \in L_{\infty}(\mu \otimes \nu)$ be a simple function, that is, a linear combination of characteristic functions of measurable subsets of $\Omega \times K$. The set of these simple functions is a dense subspace of $L_{\infty}(\mu \otimes \nu)$, so we are left with showing that the operator \hat{h} corresponding to h attains its norm. By normalizing h and up to rotation, we may assume without loss of generality that h has the form

$$h = \chi_E + k$$

where E is a measurable subset of $\Omega \times K$ with positive measure, k is another simple function such that $||k||_{\infty} \leq 1$, and k vanishes on E. By Proposition 5, there are measurable sets $A \subseteq \Omega$ and $B_n \subseteq K$ with $\mu(A) > 0$ and $\nu(B_n) > 0$ for all *n* such that

$$\lim_{n\to\infty}\frac{[\mu\otimes\nu]((A\times B_n)\cap E)}{\mu(A)\nu(B_n)}=1$$

equivalently,

L

$$\lim_{n\to\infty}\frac{1}{\mu(A)\nu(B_n)}\int_{A\times B_n}\chi_E d(\mu\otimes\nu)=1=\|h\|_{\infty}.$$

On the other hand, since the function k vanishes on E and $||k||_{\infty} \leq 1$, we also have

$$\left|\frac{1}{\mu(E)\nu(B_n)}\int\limits_{A\times B_n} kd(\mu\otimes\nu)\right| \leq \frac{[\mu\otimes\nu]((A\times B_n)\setminus E)}{\mu(A)\nu(B_n)} \longrightarrow 0.$$

Thus, we have finally shown that

$$\lim_{n\to\infty}\frac{1}{\mu(A)\nu(B_n)}\int_{A\times B_n}hd(\mu\otimes\nu)=1=\|h\|_{\infty}.$$

and Proposition 3 tells us that the operator \hat{h} attains its norm, as required. \Box

References

- E. BISHOP and R. R. PHELPS, A proof that every Banach space is subreflexive. Bull. Amer. Math. Soc. 67, 97–98 (1961).
- [2] A. DEFANT and K. FLORET, Tensor norms and operator ideals. North-Holland Math. Stud. 176, Elsevier, Amsterdam 1993.
- [3] J. L. DOOB, Measure Theory. Graduate Text in Math. 143. New York-Berlin 1993.
- [4] C. FINET and R. PAYÁ, Norm attaining operators from L_1 into L_{∞} . Israel J. Math. 108, 139–143 (1998).
- [5] A. IWANIK, Norm attaining operators on Lebesgue spaces. Pacific J. Math. 83, 381-386 (1979).
- [6] J. JOHNSON and J. WOLFE, Norm attaining operators. Studia Math. 65, 7-19 (1979).
- [7] H. E. LACEY, Isometric theory of classical Banach spaces. Grundlehren Math. Wiss. 208, Berlin-New York 1974.
- [8] J. LINDENSTRAUSS, On operators which attain their norm. Israel J. Math. 1, 139–148 (1963).
- [9] W. SCHACHERMAYER, Norm attaining operators on some classical Banach spaces. Pacific J. Math 105, 427-438 (1983).
- [10] J. J. UHL, Norm attaining operators on $L_1[0,1]$ and the Radon-Nikodým property. Pacific J. Math. **63**, 293-300 (1976).

Eingegangen am 12. 5. 1999*)

Anschrift der Autoren:

Rafael Payá and Yousef Saleh Departamento de Análisis Matemático Facultad de Ciencias Universidad de Granada 18071-Granada Spain

^{*)} Eine überarbeitete Fassung ging am 18. 10. 1999 ein.