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Abstract. Given an arbitrary measure m and a localizable measure n, we show that the
set of norm attaining operators is dense in the space of all bounded linear operators
from L1�m� into L1 �n�:

1. Introduction. Bishop and Phelps [1] have asked the general question, for which Banach
spaces X and Y is the collection of norm attaining operators dense in the space L�X;Y� of
all bounded linear operators from X into Y. An operator T 2 L�X;Y� attain its norm if
there is x 2 BX (the closed unit ball of X) such that

kTxk � kTk:
We denote the set of all norm attaining operators by NA�X;Y�. After the pioneering work of
J. Lindenstrauss [8], the question of the denseness of NA�X;Y� in L�X;Y� has received a lot
of attention. Let us only mention the results dealing with the case when X and Y are L1-
spaces or C�K�-spaces. It was shown by J. Uhl [10] that given a strictly convex Banach space
Y, NA�L1�0; 1�;Y� is dense in L�L1�0; 1�;Y� if and only if Y has the Radon-NikodyÂm
property, and A. Iwanik [5] proved that NA�L1�m�;L1�n�� is dense in L�L1�m�;L1�n�� for
arbitrary measures m and n. Moreover, J. Johnson and J. Wolfe [6] showed that
NA�C�K�;C�L�� is dense in L�C�K��;C�L�� for arbitrary compact spaces K and L. In [9]
W. Schachermayer proved that NA�L1�0; 1�;C�0; 1�� is not dense in L�L1�0; 1�;C�0; 1��; and
asked for a characterization of compact spaces K such that NA�L1�0; 1�;C�K�� is dense in
L�L1�0; 1�;C�K��. Recently C. Finet and R. PayaÂ [4] have shown that NA�L1�m�;L1 �0; 1�� is
dense in L�L1�m�;L1 �0; 1��, for every s-finite measure m, so giving a new example of a
compact Hausdorff space K such that NA�L1�0; 1�;C�K�� is dense L�L1�0; 1�;C�K��:

In this note we extend the result in [4], to prove the following

Theorem 1. NA�L1�m�;L1 �n�� is dense in L�L1�m�;L1 �n�� for every measure m and every
localizable measure n:

By using the isometric classification of L1-spaces and a technical lemma which deals with
the denseness of norm attaining operators from an arbitrary `1-sum into an arbitrary
`1ÿsum of Banach spaces we reduce the proof of the above theorem to the case when m is
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finite and n is the product measure on a (possibly infinite) product of copies of �0; 1�. For this
case we use a natural representation of norm attaining operators and the martingale
convergence theorem.

If a compact Hausdorff space K is hyperstonian, then there is a localizable measure n such
that C�K� is isometric to L1�n�� � L1 �n� (see [2; pp. 493].) Conversely, if the measure n is
localizable, then L1 �n� is isometric to C�K� for suitable hyperstonian K. Therefore, our
result can be equivalently stated by saying that NA�L1�m�;C�K�� is dense in L�L1�m�;C�K��
for every measure m and every hyperstonian compact Hausdorff space K.

2. Proof of the main result. We start by proving a lemma which will allow a reduction to
the case when m and n are finite measures. Given an arbitrary family fXi : i 2 Ig of Banach
spaces, we denote by

�
�
i2I

Xi

�
`1

its `1-sum, i.e, the Banach space of all families �xi�i2I such

that xi 2 Xi for all i; and

k�xi�i2Ik :�P
i2I
kxik < 1 :

Similarly
�
�
j2J

Yj

�
`1

denotes the `1-sum of a family fYj : j 2 Jg of Banach spaces, i.e, the

Banach space of all families �yj�j2J with yj 2 Yj for all j and

k�yj�j2Jk :� sup fkyjk : j 2 Jg < 1 :

We recall for later use the well known fact that the dual of an `1-sum is the `1 -sum of the
dual spaces: �

�
i2I

Xi

��
`1
�
�
�
i2I

X�i
�
`1 :

Lemma 2. Let fXi : i 2 Ig and fYj : j 2 Jg be arbitrary families of Banach spaces,
X �

�
�
i2I

Xi

�
`1

and Y �
�
�
j2J

Yj

�
`1 : Then the following statements are equivalent

�1� NA�X;Y� is dense in L�X;Y�
�2� NA�Xi;Yj� is dense in L�Xi;Yj� for every �i; j� 2 I � J:

P roof. The key fact here is the natural identification of L�X;Y� with the space�
�

�i;j�2I�J
L�Xi;Yj�

�
`1

which we now describe. For i 2 I and j 2 J let Ei and Fj denote the

natural isometric embeddings of Xi and Yj into X and Y; respectively. Similarly, let Pi

and Qj denote the natural norm-one projections from X and Y onto Xi and Yj; respec-
tively. For T 2 L�X;Y�; it follows clearly from the definition of the `1 -sum
that kTk � sup fkQjTk : j 2 Jg: On the other hand, every x 2 X can be written as
x �P

i2I
EiPix; the family fEiPixg being absolutely summable with kxk �P

i2I
kEiPixk �P

i2I
kPixk: Thus, for any Banach space Z and any operator S 2 L�X;Z� we have kSxk %P

i2I
kSEiPixk % sup fkSEik : i 2 Ig P

i2I
kPixk; which shows that kSk � sup fkSEik : i 2 Ig: In

particular we have kQjTk � sup fkQjTEik : i 2 Ig for every j 2 J; so

kTk � sup fkQjTEik : i 2 I; j 2 Jg
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and T 7! �QjTEi��i;j�2I�J is the above mentioned identification. More concretely, if we are
given operators Tij 2 L�Xi;Yj� with sup fkTijk : i 2 I; j 2 Jg < 1 ; then there is a unique
T 2 L�X;Y� such that QjTEi � Tij for every �i; j� 2 I � J:
�1� ) �2� Let h 2 I and k 2 J be fixed. To show that NA�Xh;Yk� is dense in L�Xh;Yk�; fix

u 2 L�Xh;Yk�; assume without loss of generality that kuk � 1 and let 0 < e < 1 be given.
Consider the operator U � FkuPh 2 L�X;Y�: Note that QjU � 0 unless j � k and
QkUEi � 0 unless i � h; while QkUEh � u; so kUk � kuk � 1: By �1� we get an operator
T 2 NA�X;Y� such that kTk � 1 and kT ÿUk < e: Then we take t � QkTEh 2 L�Xh;Yk�;
which clearly satisfies ktk % 1; kt ÿ uk % kT ÿUk < e and we are left with showing that t
attains its norm. Let x 2 SX be such that kTxk � kTk � 1: For j 2 J; j �j k we have

kQjTxk � kQjTxÿQjUxk % kT ÿUk < e < 1

so kTxk � kQkTxk � 1; which shows that kQkTk � 1 and QkT also attains its norm at x:
Now, for i 2 I; i �j h we have

kQkTEik � kQkTEi ÿQkUEik % kT ÿUk < e < 1; so

1 � kQkTk � kQkTEhk � ktk:
By writting x �P

i2I
EiPix with

P
i2I
kPixk � kxk � 1; we get

1 � kQkTxk %
P
i2I
kQkTEiPixk

� ktPhxk � P
i2Infhg

kQkTEiPixk

% kPhxk � e
P

i2Infhg
kPixk

% kPhxk � P
i2Infhg

kPixk � 1:

It follows that Pix � 0 for i 2 I n fhg; so kPhxk � 1 and the equality ktPhxk � kPhxk � 1
shows that t attains its norm, as required.
�2��)�1�: Let T 2 L�X;Y� with kTk � 1 and 0 < e < 1 be given. We first find h 2 I and

k 2 J such that 1ÿ e

3
< kQkTEhk % 1: Then we use �2� to find an operator s0 2 NA�Xh;Yk�

such that ks0 ÿQkTEhk %
e

3
and it follows that

1ÿ 2e

3
% ks0k % 1� e

3
:

By taking s � s0

ks0k we have s 2 NA�Xh;Yk�; ksk � 1 and ksÿQkTEhk % e: Finally let

S 2 L�X;Y� be such that QkSEh � s and QjSEi � QjTEi for �i; j� �j �h; k�: We have clearly
kSk � 1; kSÿ Tk % e; and we are left with showing that S 2 NA�X;Y�: Actually if xh 2 Xh is
such that 1 � kxhk � ksxhk; for x � Ehxh we have

kSxk ^ kQkSxk � kQkSEhxhk
� ksxhk � 1;

and S attains its norm, as required. h
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Recall that if m is an arbitrary measure, L1�m� can be decomposed in the form

L1�m� �
�
�
i2I

L1�mi�
�
`1

where mi is a finite measure for all i 2 I (see [2, Appendix B] for example). On the other
hand if n is a localizable measure we have that L1 �n� � L1�n�� and we get also finite
measures fnj : j 2 Jg such that

L1 �n� �
�
�
j2J

L1 �nj�
�
`1 :

In view of the above lemma, to prove Theorem 1 we may assume without loss of generality
that m and n are finite measures. In this case we have a characterization of the operators in
NA�L1�m�;L1 �n��; which was essentially obtained in [4]. For the sake of completeness we
state and prove it for our formally more general case. To this end we recall a well known
representation of the operator space L�L1�m�;L1 �n��:

If �W;a; m� and �K;b; n� are finite measure spaces we have an isometric isomorphism

L�L1�m�;L1 �n�� � L1 �m
 n�
where m
 n denotes the product measure on W�K; the operator ĥ corresponding to an
essentially bounded function h being given by

�ĥ�f ���t� � �
W

h�w; t�f �w�dm�w�

for �n�-a.e. t 2 K and every f 2 L1�m� (see [4].) We now characterize those functions h such
that the operator ĥ attain its norm.

Proposition 3. Let �W;a; m� and �K;b; n� be finite measure spaces and let
h 2 L1 �m
 n�: Consider the following statements.
�1� There is a set A 2a; m�A� > 0; and a sequence �Bn� in b, n�Bn� > 0 for every n; such

that

lim
n!1

1
m�A�n�Bn�

��� �
A�Bn

hd�m
 n�
��� � khk1 :

�2� There are sets A;Bn like in �1� and a measurable function f on W such that jf�w�j � 1
for all w 2 W and

lim
n!1

1
m�A�n�Bn�

��� �
A�Bn

h�w; t�f�w�dn�t�dm�w�
��� � khk1 :

�3� The operator ĥ 2 L�L1�m�;L1 �n�� corresponding to h attains its norm.
Then �1� ) �2� , �3�. Moreover, in the real case all three statements are equivalent.

P roof. �1� ) �2� is clear. For �2� ) �3�, just consider the function f � fcA

m�A� where cA

denotes the characteristic function of A: Then k fk1 � 1, and it follows clearly from (2) that
kĥ� f �k1 � khk1 � kĥk:
�3� ) �2�. Let us start with a general remark on norm attaining functionals on L1�m�:

Suppose that a function g 2 L1 �m� attains its norm as a functional on L1�m� and, without
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loss of generality, that kgk1 � 1: Then there is a function f in the unit sphere of L1�m� such
that

1 � �
W

fgdm %
�
W

j fgjdm %
�
W

j f jdm � 1

hence fg � j f j, �m�-almost everywhere. Let us write f � fj f j where f is a measurable
function on W and jfj � 1: Then fg � 1, �m�-a.e in the set C :� fw 2 W : f �w� �j 0g:
Therefore, if A is any measurable subset of C with m�A� > 0; we have�

A
fgdm � m�A�;

which shows that g also attains its norm at the function fA :� m�A�ÿ1fcA; which is in the unit
sphere of L1�m�: In the real case, since f only takes the values �1; we may choose the set A
so that f is constant on it.

By using the Hahn-Banach Theorem we can now extend the above remark to operators.
Let T be a norm attaining operator from L1�m� into an arbitrary Banach space (say Y) with
kTk � 1: Then there are f 2 L1�m� and y� 2 Y� such that k fk1 � ky�k � 1 and y��T� f �� � 1;
but this means that the functional T��y�� attains its norm, where T� is the adjoint operator.
Thus, there are a measurable set A � W with 0 < m�A� and a measurable function f on W

with jfj � 1 such that

1 � jy��T�fA��j % kT�fA�k:

Back to the proof of the desired implication, assume that �3� holds and find a set A and a
function f as above, such that

khk1 � kĥk � kĥ�fA�k1 :

Now recall that the unit ball of L1�n� is the closed absolutely convex hull of the set

fn�B�ÿ1cB : B 2 b; n�B� > 0g;
equivalently,

kgk1 � sup
1

n�B�
��� �

B

gdn
��� : B 2 b; n�B� > 0

8<:
9=;

for every g 2 L1 �n�: Thus we may find a sequence �Bn� in b with n�Bn� > 0 for every n;
such that

khk1 � kĥ�fA�k1 � lim
n!1

1
n�Bn�

��� �
Bn

ĥ�fA�dn
���

� lim
n!1

1
m�A�n�Bn�

��� �
A�Bn

h�w; t�f�w�dm�w�dn�t�
���

which shows that �2� holds. Recall that in the real case we can arrange that f is constant on
A, hence we actually get that �1� holds. In [4] the reader may find an example showing that
�2� is strictly weaker than �1� in the complex case. h
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In the special case h � cE; the characteristic function of a measurable set, we get

Corollary 4. Given a measurable set E � W�K; with positive measure, the operator ĉE

attains its norm if and only if

lim
n!1

�m
 n���A� Bn� \ E�
m�A�n�Bn� � 1

for some measurable set A � W, with m�A� > 0 and some sequence �Bn� of measurable subsets
of K with n�Bn� > 0 for every n:

In a special case, namely when K is a product of unit intervals, we will show that every
measurable set E 7 W�K satisfies the condition in the above corollary, and this will
provide a fairly large set of norm attaining operators. Let us first show that we can reduce
the proof of our theorem to this special case. This is a consequence of the representation
theory for L1-spaces. Indeed, if n is a finite measure, we may write

L1�n� �
�
�
i2I

Xi

�
`1 :

Where each space Xi is either 1-dimensional or of the form L1��0; 1�L� where L is a finite or
infinite set, for each coordinate interval we consider Lebesgue measure on the Borel subsets
of �0; 1�; and �0; 1�L is provided with the product measure on its Borel s-algebra (see [7].) It
follows that

L1 �n� �
�
�
j2J

Yj

�
`1

where each Yj is either 1-dimensional or of the form L1 ��0; 1�L�: By Lemma 2, to show that
NA�L1�m�;L1 �n�� is dense in L�L1�m�;L1 �n�� it is enough to show that NA�L1�m�;Yj� is
dense in L�L1�m�;Yj� for every j 2 J; and the Bishop-Phelps Theorem takes care of the case
when Yj is 1-dimensional, so we may restrict our attention to the case L1 �n� � L1 �0; 1�L:
Therefore, in what follows we will take K � �0; 1�L where L is an arbitrary set, b will be the
Borel s-algebra on K and n will be the product measure on K each coordinate interval being
provided with Lebesgue measure.

Proposition 5. Let �W;a; m� be a finite measure space and let E 7 W�K be a measurable
set with positive measure: E 2a
b; �m
 n��E� > 0: Then there are measurable sets A 2a;

Bn 2 b; with m�A� > 0; n�Bn� > 0 for all n; such that

�m
 n���A� Bn� \ E�
m�A�n�Bn� ÿ!1:

P r oof. We start with the case when L is countable and use an analog of Lebesgue
Density Theorem. Let us fix a sequence �Pn�1n�1 of finite partitions of K � �0; 1�L into sets of
positive measure, such that Pn�1 is a refinement of Pn for each n; and the s-algebra

generated by [1
n�1

Pn is the Borel s-algebra b. For each y 2 K and n 2 IN; let B�n; y� be the

set in Pn containing y:
Now, given a Borel set F 7 K; define

d�F� � y 2 K : lim
nÿ!1

n�F \ B�n; y��
n�B�n; y�� � 1

� �
:
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As a special case of the martingale almost everywhere convergence theorem (see [3; x 17],
for example) we have that

n�F n d�F�� � n�d�F� n F� � 0:���
Let us now consider a measurable set E 7 W�K with �m
 n��E� > 0: For each w 2 W take
the vertical section

Ew � fx 2 K : �w; x� 2 Eg
and define a new set Ê 7 W�K by

Ê � f�w; y� : w 2 W; y 2 d�Ew�g:
We claim that Ê is also measurable. Indeed, consider for each n 2 IN the measurable set
H�n� 7 W�K �K given by

H�n� �
n
�w; y; z� : �w; z� 2 E; �y; z� 2 [

B2Pn

�B� B�
o
:

Then, for each �w; y� 2 W�K the corresponding section of H�n� is given by

H�n��w;y� � fz 2 K : z 2 Ew;B�n; y� � B�n; z�g
� Ew \ B�n; y�

and it follows from Fubini�s theorem that the function fn defined on W�K by

fn�w; y� � n�Ew \ B�n; y��
is measurable. Since yn�w; y� � n�B�n; y�� > 0 is measurable as well, we see that the set

Ê � �w; y� : lim inf
nÿ!1

fn�w; y�
yn�w; y�

� 1
� �

is measurable, as claimed. It follows from ��� and Fubini�s Theorem that

�m
 n��Ê� � �
W

n�d�Ew��dm�w� � �
W

n�Ew�dm�w� � �m
 n��E� > 0

but we have also

�m
 n��Ê� � �
K

m��Ê�y�dn�y�

where Êy is now the horizontal section:

Êy � fw 2 W : y 2 d�Ew�g:
It follows that m��Ê�y0� > 0 for some y0 2 K: Take A � �Ê�y0 and note that y0 2 d�Ew� for
every w 2 A: Take also Bn � B�n; y0� for all n: Then we have

lim
nÿ!1

n�Ew \ Bn�
n�Bn� � 1

for every w 2 A: By integrating over w 2 A and using the dominated convergence theorem
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we finally get

�m
 n��E \ �A� Bn��
m�A�n�Bn� ÿ! 1

as required.
It remains to consider the case when L is uncountable. This case can be easily reduced to

the previous one by using well-known properties of the product measure. More concretely, if
L is uncountable and E 7 W� �0; 1�L is measurable, then E differs by a null set of a
measurable set F which only restricts a countable number of coordinates, that is

F � F0 � �0; 1�LnJ

where J 7 L is a countable set and F0 7 W� �0; 1�J is measurable. By the first part of our
proof we have measurable sets A 7 W and B�0�n 7 �0; 1�J such that

�m
 n��F0 \ �A� B�0�n ��
m�A�n�B�0�n �

ÿ!1:

By taking the same A and Bn � B�0�n � �0; 1�LnJ we have clearly

�m
 n��E \ �A� Bn��
m�A�n�Bn� � �m
 n��F \ �A� Bn��

m�A�n�Bn� � �m
 n��F0 \ �A� B�0�n ��
m�A�n�B�0�n �

ÿ! 1;

as required. h

End of the proof of Theorem 1. Recall that the proof was reduced to the case when m is
finite and n is the product measure on a product K of copies of �0; 1�; so we just work in this case.

Let h 2 L1 �m
 n� be a simple function, that is, a linear combination of characteristic
functions of measurable subsets of W�K: The set of these simple functions is a dense
subspace of L1 �m
 n�; so we are left with showing that the operator ĥ corresponding to h
attains its norm. By normalizing h and up to rotation, we may assume without loss of
generality that h has the form

h � cE � k

where E is a measurable subset of W�K with positive measure, k is another simple function
such that kkk1 % 1; and k vanishes on E: By Proposition 5, there are measurable sets
A 7 W and Bn 7 K with m�A� > 0 and n�Bn� > 0 for all n such that

lim
n!1

�m
 n���A� Bn� \ E�
m�A�n�Bn� � 1

equivalently,

lim
n!1

1
m�A�n�Bn�

�
A�Bn

cEd�m
 n� � 1 � khk1 :

On the other hand, since the function k vanishes on E and kkk1 % 1; we also have

1
m�E�n�Bn�

�
A�Bn

kd�m
 n�

�������
������� %
�m
 n���A� Bn� n E�

m�A�n�Bn� ÿ! 0:
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Thus, we have finally shown that

lim
n!1

1
m�A�n�Bn�

�
A�Bn

hd�m
 n� � 1 � khk1 :

and Proposition 3 tells us that the operator ĥ attains its norm, as required. h
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