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ABSTRACT
This paper presents a scalable and partitionable asynchronous
bus arbiter for use with chip multiprocessors (CMP) and
its corresponding pre-layout simulation results using VHDL.
The arbiter exploits the advantage of a concurrency control
instruction (Brk) provided by the micro-threaded micropro-
cessor model to set the priority processor and move the cir-
culated arbitration token at the most likely processor to is-
sue the create instruction. This mechanism provides latency
hiding during token circulation by decoupling the micro-
threaded processor from the ring’s timing. It is shown that
this arbiter can be extended easily to support large num-
bers of processors and can be used for chip multiprocessor
arbitration purposes.

Keywords
Asynchronous, Synchronous, GALS, Micro-threaded, Con-
currency, CMP, Broadcast Bus, Ring, Scalability, Partition-
ing, Insensitive Delay model.

1. INTRODUCTION
Integrated Circuits (IC’s) in the future will require new ef-
ficient and powerful architecture designs to achieve the de-
mands of many grand-challenge applications, such as weather
and environmental modeling, computational physics and bio-
molecular simulation, as in near future, we will be able to
integrate thousands of arithmetic units on a single chip [1].

Modern synchronous Chip Multiprocessor (CMP) architec-
tures are based on a single clock domain with global syn-
chronization and control signals. The designers must be very
careful in their control signal design in order to satisfy the
timing and synchronization requirements. These constraints
will restrict the system on-chip performance and prevent
overall system scalability. It is abundantly clear that clock-

skew, large power consumption, and growing clock rate pose
the most significant challenges for present and future sys-
tems on-chip.

The history of the IBM Power PC (PPC) processor shows
that clock speed has increased at twice the predicted rate,
i.e. from 33MHz to 1GHz over the last twelve years, but
increases in system-level concurrency have not tracked the
packing density [2]. Intel expects that its largest proces-
sor will reach 1.7 Billion transistors at the end of 2005, we
may ask if these transistors are being effectively used. Evi-
dence that all is not well is provided by the fact that Intel
has cancelled its 4GHz Pentium 4 [3], because it has been
proved that this processor has effectively reached the limit
of its performance and has poor scaling properties. It can
be argued that simply increasing the clock speed and us-
ing more and more transistors (enabled by smaller feature
sizes) is a poor strategy for future generations of processor
architectures and does not guarantee better performance.

Recently, asynchronous communication has proved to be a
promising design method with good scaling properties. The
Globally Asynchronous Locally Synchronous (GALS) design
style is an approach to VLSI system design that holds the
promise of combining the advantages of both synchronous
and asynchronous operation [4]. This design approach elim-
inates the need for a centralized clock and minimizes the
clock-skew problem. It also opens the door wide for sys-
tem scalability and functional portioning, which both are
the requirements for future CMP designs. The Semiconduc-
tor Industry Association (SIA) Roadmap recognizes that,
by 2007, asynchronous techniques will be used in many de-
signs [5]. Not every system can be decomposed into asyn-
chronously communicating synchronous blocks easily. In
CMP design, global communication is one of the most sig-
nificant problems in both current and future systems [2].

The micro-threaded CMP architecture model [6, 7, 2], ex-
ploits the advantages of a GALS design approach by using
a set of global buses all of which use fully asynchronous
communications, creating independent clocking domains for
each processor. One of these buses is the broadcast bus,
which each micro-threaded processor uses in order to cre-
ate a new family of micro-threads. The broadcast bus is
also used to broadcast the global state to all processors. To
avoid processor contention and to take the advantages of
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asynchronous communication design methodology, this pa-
per introduces an asynchronous arbiter design. The arbiter
exploits the advantage of a concurrency control instruction
Brk, provided by the micro-threaded microprocessor model
to set a priority policy and to hide the token circulation time
by decoupling the micro-threaded pipeline from the ring’s
timing. It also, provides multiple features, such as modular-
ity, partitioning organization, and is starvation free.

The reset of the paper organized as follows: In the next
section, we present a brief background and related work.
Section 3 explains the micro-threaded approach, its concur-
rency controls and the micro-threaded chip multiprocessor
architecture model. In section 4, the asynchronous arbiter
organization and its mechanism are presented. The arbiter
pre-layout simulation results using VHDL is described in
section 5. Finally, we present a conclusion in section 6.

2. BACKGROUND AND RELATED WORK
Full asynchronous communication design is difficult but, one
promising technique is to use a Globally-Asynchronous, Loca-
lly-Synchronous (GALS) clocking domains [4]. This design
approach eliminates the global clocking problem and min-
imizes power consumption. GALS systems not only mit-
igate the clock distribution, power consumption, and the
clock skew problems, but it also simplify the reuse of mod-
ules as the modules have asynchronous interface and do not
need to use the same clock signal [8]. Recently, Hemani
et.al. [9] compare the GALS architecture with the globally
synchronous (GS) case. The results show that 70% power
savings in clock distribution with negligible overheads can
be achieved using GALS architecture design compared to
the GS design case.

Delay modelling is one of the most significant elements of
validating asynchronous design. One popular well-known
approach that gives unbounded delays to both wire and
gate elements is the delay-insensitive design approach. This
design style avoids the need for the timing analysis, giv-
ing designs that operate correctly whatever the delay in
the interconnecting wires [10]. It also has some benefits
over bounded-delay methodologies in that the former delay
model forces the designs to use conventions such as com-
pletion signals and transition signaling which are both im-
portant to good asynchronous circuit structure [11]. Fur-
thermore, the delay-insensitive model allow the possibility
of exploiting the average case delay rather than the worst
case, which provides a significant saving with long inter-
connections [10]. There have been some processors used a
delay-insensitive technique such as [12, 13, 14].

Asynchronous-synchronous interfaces using point to point
GALS interconnect as described in [15] represent a very ef-
ficient and a suitable way to synchronize asynchronous and
synchronous clock domains. The design we have described
in this paper, has the advantage of asynchronous communi-
cation and provide asynchronous-synchronous interfaces us-
ing a point to point connection between arbiter modules. A
delay-insensitive methodology is also applied on our arbiter
by giving unbounded delays to both wires and logic gates.

It is very well-known that accessing the shared resource by
two or more processors requires an arbitration mechanism

to prevent contentions and to insure that only one processor
can access the shared resource at a time. Many arbitration
schemes have been proposed [16, 17, 18, 19, 20, 21] with dif-
ferent implementations characteristics. Arbiters can be cen-
tralized, decentralized, daisy chained, tree, round robin with
fixed or dynamic priority, ring structure, etc. In fact, the
degree of comparison between these mechanisms depends on
a set of factors, such as: reusability, modularity, fairness in
accessing the shared resource, avoiding starvation and min-
imizing both power consumption and logic area. That is,
most of the arbitration mechanisms are only suitable for
some cases and none of them is optimal for all cases.

Macii and Poncino [22] described a design of a scalable bus
arbiter for a multiprocessor system using a ring architecture.
This arbiter is synchronous in design and the priority level
of each processor is reduced by one at every arbitration cycle
to satisfy a rotating priority between the processors. Also,
two signals (Bus Busy and Token Out) must be propagated
through the ring network to circulate the token. Our arbiter
also uses a ring structure but is a fully asynchronous design.
It exploits the concurrency control instruction (Brk) pro-
vided by the micro-threaded microprocessor model to hide
the token circulation time and to set a priority processor
based on the processor that has succeed in executing this
instruction. Also one grant signal (Gout) rather than two is
propagated to circulate the grant token around the ring.

Valencia et. al. [19] presents a modular asynchronous design
for an n-user linear array arbiter. In this design a central-
ized control signal is used to drive all the modules in the
array. When this control signal is 0, the arbitration process
takes place in such a way that this signal is not 1 until the
requests have been granted in the same order of the mod-
ule in the array. Also, the priority policy in this arbiter is
dependent on the relative position of the component mod-
ules. This arbitration mechanism is not fair and provide a
starvation situation if a large number of modules are used.
Our arbiter has the advantage of being partitioned, where
each arbiter can decide locally to access the global create
bus or to wait. So, there is no need to propagate the con-
trol through all modules. Also, the priority policy described
in our arbiter has multiple features, it provide fair commu-
nication and avoids processor starvation. It also, hides the
token circulation time by moving the token to the most likely
processor to issue the create instruction, which enable one
processor to create a new family of micro-threads.

Moore et.al. [15] purposed an asynchronous-synchronous in-
terfaces design for a point to point channel communication
with independent clock domain. The authors suggested a
new scheme by adding an asynchronous FIFO between pro-
ducer and consumer modules to hide the waiting time dur-
ing request and acknowledge synchronization path. From
a hardware point of view, adding extra components means
adding mechanisms and the complexity increases. Thus,
this mechanism requires a complex control scheme, and in
some cases, if the FIFO is deeper, the performance will be
significantly degrade.

Work done in [21] described a design of asynchronous ar-
biters for on-chip communication system. The authors pro-
posed a fixed and dynamic priority arbiter configuration. In
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the fixed priority design, three blocks are used to handle
the arbitration mechanism. These blocks are the loop con-
trol block to reactivate the arbiter after serving requests,
the synchronizer block to sample the input requests and the
fixed-priority block to determine the priority value based
on a hardware coded priority mechanism. Dynamic prior-
ity design also has the same complexity of blocks, where n-
request analyzer blocks and n-priority comparator blocks are
required to handle n-requests. This arbiter has a complex
arbitration design with centralized structure, which prevent
partitioning. Also, many comparisons may be required to
determine the priority values if the previous comparison
failed in determining the priority value.

In contrast, our arbiter has less complexity and provides a
simple arbitration mechanism for a large number of proces-
sors on-chip. It also, provides a simple mechanism to pre-
detect the priority through a concurrency control instruction
provided by micro-threaded microprocessor model to move
the token to the most likely processor to issue the create
instruction. Also, the arbiter we describe has the advantage
of partitioned design; each micro-threaded GALS processor
arbiter can decide locally to access the shared global create
bus or to wait until the bus is free again. Therefore, there
is no need to propagate the control through all processors.

Recently, Villiger et.al. [23] proposes a mechanism for trans-
ferring data between GALS modules using a self-time ring
topology. This configuration provides a point-to-point com-
munication between two adjacent GALS modules and pro-
vide a modular connectivity, which has full scalability in
both bandwidth and area with increasing numbers of GALS
modules. The design we described in this paper has the ad-
vantage of a ring organization that connects GALS micro-
threaded processors with the broadcast bus in a circular
fashion.

3. MICRO-THREADED CHIP MULTIPRO-
CESSOR ARCHITECTURE MODEL

3.1 Micro-threaded Microprocessor Model
In this section we consider the micro-threaded microproces-
sor model and its features that support a future scalable and
powerful CMP. This model was first introduced in 1996 [24],
then extended in a set of papers [6, 7, 2, 25] to support
systems with multiple processors on-chip. The model com-
bines the advantages of blocked multi threading and inter-
leaved multi-threading by interleaving the threads when one
thread is blocked on a cycle-by-cycle basis using an explicit
context switch instruction or tag, which is required when
the compiler cannot guarantee that data will be available.
The model exploits instruction level parallelism primarily
across loop bodies, as the families of threads are defined on
loops. The code for the thread is defined by the body of
the loop. Other forms of instruction-level parallelism are
captured using the Cre instruction but only the loop offers
the efficiency of multiple threads created by one instruction
with all threads sharing the same code.

Threads are reactivated after being suspended by a con-
text switch when the data they were waiting for becomes
available. Indeed the thread is suspended and awaits its
data in the register that the compiler determined was non-
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Figure 1: A chip multi-processor based on an asyn-
chronous collection of microthreaded pipelines

deterministic. There is one other situation where the com-
piler may flag a context switch and that is following a branch
instruction. In this case the thread is reactivated upon the
computation of the branch target address. The concurrency
controls used in this model provide a flexible and efficient
mechanism for thread creation, context switching and syn-
chronization. Context switching is compiler controlled by
recognizing and tagging instructions which could fail syn-
chronization.

The micro-threaded model provides instructions to create
families of thread (Cre), to explicitly context switch be-
tween threads (Swch), to kill a thread (Kill) and two in-
structions for global synchronization, one a barrier synchro-
nization (Bsync), the other a form of a break instruction
(Brk), which forces a break from a loop executed concur-
rently. The Brk instruction terminates all other threads and
leaves the issuing thread as the main thread. This instruc-
tion gives a hint that the processor needs to create a new
family of micro-threads after a few cycles. Thus, a processor
that has succeed in executing this instruction assert a high
request signal through the Brk wire line to its arbiter to in-
form it that this processor will be requesting the broadcast
bus. Based on this prediction, our asynchronous arbiters
moves the grant token until it has reached the requesting
module. This mechanism provides latency hiding and dead-
lock freedom during token circulation time.

3.2 Micro-threaded Chip Multiprocessor
Model

A long-term vision is considered in the design and compo-
nents organization of the micro-threaded CMP architecture
model. This vision comes from the fact that most existing
CMP designs suffer from hardware and software implemen-
tation problems. Thus micro-threaded CMPs avoid global
clocking by supporting a GALS design approach, where each
micro-threaded processor has its own local clock domain and
accesses global resources asynchronous.

A block diagram of a micro-threaded chip multiprocessor is
shown in figure 1. A set of shared components are used in
this model to support the micro-threaded CMP. These com-

3



ponents are the Broadcast Bus which enables one processor
to create a family of identical threads. This bus arbitrates
between multiple processors and in each cycle one processor
can access this bus to create a descriptor of a new family of
micro-threads. The descriptor identified in the create is dis-
tributed to each scheduler, which uses that information to
determine the subset of the family of threads it will execute.

The broadcast bus is also used to replicate what the compiler
defines as global state to each processor’s local register file
instead of accessing a centralized register file for global vari-
ables. It is one of two mechanisms that allow the register file
in micro-threaded model to be fully distributed between the
multiple processors on a chip. The other is the Shared Regis-
ters Ring Network, which allows compiler-specified commu-
nications between pairs of threads, one of which produces
data and the other which consumes it. This communication
between the shared and dependent thread will be performed
by the ring network if the threads are allocated to different
processors. The justification for using a ring network is that
it is scalable and, given sufficient resources, the model, as
specified here, can adopt a schedule which ensures that any
constant-strided, loop-carried dependency be mapped to a
neighboring processor.

The two subsystems requiring global communication i.e. the
broadcast bus, and the arbiter ring network use asynchronous
signals, creating independent clocking domains for each pro-
cessor. Therefore, the arbiter described in this paper has the
advantage of an asynchronous global design and provides a
good approach to preventing processor contention during
broadcast bus access. Furthermore, it can be shown that
the asynchronous arbiter provides a scalable and partitioned
solution for a large number of processors on-chip.

The distribution of threads to pipelines, is deterministic and
based on a simple scheduling algorithm. It is dynamic as it
is determined by resource allocation and release (the concur-
rency exposed is parametric and not limited by the hardware
resources). The instruction issue schedule is also dynamic
and is scalable. Instructions can be issued from any micro-
thread already allocated and active. The concurrency is lim-
ited only by the linearly growing hardware cost for a given
chip area. Clearly if such a system could also give linear per-
formance increases, then it can provide a solution to both
CMP and ILP scalability [6].

4. ARBITER ORGANIZATION
Figure 2 shows the novel arbiter organization. Each proces-
sor has its own local control and a separate arbiter module
in order to allow processor partitioning. Each arbiter mod-
ule is linked to the next one in a ring arrangement and the
processors are arranged in a grid layout as shown in fig-
ure 3a. Thus each arbiter can be linked to two physically
adjacent ones to reduce propagation delays. Our arbiter
has the optional capability of being usable in a dynamically
partitionable processor array, assuming a suitable routing
architecture is available. For example a possible reconfigu-
ration of the processors in figure 3a onto two independent
groups is also shown in figure 3b. However, a detailed de-
scription of the partitioning architecture is beyond the scope
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Figure 2: Asynchronous Arbiter Block Diagram

of this paper.

Figure 4 shows the arbiter input and output signals. As
shown, the arbiters are linked by four lines comprising the
request high (RHi), which is the highest priority request,
request low (RLi), which is the lowest priority request, an
acknowledgement signal (Acki) to release the bus, and the
grant line (Gi) to grant requests and move the grant token
towards the requesting module. The request and grant sig-
nals propagate in opposite directions around the ring. Also,
one output wire (Wouti) is required from each arbiter mod-
ule to give processor Pi permission to access the broadcast
bus.

There are three signals from each processor to its arbiter.
The first is to inform the arbiter that the current processor
has succeed in executing the Brki instruction, the next sig-
nal (Di) is used to assert a demand request. The third is the
local acknowledgement (Ackli) signal to inform the arbiter
that a receiving processor has finished reading the data from
the bus. Note that within the arbiter the Brki signal wire
is assigned to the RHi signal line with highest priority and
the Di signal assigned to RLi line with low priority. Note
that an initial (init) signal is also required to determine the
initial location of the token. One arbiter is initialized with
the token, the others without.

In order to release the bus a processor must receive an ac-
knowledgement signal. To get that, every processor has to
signal it has read the data, therefore we can reduce the ac-
knowledgement signals back to the grantee by using the
same ring connectivity to propagate the acknowledgement
back until it reaches the processor that has currently re-
served the broadcast bus. The required acknowledgment
control circuit is shown in figure 5, where each processor as-
serts a high signal through its local acknowledgment (ACKli)
line when that processor has read the data from the bus. A
write (WR) signal is also required to control the propaga-
tion of the acknowledgment signal through the arbiter chain.
Thus, the acknowledgement signal is propagated from one
module to another until reached the processor that has re-
served the broadcast bus. When that processor received an
input acknowledgment (Ackini−1) signal from the previous
arbiter module the processor releases the token and the ar-
biter responds by deasserting Wout.
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Figure 3: Asynchronous Arbiters with Different
Partitioning. a)Grid Organization. b) Independent
Group Organization

Our arbiter exploits the concurrency control instruction pro-
vided by the micro-threaded microprocessor model to set a
priority policy based on the processor that has succeed in
executing the Brk instruction, instead of just assigning the
priority based on the position of the processor in the chain
as described in [19]. Note that the micro-threaded pipeline
executes the Brk instruction before executing the Cre in-
struction, which provides latency hiding during grant token
circulation time.

Two levels of priority have been introduced in this paper,
high and low priority. The highest priority is given to the
processor that has succeed in executing the Brk instruction,
while the low priority is assigned to a processor that has
activated a demand request. Note that with the current
micro-threaded CMP model, only one processor can suc-
ceed in executing the Brk instruction at a given time, which
means there is no need for many levels of priority. However,
the mechanism we described in this paper can be easily ex-
tended for many levels of priority and can be used to support
any CMP arbitration model.

The arbiters operations can be described as follows, where
we have N arbiter modules and only one processor can suc-
ceed in executing the Brk instruction at a given time.

• The arbiter are labelled using modulo arithmetic so for
M arbiters Ai+1 is A0 for i = M−1 and Ai−1 is Am−1

for M=1.

• Note that init1 = 1 and init2 to initm = 0. This
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Figure 6: Arbiter State Transition Diagram

means that processor 1 would have a request acknowl-
edged immediately after system initialization (reset)
but other processors must wait for the grant to prop-
agate (A1toA2........toAm).

• If Brki =1, Ai outputs a high request to the next
arbiter via RHouti. The rest of the modules can also
generate a demand request via RLoutk where k can be
any number from 1..N except i (k 6= i). If all Brk=0
any module can assert RLout.

• If Brki=0 and Di=0, Ai propagates RHini to RHouti,
RLini to RLouti and Gini to Gouti. This propagate
RHi and RLi from Ai to Ai−1 and Gi from Ai to Ai+1.

• If Brki=1 and Gini=1, and Ackini=0 then Ai asserts
Wouti (read), which gives processor permission to ac-
cess the broadcast bus.

• When a receiving processor has completed the bus
transaction it asserts a local acknowledge signal Ackli=1,
which also propagated through the ring until reached
the module that has currently reserved the bus. Thus,
when Ackini=1 and Wouti=1, the token is released
and the arbiter responds by deasserting Wout.

• If Brki=0, and the input line RHini=1 , then forward
the grant to the next module irrespective of D. If Di=1
assert RLouti=1, else propagate RLini to RLouti.

• If Brki=0, and input line RHini=0, and demand re-
quest Di=1 and Ackini=0, then activate the Wouti,
which gives the processor permission to access the broad-
cast bus.

• If Brki=0, and Gini=1 and RHini=0, and demand
request Di=0, and RLini=1, then forward the grant
to the next module.

• When there is no request from any processor, then the
RHi, RLi, Gi, Acki, and Wouti will all be 0.

It is clear from this mechanism that the highest priority
is given always to the processor that asserts a high signal
through its Brk output.

The state machine diagram for the arbiter module is shown
in figure 6. As shown, there are eight states, however an
asynchronous version of this machine can be minimized.
Two states reset and grant priority can be eliminated, where
the elimination of redundant stable states allows us to draw
a simplified and minimized state machine.

The idle state receives the input requests from RHiniorRLini

and if there is no input grant Gini = 0, it propagates the in-
put requests to the next arbiter module via output request
lines RHoutiorRLouti. The request must be propagated
until it reaches the module that currently holds the token.
The token is stored in the busy passive state, from which
high input requests from RHi or RLi cause a change to the
grant state. In the grant state the machine waits for removal
of the incoming request before returning to the idle state.

From the idle state an incoming bus demand from the pro-
cessor (D=1 or Brk=1) causes a change to the request state.
In the request state, if the input grant Gini = 1, and Brki=
1, and (Ackini−1 = 0), then the state changes to busy active,
which gives the processor permission to access the broadcast
bus by activating the Wouti wire line. When the input ac-
knowledge Ackini−1 = 1 is received, this means that all
processors complete accessing the bus and the state changes
to busy passive. While if the input grant Gini = 1, Brki = 0
and the input request Rhi=1, then the pass priority state is
used to pass the request, ignoring the lower priority demand
from this processor.

Our arbiter provides both starvation free and deadlock free-
dom. If we assume that the token is initially in module one
and a demand requests to access the broadcast bus is en-
countered from all modules, then the token is given first to
module one, which gives it access to the bus. When this
module finished, it passes the token towards to the next
module i.e. module two and so on. Thus, as described above
the highest priority is given first to the module that has suc-
ceed in executing the Brk instruction, then the rest of the
modules that has requested the bus is served based on the
position in the ring and in sequence order. It is clear that
this mechanism provides a fairness and is starvation free. As
soon as the processor releases the bus the next module will
be served directly.

4.1 Arbiter Partitioning
A partitionable design methodology will become one of the
design requirements, which ensures low power and high per-
formance in future processors [26, 27, 28]. It is one of the
most important design issues, which is effective in block de-
sign and system verification [29]. This features makes the
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Figure 7: Asynchronous Arbiter with programmable
routing for partitionable processor arrays
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Figure 8: A block diagram for a scalable asyn-
chronous arbiter design

design more flexible and provides a point-to-point communi-
cation between adjacent modules. Point-to-point communi-
cation in the GALS design approach provides low power and
high performance [15]. It also offers a promising approach to
fault tolerance problems and provides an independent com-
munication between different system blocks.

As previously described, each arbiter connects to two other
arbiters associated with adjacent processors to form an ar-
bitration ring as shown in fig 3a. This arrangement could be
hardwired, however by providing a routing architecture as
shown in figure 7 a reconfiguration of processors and their
buses can be achieved. So, for each arbiter and their associ-
ated global resources the processors can be partitioned into
groups, where each group has a separate token.
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Figure 9: Asynchronous Arbiter Simulation Model

4.2 Arbiter with N-levels of Priority
Figure 8 shows a block diagram for a scalable asynchronous
arbiter design with n-levels of priority. As illustrated, three
blocks are required to handle n requests, which comprise the
processor bus access controller block, request logic block and
the state machine block. The function of the first block is
to control and manipulate different levels of priority, where
the priority levels can be determined by the compiler.

The second block determines whether the demand input sig-
nal has a high or low priority compared with the incoming
requests. Thus if the demand line D has low priority, then
a high signal is asserted to the state machine through PP
wire line. Otherwise, if the demand has high priority, then
PP=0 is asserted.

The state machine uses the input signals from the request
logic block to decide whether to pass the grant line to the
next module via Gout if the current module has a lowest
priority; or to activate the Wout line, which allows the pro-
cessor to access the bus. So, if the current module has the
highest priority, then the pass-high-priority (PHP) signal is
activated by the state machine to inform the request logic
block that the bus access is given to the current module.
Otherwise PHP=0 is asserted. The zero request line (ZR)
can be used to control all output request RO, which block
the propagation of output request RO if ZR=0, or to pass
the request to the next module if ZR=1.

5. SIMULATION RESULTS
Our asynchronous arbiter is simulated using VHDL, and ex-
ploits the advantage of the generate statement provided by
this language to generate N arbiter modules in the arbiter
test bench. The arbiter is simulated with different proces-
sors having different clock phases with different frequencies
in order to model their globally asynchronous nature. A dif-
ferent number of processors i.e. 2, 4, 8, 16, 32...etc. with
different scenarios has been tested and verified.

Figure 9 shows the arbiter modules linked using arbitrary de-
lay elements. The delay insensitive model uses unbounded
delays on wires and gate elements and is a suitable method
for analyzing the completion and transition signaling. There-
fore, no matter how long the arbiter module waits for input

7



Figure 10: simulation result

changes when the arbiter sees activation of the input signals,
the transition passed through the wire lines to the next mod-
ule which will eventually know that a new input values has
arrived.

Figure 10 shows a sample of results from simulating 8 ar-
biter modules. In this sample the following conditions apply:
module 0 has initially reserved the token, module 7 receives
a high input Brk signal line and modules 1, 2, 3, 4, 5, 6
have a high input demand requests lines. As illustrated,
the request signal RL1 reaches the token before RH7, which
means that broadcast bus access is given first to processor
1 (Wout is asserted). When processor 1 releases the token,
the grant signals are propagated back to give processor 7
permission to use the broadcast bus before other low prior-
ity processors. The rest of the demand requests as shown
are granted in sequence order and based on its position in
the ring configuration.

6. CONCLUSION
In this paper we have discussed the design and the pre-layout
simulation using VHDL of an asynchronous arbiter. The
arbiter provides a very simple system architecture, where
each module has a few wires connecting the next one and
the last is connected to the first module in a circular fash-
ion. Delay-insensitive methodologies with unbounded wire
and gate delays were considered in the arbiter simulation
procedures. The arbiter also has the advantages of GALS
communication design and include the following features:

• The ring configuration to arbiter modules and the point-
to-point communication between two adjacent arbiter

modules provide a modular connectivity, which has full
scalability in both bandwidth and area with increasing
numbers of micro-threaded processors GALS modules.

• Each arbiter module has its own control signals and
implements a self-timed model. Therefore, there is no
need to propagate the control signals throughout all
the arbiter modules.

• There are four wires connecting every arbiter module
in the chain to the next one and the last to the first
in a circular fashion. The latency of the wire delay is
very small. Thus the decision is made locally by each
arbiter module instead of using large wire delay, which
gives it a partitioning properties.

• Each processor arbiter has a priority policy dependent
on a processor successfully executing the concurrency
control instruction Brk. This mechanism provides la-
tency hiding by decoupling the micro-threaded pro-
cessor from the token circulation time. It also, offer a
fairness communication between processors and elimi-
nates processors starvation.
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