
Supporting microthread scheduling and
synchronisation in CMPs

Dr. Ian Bell & Mr. Nabil Hasasneh

Department of Electronic Engineering

University of Hull,
Cottingham road,

Hull, HU6 7RX, UK
I.M.Bell, N.Hasasna@ hull.ac.uk

Prof. dr. Chris Jesshope

Institute for Informatics,

University of Amsterdam,
Kruislaan 403,

1098 SJ Amsterdam, NL
jesshope@science.uva.

Abstract
Chip multiprocessors hold great promise for achieving scalability in future systems.

Microthreaded chip multiprocessors add a means of exploiting legacy code in such systems.

Using this model, compilers generate parametric concurrency from sequential source code, which

can be used to optimise a range of operational parameters such as power and performance over

many orders of magnitude, given a scalable implementation. This paper shows scalability in

performance, power and most importantly, in silicon implementation, the main contribution of

this paper. The microthread model requires dynamic register allocation and a hardware scheduler,

which must support hundreds of microthreads per processor. The scheduler must support thread

creation, context switching and thread rescheduling on every machine cycle to fully support this

model, which is a significant challenge. Scalable implementations of such support structures are

given and the feasibility of large-scale CMPs is investigated by giving detailed area estimate of

these structures.

Keywords: Microgrids, Microthreads, CMPs, Schedulers, Register files.

1. Motivation
Chip multi-processors (CMPs) are a very promising solution for future high-performance

computing and we anticipate that many new microprocessor designs will be based on

such an approach. Several projects have already investigated CMPs, such as the Compaq

Piranha1, Stanford Hydra2 and Hammond et. al.3, and manufacturers are beginning to

produce commercial designs, such as the IBM Power PC4, Sun Niagara5 and Intel

Montecito6.

The appeal of CMP architectures comes from factors that limit the scalability of multiple-

instruction issue in conventional processors7, such as the superscalar paradigm, which

continue to use more silicon and power for very little improvement in instruction-level

parallelism (ILP). Evidence of this is provided by Intel's cancellation of its 4GHz

Pentium48, which has effectively reached a limit in both performance and scalability.

Scaling up concurrency in these processors gives very large circuit structures and this is

exacerbated by lengthy global communication arising from the increasing problems of

wire delay in technology scaling. These require excessive chip area and increased power

consumption respectively. For example, the logic required for out-of-order issue does not

scale with issue width9 and will eventually dominate the chip area and power

consumption.

The Semiconductor Industry Association (SIA) roadmap indicates that by 2018 the

number of transistors on a single chip will reach 4 to 25 billion depending on the circuit

type10. How to gain performance from this level of integration within acceptable power

budgets is a major problem. Performance cannot be achieved by simply increasing the

speed of conventional processors or by squandering a large number of transistors on

unscalable support structures, as used in out-of-order issue. Instead, we have to embrace

explicit parallelism, but systematic solutions to parallel programming and parallel

architectures have yet to emerge, even with small-scale concurrency. In the near future,

we will be able to integrate thousands of arithmetic units on a single chip11. Note that a

32-bit integer ALU occupies less than 0.05mm2 in an 180nm CMOS process technology

and typical chip sizes are between 100 to 400mm2. However, before such chips can be

utilised, we need programming paradigms for generating this level of concurrency and

support structures for scheduling and managing this concurrency, which are fully

scalable.

Today’s small-scale CMPs are based on the same complex processor designs that

preceded them and use high-level or software-based concurrency (e.g. threads). These

threads may be scheduled in software or hardware and even used to extend the pool of

instructions to support out-of-order issue. The latter, in particular, suffers from major

problems, which limit performance and prevent overall-system scalability. These

problems are summarised in12 and systems based on this approach scale badly and are

unable to exploit Moore's law to the full.

CMPs based on scheduling high-level threads, either in hardware or software, also fail to

follow the exponential growth in circuit density but here the problems are in generating

and managing the high levels of concurrency required. Ideally models should exploit the

lowest levels of concurrency and synchronisation, such as instruction-level and loop-level

parallelism (ILP, LLP), rather than the thread-level parallelism (TLP) typically exploited

in the software-based approach. Synchronisation must also be implemented close to the

processor, i.e. in the registers rather than in memory, if scalability is to be achieved.

In general, there are only a few requirements for the design of efficient and powerful

general-purpose CMPs, these are: scalability of performance, area and power with issue

width, and programmability from legacy sequential code. Issue width is defined here as

the number of instructions issued on chip simultaneously, whether in a single processor

or in multiple processors and no distinction is made here. To meet these requirements a

number of problems must be solved, including the extraction of instruction-level

parallelism (ILP) from legacy code, managing locality, minimising global

communication, latency tolerance, power-efficient instruction execution strategies (i.e.

avoiding speculation), effective power management, workload balancing, and finally, the

decoupling of remote and local activity to allow for an asynchronous composition of

synchronous processors. Most CMPs address only some of these issues as they attempt to

reuse elements of existing processor designs, ignoring the fact that these are suitable only

for chips with relatively few cores.

In this paper a CMP is evaluated, that is based on microthreading, which addresses either

directly or indirectly, all of the above issues and, theoretically, provides the ability to

scale systems to very large number of processors13. It will be shown that such CMPs use

hardware scheduling and synchronisation and have structures to support this that are

distributed, fully scalable and have locality in communication wherever possible. This is

achieved with distributed schedulers that jointly manage large parametric families of

threads and a distributed register file that provides synchronisation and sharing of data

between them.

These structures provide support for a shared-register, instruction-level model of

concurrency in which synchronisation occurs between instructions and in the registers.

The model requires instructions in the ISA to specify and manage this concurrency, but

this is achieved by adding just a few additional instructions to a conventional ISA. The

result, is that concurrency can be captured in an abstract and parameterized way in the

binary code, rather than by calls to an operating system. This is a large advantage in

exploiting efficient execution of concurrency in CMPs. This concurrency provides both

speedup and latency tolerance in a single processor.

2. Related Work
As described in section 1 above, CMP architectures must overcome multiple problems if

they are to deliver their full potential. In this section, some existing models of

concurrency are evaluated against these problems. This evaluation is used as a

comparison to position the microthreaded against related work before it is introduced in

detail.

2.1 Scalability and Performance Improvement
To keep multiple execution units as busy as possible in the presence of significant latency

in obtaining operands, modern processors use an aggressive out-of-order (OOO)

instruction-execution. This allows instructions to be issued and completed out of the

original program sequence, thereby exposing concurrency in the legacy, sequential

instruction stream. OOO execution increases the performance of a superscalar processor

by reducing the number of stall cycles in the pipeline. Synchronisation is managed by the

instruction-issue logic, which keeps track of resources required by an instruction and any

dependencies on the results of other instructions, which may not yet have been scheduled

or completed. The instruction window maintains the set of decoded instructions on the

currently predicted execution path that have not yet been issued. Its logic triggers those

instructions for execution but requires an area that is quadratic in issue width, i.e. the

number of instructions that can be issued simultansously14. Other support for renaming

registers and retiring instructions adds to this cost. The key problem is that the

mechanism for synchronisation is centralised.

Monolithic processors (i.e. wide-issue from a single instruction stream) have other

structures that do not scale, these are the register file15 and bypass logic16, which are also

centralised.

Finally, the concurrency exposed in OOO is limited due to the inefficient use of the

instruction window. In practice its size is limited by scalability constraints but its use is

required for all instructions, independent of whether those instructions can be statically

scheduled or not.

Simultaneous Multi-threading (SMT)17 is an attempt to make more efficient use of OOO

scheduling by fetching instructions into the instruction window from a number of

independent threads, thus guaranteeing fewer dependencies between the instructions

found there and hence allowing more efficient use of the wide instruction issue.

However, it does not address any of the issues outlined above and suffers from the same

scalability problems as conventional OOO processor, i.e. layout blocks and circuit delays

grow faster than linearly with issue width, and synchronizing memory is used

inefficiently. Indeed it introduces other problems, such as multiple threads that share the

same level-1 I-cache, which can cause high cache miss rates, all of which limit the

ultimate performance18.

The latency across a memory hierarchy may require hundred of cycles, which can

significantly impact performance. The only way to avoid an impact on a processor’s

performance is to provide instruction-level concurrency, in addition to wide instruction

issue, to provide tolerance to this latency. That, by definition, requires hundreds of

independent instructions per processor. With CMPs comprising thousands of processors,

this means providing synchronising memories capable of supporting hundreds of

thousands of synchronizations will be required in future CMPs and they must be designed

with this in mind.

An alternative approach to on-chip concurrency is to exploit user-level threads rather than

dynamically extracting concurrency from legacy binary code. Sun has proposed a

commercial, 32-way threaded version of the SPARC architecture in its Niagara device.

The chip has eight cores, each able to handle the contexts of four threads. Each core has it

own L1 cache and all cores share a 3MB L2 cache. Key problems with the Niagara

approach are the significant resource consumption for the aggressive speculative

techniques used, and the significant time wasted waiting for off-chip misses to complete,

see19. Also, the basic implementation of this SPARC chip is a superscalar processor and,

as already described, the superscalar approach provides diminishing returns in

performance for increasing issue width. The performance of a 6-issue OOO processor

will achieve only 1.2 to 2.3 IPC, compared with 0.6 to 1.4 IPC in a2-issue processor20.

It should be noted that Niagara is better suited to server rather than general-purpose

workloads, as a profusion of high-level threads are available in server applications, e.g.

where a server’s users are each managed by a concurrent thread. However, for general-

purpose workloads, typical programs are not so heavily threaded and unless an automatic

means of generating them can be found, this will severely limit the software-thread

approach.

2.2 Concurrency and Programmability
Exposure and management of concurrency then are the key issues in supporting CMP

design and implementation. This is the case for distributed systems as well chip-level

systems, but in the latter situation, the constraints and opportunities dictate a different

approach that is able to minimise the overheads of managing that concurrency.

Concurrency has the ability to increase overall system performance as well as provide

power savings in obtaining a given performance, by scaling frequency and voltage.

The use of OOO to expose and manage concurrency is ideal in one respect and one

respect only. That is the ability to obtain concurrency from legacy code, without the

programmer having to be aware of it. This has great commercial appeal. However, the

model has no tacit knowledge of concurrency and synchronisation and this must be

extracted dynamically in hardware, using complex support structures, not all of which

scale with issue width. This is wasteful of chip resources, does not have predictable

performance and is not able to conserve power in the execution of instructions. If

concurrency were explicitly described in the instruction stream, some of these unscalable

structures could be avoided.

User-level concurrency based on threaded applications is one alternative solution

exemplified by the Niagara described above, but not all codes contain thread-level

concurrency and therefore tools are required to extract threads from sequential programs.

One example of such tools is the use of speculative, pre-execution threads to provide

latency tolerance in memory access. This can be performed statically by a compiler,

dynamically in the hardware, or indeed by a hybrid of the two21. However, as its name

suggests, the model is speculative, which can again result in unpredictable performance

and, like all speculative methods, is not conservative in its use of energy, e.g. when the

speculation fails.

An alternative approach to extracting threads from user-level sequential code is described

in22, which compiles legacy applications for a multithreaded architecture. The most

important goal of this work is to create a sufficiently large number of threads so that there

is sufficient parallelism to hide communication latency. A second goal is to create threads

of a sufficient granularity so that the context switching cost is relatively small compared

with the cost of the actual computation. These goals are contradictory but can be

achieved by distributing remote data dependencies between different threads and using

these dependencies to schedule the thread when data dependencies are resolved, i.e. by

using non-blocking threads. The approach described here, microthreading, has extremely

efficient context switching and consequently does not require threads to be non-blocking.

Most approaches to extracting concurrency use the well-known fact that most

computation is performed in loops and that loop iterations can often be performed

concurrently, LLP. Compilation can extract software concurrency, as22, or provide

instruction-level concurrency as in the case of microthreading, which has an ISA

extension for the compiler to target; this instruction dynamically creates a whole families

of threads. Alternatively, in conjunction with control speculation, loops facilitate the

concurrency exposed in OOO by using branch prediction.

However, not all loops are independent and concurrency is often limited by data

dependencies, which may arise between different loop iterations when executed

concurrently. The vector computers of the 1970s and 1980s were unable to deal with LLP

that involved dependencies. OOO, on the other hand, manages these dependencies, which

are often regular, just like any other irregular dependency. It has no contextual data to

optimize and structure such management. There are other explicit approaches to manage

loops containing data dependencies2, 17 but in these, loop-carried dependencies are

expressed as concurrently executing threads that share memory. This is bad as it induces

high latencies in the dependency chains. In contrast, microthreads, synchronise in

registers rather than in memory but this requires large register files as well as large

support structures. This can only be achieved using distributed structures and in

microthreading, unlike monolithic wide-issue approaches, synchronisation and

scheduling are managed by distributed register files and schedulers even though the

concurrency is specified and managed at the instruction level.

The requirements on these support structures are severe; they must support a context

switch on every cycle, as the compiler identifies context switch points in the code and can

flag any instruction to context switch. They must also support thread creation on every

cycle, as thread creation occurs concurrently with instruction execution and must keep

pace with the rate at which context switches can occur. Finally, they must support thread

rescheduling at one thread per cycle, as when all threads are created, rescheduling must

also keep up with context switch rates.

2.3 Scaling Processor Support Structures
In superscalar processors, the logic necessary to handle OOO instruction issue typically

occupies 20-30% of the chip area20 and the issue logic in processors that support

speculation can be responsible for 46% of the total power23. On-chip caches are another

critical challenge in modern processors, occupying large die areas, consuming significant

power, and in some cases restricting system performance and scalability. Large cache

bandwidth requirements and slow global wires will sharply diminish the effective

performance of processors sharing a large monolithic cache as advances in fabrication

processes effectively decrease global propagations times.

The alternative is to build thousands of processing elements on a die and surround each

with a small amount of fast storage. Compare this to Intel’s Montecito processor where

cache memory occupies some 70% of the total die area or the equivalent to 32,000 32-bit

integer ALUs (0.18um technology). Huh et. al. 24 address this issue by comparing the

architectural trade-offs between in-order and OOO issue processors for serial

applications. Their study demonstrated that if no L-2 cache area were required, then it is

possible to integrate 556 2-way in-order processors on a single chip, or 201 4-way OOO

processors with a maximum area of 400mm2 in 35nm technology.

Clearly, the use of ever larger hierarchical memory systems does not serve scalability and

does not guarantee better performance. Instead, as argued above, there is a requirement

for large, fast and distributed synchronisation memory to support very wide instruction

issue as well as latency tolerance. Ideally a deterministic distribution of instruction

execution and data mapping is required in order to explicitly manage locality and to

eliminate, as far as is possible, slow and power-hungry global communication. This goal

is not served by using a large and monolithic processors connected to a large and

monolithic on-chip menmory. In short, some form of distribution becomes essential and

without a deterministic distribution of data and computation on chip, very wide-issue

CMPs are just not feasible.

Recently, Rixner et. al.11 analyzed register file area, delay and power dissipation for

streaming applications. The analysis showed that for a central register file, area and

power dissipation grows as N3 and delay grows as N3/2. Examples of the effects of this

scaling can be found in the proposed Alpha 8-way issue 21464, which used a 512

location register file requiring 24 ports to serve the wide-issue processor. Even with a

clustering, the 4Kbytes of register file occupied an area some 5 times larger than that

used by the L1 D-cache25 (64KB plus tags). That is a per-bit, density ratio of 100:1 and

graohically illustrates Rixner’s results. Power is also an issue in such large structures and

in Motorola's M.CORE architecture, the register file energy consumption is 16% of the

total processor power and 42% of the data path power26. These examples, which support

only modestly-wide instruction issue confirm that multi-ported register files in modern

microprocessors are not the way to proceed in future CMPs.

ILP processors communicate and synchronise using a namespace interpreted at the

instruction level, i.e. the register specifiers. This is typically limited to 5 or 6 bits and the

question that must be asked is how can the large a and distributed synchronization

memory be addressed with such small addresses? OOO processors use register renaming

for subsequent uses of the same register specifier and thus expand the namespace

dynamically. (This also removes the artificial dependencies introduced by executing

instructions out of program sequence). Of course, additional hardware is now required to

perform this mapping and to re-establish the mapping back to the original binary code to

give the illusion of sequentially executed instructions.

Microthreading on the other hand executes loops as concurrent code fragments and in

order to share code for a loop body, each iteration must have its own registers, which are

unique. In contrast to renaming, this is achieved by addressing a register file relative to

some unique offset, so that the same instruction will access a different location in the

register file for different iterations. Those offsets are a part of the microthread’s state.

This mechanism extends the ISA’s namespace so that it is limited only by the parametric

concurrency expressed in the creation of the microthreads that execute the loop.

The disadvantage of this approach is that registers must now be allocated dynamically

and state, in addition to its PC, must be maintained for each microthread. To allocate

registers dynamically requires additional logic and with many concurrent threads, any

additional thread state can lead to significant storage in the scheduler. The contribution of

this paper is in the design and analysis of these support structures.

2.4 Power Dissipation
Another challenge in modern processors is power consumption and heat dissipation,

which is already a serious problem and can only become worse in future 27. For example,

Intel's Madison consumes up to 130W, the alpha 21364 EV-7 consumes 155W and the

International Technology Roadmap for Semiconductors expects that power consumption

in processors will reach close to 300W by 201510. This 300W does not follow the past

exponential growth in power dissipated and recognizes this as a major conatraint on

processor design. This problem is exacerbated as in future process technologies, the

leakage power will also become a significant percentage of the overall power

dissipated28.

Several papers have considered power reduction in CMPs27, 28 but these techniques can

not hope to find significant principle solutions as branch prediction and out-of-order issue

do not provide a significant performance improvement relative to the area and power

consumed and doe not execute instructions conservatively with respect to power

dissipation. Indeed, the only solution is to remove these features to save power29. Another

current trend that highlights this problem is the current practice of increasing the number

of pipeline stages in order to reduce the clock period and hence increase performance.

This also can not continue, as it is simply not feasible to continue to extract exponentially

growing amounts energy from a chip as heat, as the result of power dissipated. Indeed,

there is a case for the trend to higher and higher clock frequencies to be stopped or even

reversed and instead to use of concurrency as a means of providing performance

improvements without excessive power consumption.

Concurrency can also provide power reduction for a given performance. With scalable

processor, two acting concurrently should give the same overall performance as one at

double the speed. The scalability required is performance with issue width, logic or area

with issue width and power dissipated with instructions issued per cycle (IPC). Although

the above comparison breaks even in power dissipated, power can be saved by scaling

supply voltage with frequency. As power dissipated is proportional to VDD
2, this gives a

quadratic reduction in power for a given performance, over the linear portion of

frequency-voltage scaling.

The use of IPC rather than issue width as a base for power scaling assumes that when a

processor is inactive it can be powered down. As a result, speculation or eager execution

must be avoided, as by definition an eager processor can never determine when there is

nothing to do!

Microthreading uses simple in-order instruction issue without branch prediction and has

explicit control of instruction scheduling, it can therefore provide all the hooks required

to support conservative instruction issue and hence take advantage of this power

scaling13. Processors with no active threads are aware that instructions cannot be

scheduled and can therefore go into standby mode dissipating minimal power. This

power usage can be scaled with IPC rather than issue width.

This conservative scheduling also provides an insight into asynchronous partitioning of a

CMP. By definition, if a processor has all of its threads inactive, then any event triggering

further computation must either be external to the processor (asynchronous) or the

processor must be deadlocked. A microthreaded CMP can therefore use a local clocking

with asynchronous communication between processors, further reducing power

requirements. This fact, together with the processor’s inherent latency tolerance provides

all the hooks required to implement a globally-asynchronous, locally-synchronous

(GALS) implementation. Additional power savings come from not requiring such

powerful drivers in distributing the clocks to the entire chip.

3. Microthreads, Microcontexts and Microgrids

3.1 Introduction
First it is necessary to define the terms used in this section heading:

i. Microthread – (not hyphenated to distinguish it from other uses of the same

combination of terms), refers specifically to code fragments managed by the

model described in this and previous, related papers. Microthreads are small

sequences of code (as short as a single, executable instruction) that are created

dynamically and execute concurrently. Creation is by an instruction added to the

ISA for that purpose. A family of microthreads can be distributed to more than

one processor and both the number of processors used and the number of

microthreads created is parametric and not bound by the resources available on

those processors. The create instruction specifies a family of related microthreads,

which are created as resources become available and at the same time as

previously created microthreads are being executed. All microthreads follow an

execution path which ends in the execution of an instruction which terminates that

thread, at which point its state is lost and its resources are released.

ii. Microcontext – refers to the private state associated with a microthread. This

includes a microthread’s program counter and an offset into the register file,

which locates its private register variables. The contents and synchronisation state

of the registers is also a part of its microcontext. The microcontext is stored in two

structures, the local register file and the local scheduler of the processor on which

the microthread is executing. Using a 5-bit register specifier, this state is bounded

above by 32 register variables and one slot in the scheduler’s tables. The

microthread and its microcontext are identified uniquely by its address in the

scheduler’s tables and this is called its slot number. It should be noted that a

family of microthreads will share all memory variables in the scope of a given

higher-level context and may also share a number of register variables.

iii. Microgrid – refers to a CMP where all processors have a microthreaded scheduler

and a synchronising, distributed shared register file. A microgrid will have a inter-

processor network to support the sharing of microcontexts between microthreads

in a family of microthreads, mapped to different processors. The network also

supports the broadcast of shared-register variables and the parameters defining the

creation of a families of microthreads. A microgrid may also have a systems

environment processor that manages the allocation of processors to families of

threads dynamically and configures the network accordingly. Microgrids are

described further in13.

Microthreaded code is not backward compatible. It must be recompiled from the original

source code, although this can be legacy, sequential source code. The parallelisation of

the source is primarily, but not exclusively, obtained by translating loops into families of

microthreads that execute concurrently. Techniques have been used to parallelise both for

and while loops, as well as loops with and without loop-carried dependencies. The type of

dependency supported is a function of the detailed implementation of the processor and

network. In this paper, we consider only constant-strided dependencies, which are

supported by a simple ring network.

Figure 1 gives an overview of such a microgrid, showing the networks required and the

datapaths between the major components within a processor. These are an in-order

pipeline, a scheduler, a large register file and a local I-cache. The processor may also

have a local D-cache but latency tolerant access to data means this is not a necessity. In a

profile of processors, a subset of the microgrid, any processor can create a family of

microthreads for execution on that subset. This requires the distribution to each processor

of the address of a data block in memory. This is called the thread-control block (TCB),

which contains all of the parameters that define the family microthreads.

This is the only global communication required in the execution of a family of

microthreads, apart from those defined by memory accesses in the code. Each processor

receiving the address of the TCB will execute a deterministic subset of that family, based

on the parameters in the TCB, the number of processors in the profile and its position in

the profile.

Microthreads created on a processor are queued in its scheduler for execution and a

microthread is removed from this queue and passed to the instruction fetch stage of the

pipeline on a context switch. The active microthread will continue to execute until either

it completes or is context switched itself, because of a blocking read to a register. This

may occur on instructions dependent on memory loads or data produced by other

microthreads. These are recognized by the compiler and flagged as context-switch points.

These instructions may or may not suspend on reading their operands and the explicit

context switch merely enables the scheduler to eliminate bubbles in the pipeline in the

event that the instruction does block. In this case, the slot number of the suspended thread

is stored in the empty register until the data arrives, at which point that thread is

rescheduled and added to the scheduler’s active queue again. Swapping execution

between threads when data is unavailable keeps the processor’s utilisation high and hides

communication or memory-access latency.

During execution, any data exchange between concurrent microthreads is achieved using

register variables. Concurrent microthreads may not communicate using shared memory,

as no guarantee can be made about their order of execution. Memory consistency is

achieved therefore using bulk synchronisation, either using knowledge of the termination

of a dependency chain in a dependent family of microthreads or by the use of a barrier

synchronisation in an independent family of microthreads.

3.2 The Microthreaded ISA
Microthreading is a general model that can be applied to an arbitrary ISA with the

addition of a small number of instructions to provide the concurrency controls. These

instructions are shown in table 1. The model provides concurrency-control instructions to

create families of threads (Cre), to explicitly context switch between threads (Swch) and

to kill a thread (Kill). Two global synchronization instructions are also provided, one is a

barrier synchronisation (Bsync), the other is a form of a break instruction (Brk), which

forces a break from a loop executed concurrently. Note that all of these instructions can

be completed in the first stage of a pipelined as they only control the action of the

scheduler. Because of this, these additional instructions do not require a pipeline cycle so

long as they are fetched concurrently with executable instructions. This allows

concurrency controls in the model to be very efficiently implemented.

As already described, microthreading exploits LLP by executing the same loop body for

multiple instances of an index variable. It is also able to capture ILP within basic blocks.

LLP is specified parametrically using loop bounds, with multiple iterations sharing the

same code but using different micro-contexts; this is SPMD concurrency. MIMD

concurrency can also be specified using pointers to multiple code blocks but is static in

extent, as the compiler must make the partition of the basic block and generate code

fragments accordingly. Both are captured through the control instruction Cre, which

initiates the creation of threads on all processors defined in a given profile. Each

scheduler will continue to create threads, until its distribution of iterations has been

exhausted. It may then continue to create threads from other families, whose Cre

instructions may have been queued in the scheduler.

The process of thread creation requires the following actions (refer to figure 3):

a. A slot number is obtained to address the scheduler’s tables (called continuation

queue – CQ, in figure 3) from the scheduler’s empty queue and the empty queue

is updated.

b. The register allocation unit (RAU) reserves the required number of registers for

the microthread’s context and returns a base address in the register file.

c. The code pointer, the base address of the microcontext, and the base address and

slot number of the microcontext it is dependent upon are all stored in the CQ slot.

d. Finally, the index value associated with the microthread is written into the first

local register variable of its microcontext and all other variables are initialised to

empty.

e. The slot number is then passed to the I-cache to prefetch the first instruction, only

after it has been prefetched, will the slot number be added to the active queue of

the scheduler, where it is available for execution.

The RAU maintains the allocation state of all registers in the local register file. If no

registers are available or there are no empty CQ slots, the thread cannot be created until

some resources have been released. It will be shown in this paper, that the local

scheduler’s tables and the RAU both scale with the number of local registers and are

both similar in area to the register file, which gives an scalable with concurrency, be it

local concurrency used for tolerating latency or concurrency of instruction issue.

3.3 In-order Pipeline
Figure 2 shows a microthreaded, in-order pipeline with its five stages and the

communication interfaces required to implement this model in a distributed manner. The

pipeline stages are: thread control/instruction fetch, instruction decode/register

read/reschedule, execute, memory (if implemented) and write back. Notice that

instructions normally complete in order but that in circumstances where the execution

time is non-deterministic, such as a cache miss, data is written asynchronously to the

register file on a port dedicated to this purpose. In this situation, instruction issue stops in

a thread as soon as an instruction attempts to read a register, that is empty. Note that all

registers have synchronisation bits associated with them defining their state:{full, empty,

waiting local, waiting remote}. No additional pipeline stages are required for instruction

issue, retiring instructions, or for routing data between different processors' register files.

Short pipelines provide low latency for global operations but a short pipeline can be

super-pipelined if required, to increase clock frequency (but note the comments in section

2 above).

Context switching is determined explicitly by the Swch instruction, which can

follow/precede any executable instruction and causes control to be transferred to another

microthread on the fetching of that instruction. Whether it follows or precedes the

instruction it flags is an implementation detail. In this paper we assume it follows at no

loss of generality. In this case a Swch instruction is fetched concurrently with an

executing instruction and causes a context switch in the same cycle.

As well as managing data dependencies, context switching is also used to manage control

dependencies in the pipeline, as all transfers of control are also flagged to context switch

and only rescheduled when the execution path has been determined. A context switch is

also used as a pre-fetching mechanism in the instruction cache. A context switch is forced

when the PC increments over a cache-line boundary. This makes a potential cache miss

to be a part of the scheduling process rather then the instruction-execution process.

Indeed, it provides a unified mechanism for cache pre-fetching as any thread will not be

scheduled for execution unless its current PC is guaranteed to be in the I-cache.

Contexts switches or Kills must be planted by the compiler on all branches of control and

on instruction that might stall on reading data. The latter occurs when communicating

with other threads, or following a load or long operation. Note that a Swch instruction

will always update the value of the PC in the thread’s state, and this update occurs after

the register-read stage. This is obvious in the case of a branch but not so obvious

following a data dependency, where the state of the register will determine whether the

instruction will be re-executed or not. If a register reads fails, the instruction reading the

register must be re-issued, when the data is available. On the other hand, if the register

read succeeds, the next instruction must be executed, which may be the next executable

instruction or the one at the branch target location, thus the action at the register read

stage determines the value of the thread’s PC for all programmed context switches.

Each register in a microgrid therefore acts as a synchroniser, which can control the issue

of instructions from the thread or threads that access it. A reference to the thread’s slot

number is stored in the register on a synchronisation failure and that thread is rescheduled

only when data is written to the register. This mechanism is distributed and scalable,

requiring only two additional bits per register together with state machines on each of the

registers file’s ports. This is in stark contrast to an OOO processor’s instruction window.

The mechanism of thread suspension and activation provides latency hiding during long

or non-deterministic delays when obtaining data. The maximum latency tolerated is

related to the size of the CQ or the size of the register file, which can both restrict the

number of local threads active at any time. Of course, the latency is also related to the

average number of statically scheduled instructions between context switches. Only if a

processor has no active threads, will the pipeline stall on attempting to read an empty

register.

This means of scheduling instructions is similar in complexity to that of a conventional,

single-issue, in-order processor. The only additional overhead is the larger than normal

register file, the maintenance of the CQ and the RAU, which are investigated in detail in

this paper. However, as they are both scalable with local concurrency they can both be

tuned in size at design time in order to provide a given amount of latency tolerance.

3.4. The Scheduler
A global scheduling algorithm determines the order in which a group of related threads is

distributed to the processor profile. This algorithm is built into the local schedulers and is

parameterized by data from the TCB as well as the number of processors in the profile.

Within each processor, the local scheduler manages the execution of all microthreads

currently allocated to that processor. The schedulers in different processors are

independent and each manages a local model of their own resource utilisation for the

subsets of the families of threads that it must execute.

Figure 3 shows more detail of a local scheduler, its connections with the I-cache and the

processor pipeline. The register allocation unit (RAU) within each scheduler models the

allocation of micro-contexts to the local register file and determines when new

microthreads may be allocated. If registers are available it will provide the base address

of a micro-context, which is used by the create process to create an entry in the CQ.

Similarly, when the threads associated with a micro-context have been killed, its registers

will be relinquished and the RAU will update its allocation model. In this way, the

scheduler can manage concurrency that is parametric and which exceeds the statically

available resources.

The process of dynamically allocating micro-contexts and thread creation is fully

decoupled from the pipeline execution, allowing the pipeline to work at full utilisation

without any extra pipeline stages for allocation. Furthermore, the distributed organisation

of both the global schedule and register allocation provides a scalable solution to

concurrent instruction issue and keeps both control and communication signals local,

with the exception of the broadcast of the TCB pointer to each processor, which is the

only global overhead in this model.

Thread distribution

One algorithm that can be used to distribute an iteration space to the array of processors

is to use the following equation, where iteration i, is mapped to processor q, using a

profile of P processors and a block of b consecutive iterations allocated to each processor:

q = |i/b|mod P

In this schedule, b can be chosen to minimise inter-processor communication and ensure

that regular inter-micro-context communication can be mapped to a point-to-point

network, more specifically a ring network.

The process of thread creation and code generation will be illustrated using the following

dependent loop:

for (i=0;i<n;i++)
Q = Q + A[i]*B[i]

The loop has a dependency in the add operation between Q in the current iteration and Q’

from the previous iteration. The compiler generates code to carry this dependency

between iterations using a register shared between two microthreads. This is specified by

a dependency distance of 1 in the TCB, which is used to link dependent threads in the

scheduler. The registers in a microcontext are divided into a local part $Li, a shared part,

$Si, and a dependent part, $Di, where the shared part of one micro-context maps to the

dependent part of the iteration that is dependent upon it. Thus the assembly code below

uses $S0/$D0 to carry this dependency between iterations, where $S0 is written by the

producer thread and $D0 is read by by the consumer thread. The dependency chain is

initialised and terminated in the main thread. In the assembly code, three parts can be

identified. The first is the TCB; the second is the code for the main thread, which creates

and synchronises this family; and the third part is the code for the loop body. Note that n

iterations of this body execute concurrently between the mv and sw instructions in the

main thread.

 Thread Control Block
 .data
loop: .word 1 #threads per iteration
 .word 1 #dependency distance
 .word 1 #loop start
 .word n #loop limit
 .word 1 #loop step
 .word 2 #number of local registers
 .word 1 #number of shared registers
 .word 0 #number of global variables
 .word body #pointer to code fragment

 Code for main thread
main: cre loop #create family of threads
 mv $G0 $S0 #initialise dependency chain
 sw $D0 Q #store result and synchronise

 Code For loop body
body: lw $L1,A($L0) #load A[i] from memory
 lw $L2,B($L0) #load B[i] from memory
 mul $L1,$L1,$L2 #A[i]*B[i]
 swch 2,0 #context switch
 add $S0,$D0,L1 #Q':=Q + A[i]*B[i]
 kill 1,1 #terminate thread

Looking at the concurrency in this code, it can be seen that all loads and multiplications

can proceed concurrently but that the accumulation of Q in $S0/$D0 is constrained to

execute in sequence and may be mapped to different processors. During the execution of

this dependency chain, only one processor will be active while the result is accumulated.

This constraint will limit speedup, but during the execution of the dependency chain, only

the processor currently executing will be active and consuming power as all other

processors will recognize an empty active queue. This situation is easily detected and can

be used for power management. When executing multiple iterations on one processor, the

chain can be executed at one addition operation per cycle using the bypass network as a

mechanism has been developed to reschedule threads in dependency chains predictively,

i.e. where we know one thread must reschedule the next, e.g. on the add instruction for

all threads. Information to detect this situation is given by the compiler in parameters to

the switch and kill instructions. Those parameters signal the number of non-deterministic

operands and whether to predictively reschedule the next interation in a dependency

chain.

3.5 Sharing Registers
Several sub-models of microthreading can be defined that differentiate the manner in

which micro-contexts are shared between microthreads, the work in this paper considers

a model that supports data sharing between micro-contexts defined by a constant-strided

loop-carried dependency, which is specified at create time via the TCB. This model

covers a wide range of loops and is broader by far than the vector model, however not so

broad as OOO. The advantage of this model is in the static definition of the relationship

between created microthreads, which allows for very efficient register sharing over ring

networks. The implementation requires the micro-context to be partitioned into different

windows representing different types of communication and for the processor to

recognise these windows in order to initiate a shared-register transfer when necessary.

A micro-context in a conventional RISC ISA comprises a maximum of 32 registers and is

divided into four classes of variables, namely G globals, S shareds, S dependents and L

locals. This partitioning is specified by including the parameters G, S and L in the TCB.

The G globals are mapped to a subset of the locals in the thread issuing the Cre

instruction and those values are replicated to all processors used in executing that family

and are shared by all threads in that family on a given processor.

The local class is private to a thread, unless it creates a subordinate family of

microthreads, when these may be shared as globals to the subordinate threads. The shared

and dependent classes provide for the communication between threads to support loop-

carried dependencies. The dependency chain originates in the main or creating thread,

passes through all iteration threads and terminates in the main thread again. In this chain,

the shared class of the producer thread is mapped to the dependent class of the consumer

thread. In the main thread, both shared and dependent classes are mapped over its local

registers. In created threads, when the producer of a dependent class executes on the same

processor as the consumer, only shared and local classes need to be allocated by the

RAU. Otherwise, when the producer of the dependency is executing on another

processor, dependent, shared and local registers must all be allocated. In the latter case,

the dependent class acts as a local cache for the remote shared class but otherwise shared

and dependent classes from producer and consumer both map onto the same S locations

in that processor’s register file. This is illustrated in Figure 4, for a family of four threads

mapped to two processors.

It is important to note that remote register reads are completely decoupled from the

pipeline’s operation through the use of explicit context switching. The consumer thread

reading a remote value suspends locally in one of its $D locations, and then sends a

request to the corresponding $S location on the remote processor. This remote request

may also suspend in the consumer’s micro-context if the data is not yet available but

eventually will return a value which will reschedule the suspended thread. Both types of

continuation are identified in the register’s synchronization state.

4. Implementation and Area Estimates for Support Structures

4.1 Register File
The register file is partitioned and distributed across multiple processors and is therefore

scalable if it can be implemented on each processor with a fixed number of ports. This

has already been demonstrated in a prior publication31, which shows that only five ports

per processor are required in an implementation to obtain full pipeline utilisation. Here

we estimate the area required for the local register file using procedures from prior

work33, 34. We calculate the area and compare this with that of the Alpha 21264 for a

given technoplogy. Figure 5 shows the estimated area for a local register file for different

numbers of registers (note that this size determines the amount of latency tolerance). It

can be seen that the area of 1024 32-bit registers is less than 0.6mm2 in 0.07 micron

technology.

The Alpha 21264 splits its integer file into two that contain duplicates of the 80-entry

register file. Two pipes and a single register file form a cluster, and the two clusters are

combined to support 4-way integer instruction execution. The architecture also has two

floating-point execution pipes organised in a single cluster with a single 72-entry register

file. Figure 6 compares the area of a microthreaded CMP register file and the Alpha

register file. The area of the microthreaded register file is less than the area of alpha

21264 for the same technology for all sizes up to 512 64-bit registers. Note that the 21264

only provides 152 registers to the microarchitecture.

4.2 Register Allocation Unit
In this section, a mechanism is described for implementing dynamic register allocation.

This hardware block uses information provided by the compiler through the TCB to

define the allocation requirements and uses a set of 1-bit flags to model the allocation

state of the registers. Allocation can be made to any contiguous set of free registers that

meet the requirements of the microcontext. In an allocation cycle, the RAU provides the

base address of that microcontext and the allocated registers are marked as allocated.

Initially, only the base-architecture’s registers are allocated, i.e. registers 0-31 on the

processor running the main thread, all others are free. The architectural registers provide

backwards compatibility for non-microthreaded code on a single processor.

It is important to perform the allocation process in a minimum number of cycles. Our

allocation scheme allocates one micro-context per cycle, which is the fastest rate

necessary to support thread creation at a rate of one per cycle. Design tradeoffs can be

made to allocate registers in blocks of from 1 to 32 registers, which provides a tradeoff

between speed and area of the RAU and occupancy of the register file. However, for a

given block size, the compiler can still optimize register file occupancy in code

generation using a number of techniques, such as loop unrolling.

The design for the RAU has been implemented in VHDL. It uses an area proportional to

the product of number of allocation bocks in a given register file and the number of bits

in the register specifier. For a given ISA, or number of bits in the register specifier, the

allocation has a constant (worse-case) time delay. An analysis of 10 Livermore loop

kernels, including both independent and dependent loops, gave an average number of

registers required per micro-context of 6, and a minimum number of 2 (one for the loop

index and one other). Thus, even in the smallest microcontext, area can be saved by

allocating in blocks of greater than one.

Figure 7 shows the Top-level design of the RAU and its interaction with the thread-create

process and hence, the rest of the scheduler. It shows that the RAU comprises an iterative

array of allocation slices, one slice per register-allocation block. Information on the

action required (no op., allocate or release), the required block size (for allocation), and

the base address (for release) is supplied to each slice from the scheduler. Each slice

maintains a flag, which indicates whether the corresponding block of the register file is

allocated or free. Note that in cycles when no action (allocate or release) is being

performed, the RAU still calculates the next base address ready for allocation, so that it is

available before an allocation is actually required.

In figure 7 data ripples through the allocation slices from bottom to top, corresponding to

increasing register-file address. The output from the final slice identifies the base address

in the register file of the first free contiguous block that meets the current block size

requirement for allocation (if one exists). The scheduler uses this to determine whether

the current allocation round can proceed and to set the base address in the CQ for the

thread associated with this micro-context.

The ripple inputs to the first slice are not hardwired, but held in a register to facilitate test

and adaptability. The base address input to the first slice is set to the address of the first

register that can be allocated in the register file, i.e. 32 in the processor running the main

thread and 0 in all other processors.

Information propagated from slice to slice includes whether a free block has been found,

the base address of largest free block, the size of the largest free block, the base address

and size of the current free block. An error flag is also propagated which indicates if

inappropriate inputs have been applied to the RAU. The data manipulated and propagated

between slices is listed in full in table 2 and illustrated in figure 8. As already explained,

the number of registers per micro-context is between 1 and 32 and so it is possible to

limit the size field to 5 bits, which can significantly reduce the propagation time within a

slice and hence the time to perform the allocation update process. Note that each slice

performs an increment on size and this will saturate at 32. The state of the allocator is

held entirely in a set of flags, one per slice, which indicates if the associated n-register

block is available for allocation or not.

The RAU always provides the next allocation, to be used in a creation cycle. The

scheduler initiates the create process, which updates the allocation state and allows the

RAU to settle into a new allocation state. This update process, may take longer than one

cycle, depending on the size of the register file and allocation block size (n), which define

the RAU’s ripple-through time. The rate of performing allocations will, on average, be

less than one per cycle, although it is desirable for the RAU to recover in a single cycle to

manage periods of peak context switch rates during thread creation.

When threads are killed, the scheduler also causes the allocation model in the RAU to be

updated to reflect this, by providing the base address of the micro-context being released

and its size. This information propagates through the slices to determine which flags to

reset.

The allocation scheme is relatively simple and allocating registers in blocks of n provides

both area and propagation-delay reduction in this scheme. If we assume that the size of

the register file is R, and the number of registers allocated in a unit of allocation is n, then

the complexity of the allocation scheme is O(R/n)

The allocation scheme has been modeled in VHDL and the generate statement has been

used to create the logic for the allocation scheme, with the registers per allocation unit

being parameterised as a constant in the top-level of the model and passed to lower level

components. We have also estimated the area of the allocation scheme and compared it

with the area of the register file. Figure 9 shows an area comparison between the register

allocation scheme and the register file for 2- and 4-register allocation units. The

allocation scheme uses less area than the register file in both cases.

4.3 Scheduler
Within the local scheduler, the continuation queue (CQ) manages the state of all currently

allocated threads; the components of this state are shown in table 3. This includes the

program counter (PC), the base address of its micro-context (l-base) and the base address

of a dependent micro-context if used (d-base), which includes a flag to specify whether

this is local or on an adjacent processor. Two additional field are used to hold pointers to

other slots in the table. The first of these is used to build queues, for example, the empty-

slot queue and the active-thread queue. The other is used to identify a thread’s producer

in the dependency chain. This is required in releasing a thread’s resources, as in a

dependent loop, physical registers are shared between two different microcontexts and

the producer’s registers can not be released until the consumer has read them. This is

implemented conservatively by releasing registers only when the consumer has been

terminated. Thus the Kill instruction must backtrack one place down the dependency

chain to release that thread’s resources. The table is initialised into a state where all slots

are in the empty queue except for the main thread, if it exists on a processor, which

occupies slot 0. For a 32-bit PC, a 512-location register file and a 256-entry CQ, each

entry in the continuation queue requires 67 bits.

The structure of the continuation queue can be decomposed into three different

components, each of which has a different number of read and write ports :

i. The first part holds the PC (32 bits) and is written on two ports, one when a thread

is created and the other when a thread is rescheduled. Both may occur at a high

frequency, so two ports are assumed so as to be able to reschedule and create in

the same cycle. There are also two read ports, one to access the head of the active

queue to provide a PC on a context switch and a second to obtain the PC of a

suspended thread when it is rescheduled after suspension in a register. This must

be sent to the I-cache to pre-fetch its code before that thread can be placed in the

active queue again. Again both can occur frequently and two ports are assumed to

perform both in the same cycle;

ii. The second part (27 bits) holds the micro-context state (base addresses and

producer) and requires two ports, one of which is written to when the thread is

created and the other is used to access the head of the active queue on a context

switch or kill;

iii. The last part is used to organise the thread slots into various queues and this is the

link field (8 bits). This is accessed in each cycle to maintain various mutually

exclusive queues, which are linked using this field. They are discussed in more

detail below.

All queues are maintained using the link field to indicate the next slot number in the

structure and two registers are used to maintain pointers to the head and tail of the

corresponding queue. This is illustrated in figure 10. The head, tail and link fields are

used to address all memories defined above.

Figure 10 shows the four processes involved in managing the thread state, i.e. thread

creation, pre-fetching, building continuation queues on registers and context switching.

These are as described below in more detail:

• Create - when a thread is created, a read port is used to update the head of the

empty queue. The slot number from the old head is the one allocated to the thread

and this is passed to the cache along with the thread’s PC to initiate a prefetch.

• Prefetch - when the PC address is known to hit the cache, the new thread is added

to the tail of the active queue, which supplies new threads to the pipeline on a

context switch.

• Context switch/kill - when a context switch or kill occurs at the IF stage of the

pipeline, a read is required to update the head of the active queue. Also, but only

on a kill, a write is required to update the tail of the empty queue. This requires

two ports, as the read and write are to different addresses in the CQ.

• Rescheduling - this process is required to manage the continuation queues of

multiple threads suspended on a given register (Ri in the diagram). This will

either write to the link field to update the tail of the Ri queue, when a new thread

is added or read the link field to update the head off the Ri queue, when

rescheduling a thread from it. This requires a single read/write port.

In total therefore, this link part of the CQ requires the most ports and the sum of the

above gives 5.

The size of the CQ is related to the size of the register file through two parameters. The

first is the number of registers required per micro-context (Rmc) and the second is the

number of threads that share a micro-context (Tmc), i.e. though global registers. The

more registers per micro-context the smaller the CQ in comparison to the register file.

The more threads that share a micro-context, the larger the CQ in comparison to the

register file. We have already shown that over a sample of the Livermore loop kernels,

the average number of registers per micro-context was 6. The number of threads sharing

some or all of a context is more difficult to ascertain. For this reason, figure 11 shows an

area comparison between the continuation queue and the register file for 1, 2, and 4

registers per slot in the continuation (i.e. Rmc/Tmc = 1, 2 or 4) all of which are very

conservative (i.e. require large continuation queues.)

5. Chip Architecture and Estimated Core Area

In order to demonstrate the feasibility of the microgrid CMP, this section provides an

overview of the chip architecture, gives an estimated area of the microthreaded processor

core and estimates the number of processors feasible on a die in emerging technologies.

5.1 COMA vs Multibanking
The Microgrid CMP is capable of supporting a large number of processors on-chip, but

such a design requires a similar number of memory banks to satisfy parallel access. The

ratio of memory banks to processors required is dependent on the cache hit rate and the

access pattern to these banks. Two possible memory organisations are being considered.

The first uses a processor with an L1 D-cache per processor, supported by a cache-only

memory architecture (COMA). In such a memory, data is automatically migrated or

replicated to where it is being used by the processors. The second memory architecture

eliminates the L1 D-cache completely and makes use of latency tolerance to access a flat

multi-banked memory structure. Simulations31 have shown that such an organisation is

entirely feasible. These previously published simulation results are reproduced in figure

12. This shows a number of parameters for the execution of the same binary code across

profiles of from 1 to 2048 processors. Scalability is clearly illustrated. The other issue is

that performance results (except for cache hit rate) is completely independent of the

cache implemented in the processor. The top graph if for an 8-way associative 64Kbyte

cache and the lower graph is for a direct-mapped 1Kbyte cache. The only difference can

be seen in the number of inactive cycles, which changes marginally and the cache hit

rate, which is drastically reduced. The change in cache does not affect performance and

the IPCs are almost identical. In fact, by a small margin, the maximum IPC was observed

with the smaller cache.

The advantage of the COMA structure is that it requires fewer memory banks, as each

bank can have multiple, independent cache-line buffers for each processor in a cluster,

see figure 13, where a cluster of processors share a single banked COMA node. Access to

the COMA node is by cache line and access by the processor is by word. This allows a

number of processors, equal to the number of words in a cache line, to share a port into

the COMA node without conflict, so long as there is full cache locality. Note that the

deterministic distribution of threads to processors in the micro-threaded model allows

data accesses to be organised in such a way as to maximise the cache hit rate and

minimise accesses to the COMA nodes. The simulations from 31 shown in figure 12, using

the 64Kbyte cache produced an 80% cache hit rate with only 2-3% of memory loads

causing a request to the COMA node. However, not all algorithms can be regularly

mapped and some require global- rather than local-communication patterns. For example,

matrix multiplication accesses data using both row and column strides through memory

structures and such an algorithm would generate cache misses and bank conflicts on at

least one of these strides, unless the algorithm was coded in a block structure, where the

blocks matched the cache line size.

An alternate memory architecture that uses a word-wide memory bank per processor with

no L1 D-cache in the pipeline is shown in figure 14. In this case, all memory accesses

incur a delay, dependent on location of data on chip. However, the microthreaded

processors can be designed to tolerate any latency by scaling register file size and support

structures to give the required local concurrency. This memory structure would still

suffer from bank conflicts in the example given above, unless some form of

randomisation was employed in mapping the address space to the memory structures, see

figure 14. The advantage of this scheme is that the complexity of the processor is

reduced, by omitting the L1 D-cache. It also supports arbitrary access patterns to data,

although this comes at a cost, as there is more load put on the on-chip network and more

energy dissipated in moving data around the chip, as locality is ignored in randomizing

memory accesses. These issues have yet to be explored in depth, using our simulators. It

is clear that the choice of memory structure for the CMP is a complex one and is likely to

be application specific. For this reason, in this section, we simply assume that half of the

chip area is given over to processors and the remaining half to memory structures such as

memory banks and the network to access them.

5.2 Estimated Core Area
The major advantage of the microgrid CMP is its scalability in terms of performance,

power and area with instruction-issue width. The first two issues are demonstrated in13

and in this paper we have analyzed the area scaling. We have shown that the area of the

support structures for a microthreaded microgrid are scalable in instruction-issue width,

as they are distributed to the processors, but we have also shown that the structures are

scalable in the virtual concurrency supported on a local processor, which determines the

amount of latency tolerance. Because of this, performance, power and latency tolerance

can all be managed, the latter in the microgrid processor design and the former two in the

dynamic management of concurrency in a microgrid.

In this final section an estimate is given of the number of microthreaded processors that

can be integrated onto a single chip using emerging technology (0.07 micron CMOS).

We assume that each core in the microgrid CMP is a 32-bit RISC processor with a

dedicated, 64-bit, floating-point unit (FPU). We consider two possible architectures,

which correspond to the memory organisations briefly described above, i.e. with and

without D caches. To estimate the microgrid-core area, we have used CACTI to estimate

the area of the L1 caches and we use34, 35 to estimate the area of the other core

components. Note that both I-cache and D-cache are single port memory structures.

Table 4 gives the estimated area of a microthreaded processor core including an L1 D-

cache. In this table, we assume that the processor has a direct-mapped L1 I-cache of 8KB

and a two-way set-associative L1 D-cache of 64KB. It can be seen that the L1 D-cache

consumes about 47% of the core area and that the register file of 512 registers consumes

12%. Based on the work presented in this paper, we assume that the RAU allocates

registers in units of 2 and that the size of the CQ is 256-entries. This gives support

structures for the microthreaded model that consume 7% and 12% of the core area

respectively, giving a total area for the processor core including the FPU of 2.43mm2.

Results for the alternative configuration without the L1 D-cache use similar parameters,

with the only difference being that the L1 I-cache is reduced to 4KB. The results are

shown in table 5. In this configuration, the support structures begin to dominate the core

area, with 23% going on the register file, 25% on the CQ and 14% on the RAU.

However, the new estimated core area is now only 1.19mm2, which less than half the area

of the previous configuration. It should be noted that with 512 registers and 256 micro-

thread slots, we have chosen to characterise a generous configuration that would tolerate

100s of cycles of latency from a memory system.

To put these estimates in perspective, using the model without the L1 D-cache, if we

assume that half of the die area is given to memory structures, a 128-processor chip with

64 thousand registers would require 305mm2, which is significantly less than the area of

Intel's Montecito chip.

Recently, Kumar et.al. 36 estimated the die area of chip multiprocessor with eight cores

sharing a 4MB L2 cache. In this work, each core is a 4-issue in-order processor (Alpha

21164) and has 64KB L1 caches (I/D). The total chip area was 127.76mm2. Our

estimation methodology is similar to their work and we have used the same feature size.

Using the same die size and the same amount of shared memory, we could support about

50 microthreaded processors each with an FPU with a combined register file size of 25

thousand registers and able to support over 10 thousand active threads. Sharing an FPU,

as proposed in that paper, is quite feasible in a microthreaded processor design and this

would further increase the number of processors in the same area. A co-joined dual

processor single FPU processor design would require approximately 2mm2, allowing 64

processors with 32 thousand registers to be integrated in the same die area.

6. Conclusion

The Microgrid CMP based on microthreaded microprocessors is a promising new

approach for scalability. This approach allows concurrency to be extracted from

sequential code, exploiting different types of parallelism. ILP and LLP are both detected

by the recompilation of legacy, sequential source code or indeed, could be obtained from

the translation of existing legacy binary code. The microgrid also supports TLP by

assigning application threads to groups of processors in the CMP. Moreover using

microthreading it is possible to dynamically adapt the number of processors used in each

group at the loop level13.

In this paper, we have investigated the overhead of the support structures for a

microthreaded microprocessor implementation, these are the CQ and RAU, as well as a

larger than normal register file. All three structures are related to the local concurrency

supported and hence the latency tolerated by the processor. We have described in detail a

register allocation scheme, which dynamically allocates registers to micro-contexts. It is

shown that for a given ISA, the scheme has an area proportional to the register file size.

Moreover, the area required is tunable by choosing the unit of allocation, at the cost of

some loss of efficiency in the use of the register file.

Our results show that the area of both the allocation scheme and the scheduler queue are

less than that of the register file, given reasonable assumptions about the size of each.

The paper also estimates the microgrid area for different configurations of memory and

cache using an 0.07µm technology. This shows the feasibility of 128-way CMPs using

this emerging technology and with a generous latency tolerance capability, i.e. tolerating

many 100s of cycles of latency on memory or external I/O.

7. Acknowledgements
We gratefully acknowledge the contribution to this work from the Government of

Palestine for supporting Mr Hasasneh’s scholarship, we also acknowledge NWO for their

support of the Microgrid project, which has been funded in their GLANCE program,

project number: 600.643.000.05N07.

8. References
1. Barroso, L. A. et al., “Piranha: A Scalable Architecture Based on Single-Chip

Multiprocessing”, Proc. of 27th Annual International Symposium on Computer
Architecture, Vancouver, British Columbia, Canada, pp. 282-293, June 2000.

2. Hammond, L., Hubbert, B. A., Siu, M., Prabhu, M. K., Chen, M. and Olukolun, K.,
 “The Stanford Hydra CMP”, IEEE Micro, vol. 20, pp. 71-84, March-April 2000.

3. Hammond, L., Nayfah, B. A. and Olukotun, K., “A Single-Chip Multiprocessor”,
 IEEE Computer Society, vol. 30, no. 9, pp. 79-85, September 1997.

4. Tendler, J. M., Dodson, J. S., Fields, J. S., Le, H., and Sinharoy, B., “Power4 System
 Micro-architecture”, IBM Journal of Research and Development, vol. 46, no. 1, pp. 5-
 25, 2002.

5. Kongetira, P., Aingaran, K. and Olukotun, K., “Niagara: 32-way Multithreaded Sparc
 Processor”, IEEE Computer Society, vol. 25, no.2, pp. 21-29, March-April 2005.

6. McNairy, C. and Bhatia, R., “Montecito: A Dual-Core, Dual-Thread Itanium
 Processor”, IEEE Computer Society, vol. 25, no. 2, pp. 10-20, March-April 2005.

7. Agarwal, V., Hrishikesh, M. S., Keckler, S. W. and Burger, D., “Clock Rate versus
 IPC: The End of the Road for Conventional Microarchitectures”, Proc. of the 27th
 Annual International Symposium on Computer Architecture, Vancouver,
 British, Columbia, Canada, pp. 248-259, June 2000.

8. shilov, A., “Intel to Cancel NetBurst Pentum 4 Xeon Evolution”, http:/www.xbitlabs.
 com/news/cpu/display/20040507000306.html, (Accessed 7/1/2005), 2004.

9. Lipasti, M. H. and Shen, J. P., “Superspeculative Microarchitecture for Beyond AD
 2000”, IEEE Computer Society, vol. 30, no. 9, pp. 59-66, September 1997.

10. International Technology Roadmap for Semiconductors, http://public.itrs.net, 2003,
 Accessed 20/4/2005.

11. Rixner, S. et al., “Register Organisation for Media Processing”, International
 Symposium on High Performance Computer Architecture, Toulouse, France, pp. 375-
 386, January 2000.

12. Ronen, R. et al., “Coming Challenges in Microarchitecture and Architecture”,
 Proc. IEEE, vol. 89, no. 3, pp. 325-340, March 2001.

13. Bousias, K. and Jesshope, C. R., “The Challenges of Massive On-chip Concurrency”,
 to be published Proceedings ACSAC 2005, Springer, Singapore,
 (http://staff.science.uva.nl/ ~jesshope/Papers/ACSAC05.pdf), 2005.

14. Onder, S. and Gupta, R., “Superscalar Execution with Dynamic Data Forwarding”,
 Proc. of the International Conference on Parallel Architectures and Compilation
 Techniques, Paris, France, pp. 130-135, October 1998.

15. Balasubramonian, R., Dwarkadas, S. and Albonesi, D., “Reducing the Complexity of
 the Register File in Dynamic Superscalar Processors”, In Proc. of the 34th
 International Symposium on Micro-architecture, Austin, Texas, pp. 237-248,
 December 2001.

16. Palacharla, S., Jouppi, N. P. and Smith, J., “Complexity-effective Superscalar
 Processors”, In Proc. of the 24th International Symposium on Computer
 Architecture, Denver, Colorado, United States, pp. 206-218, June 1997.

17. Tullsen, D. M., Eggersa, S. and Levy, H. M., “Simultaneous Multithreading:
 Maximizing on Chip Parallelism”, Proc. of the 22nd Annual International Symposium
 on Computer Architecture, Santa Margherita Ligure, Italy, pp. 392-403, June 1995.

18. Burns, J. and Gaudiot, J-L., “Area and System Clock Effects on SMT/CMP
 Processors”, Proc. of the 2001 International Conference on Parallel Architectures and
 Compilation Techniques, Barcelona, Spain, pp. 211-218, September 2001.

19. Spracklen, L., and Abraham, S.G., “Chip Multithreading: Opportunities and
 Challenges”, Proc. of the 11th Intel's Symposium on High performance Computer
 Architecture (HPCA-11 2005), San Francisco, CA, USA, pp. 248-252, February 2005.

20. Olukotun, K., Nayfeh, B. A., Hammond, L., Wilson, K. and Chang, K., “The Case for
 a Single-Chip Multiprocessor”, In Proc. of the Seventh International Symposium,
 Cambridge, MA, pp. 2-11, October 1996.

21. Ro, W., and Gaudiot, J-L, “SPEAR: A Hybrid Model for Speculative Pre-
 Execution”, Proc. of 18th International Parallel and Distributed Processing
 Symposium (IPDPS 2004), Eldorado Hotel, Santa Fe, New Mexico, pp.26-30, April
 2004.

22. Zoppetti, G. M., Agrawal, G., Pollock, L., Amaral, J. N., Tang, X., and Gao, G. R.,
 “Automatic Compiler Techniques for Thread Coarsening for Multithreaded
 Architectures”, Proc. of the 14th International Conference on Supercomputing, Santa
 Fe, New Maxico, USA, pp. 306-315, May 2000.

23. Wilcox, K., and Manne, S., “Alpha Processor: A history of Power issues and a look
 to the Future”, In Cool-chips Tutorial, Held in conjunction with MICRO-32, Dec.
 1999.

24. Huh, J., Burger D., and Keckler, S.W., “Exploring the Design Space of Future
 CMPs”, In Proc. Of International Conference on Parallel Architectures and

 Compilation Techniques, Barcelona, Spain, pp. 199-210, September 2001.

25. Preston, R. P. et al., “Design of an 8-wide Superscalar RISC microprocessor with
 Simultaneous Multithreading”, 2002 IEEE International Solid-State Circuits
 Conference, San Francisco, CA, pp. 334-335, February 2002.

26. Scott, J., “Designing the Low-Power M-CORE Architecture”, Proc. IEEE Power
 Driven Micro Architecture Workshop at ISCA98, Barcelona, Spain, pp. 145-150,
 June 1998.

27. Kumar, R., Farkas, K. I., Jouppi, N. P., Ranganathan, P., and Tullsen, D. M., “Single-
 ISA Heterogeneous Multi-Core Architectures: The Potential for Processor Power
 Reduction”, Proc. of the 36th Annual IEEE/ACM International Symposium on
 Microarchitecture, San Diego, CA, USA, pp. 81, December 2003.

28. Yingmin, L., Brooks, D., Zhigang, H. and Skadron, K., “Performance, Energy, and
 Thermal Considerations for SMT and CMP Architectures”, Proc. of the 11th IEEE
 International Symposium on high performance computer architecture (HPCA), San
 Francisco, CA, USA, pp. 71-82, February 2005.

29. Kiemb, M. and Choi, K., “Memory and Architecture Exploration with Thread
 Shifting for Multithreaded Processors in Embedded Systems”, Proc. of the 2004
 International Conference on Compilers, Architecture, and Synthesis for Embedded
 Systems, Washington DC, USA, pp. 230-237, September 2004.

30. Jesshope, C. R., “Scalable Instruction-level Parallelism”, In Computer Systems:
 Architectures, Modeling and Simulation, 3rd and 4th International Workshops,
 SAMOS 2004, Samos, Greece, pp. 383-392, July 2004.

31. Bousias, K, Hasasneh N M and Jesshope C R (2005) Instruction-level parallelism
through Microthreading - a scalable Approach to chip multiprocessors, an electronic
version of an article to be published in the BCS Computer Journal. Online access:
http://comjnl.oxfordjournals.org/cgi/rapidpdf/bxh157?ijkey=EoSzke60tdKdUYz&keytype=ref

32. Jesshope C. R. (2005) Micro-grids - the exploitation of massive on-chip concurrency,
pp 203-223 (Invited paper, HPC 2004Cetraro, June 2004), In Grid Computing: A
New Frontier of High Performance Computing, 14, pp203-223, (ed. L. Grandinetti,
Elsevier, Amsterdam, 2005) pp203-223.

33. Silberman, J. et al., “A 1.0 GHz single issue 64b PowerPC integer processor”, ISSCC,
 Department of Computer Sciences, IBM Austin Research Lab., Austin, Tx, pp. 230,
 1998.

34. Gupta, S., Keckler, S. W., and Burger, D.C., “Technology Independent Area and
 Delay Estimates for Microprocessor Building Blocks”, Tech. Report TR2000-05,
 Department of Computer Sciences, the University of Texas at Austin, pp. 1-27, May
 2000.

35. Lopez, D., Llosa, J., Valero, M. and Ayguade, E., “Resource Widening versus
 Replication: Limits and Performance-Cost Trade-Off”, 12th International Conference
 on supercomputing (ICS-12), Melbourne, Australia, pp. 441-448, 1998.

36. Kumar, R., Jouppi, N.P., and Tullsen, D.M., “Conjoined-Core Chip Multiprocessing”,
 Proc. of the 37th annual International Symposium on Microarchitecture (MICRO-37
 2004), Portland, Oregon, pp. 195-206 December 2004.

Scheduler I-
cache

Pipeline D-
cache

Local
Register file

Initialise
$L0 Decoupled

Lw

Write $G

Create/write $G Broadcast Bus

…

$D read

Create

Scheduler I-
cache

Pipeline D-
cache

Local
Register file

Initialise
$L0 Decoupled

Lw

Write $G

Create/write $G

$D read

Create

Independently synchronous domains

SchedulerScheduler I-
cache

I-
cache

PipelinePipeline D-
cache

D-
cache

Local
Register file

Local
Register file

Initialise
$L0 Decoupled

Lw

Write $G

Create/write $G Broadcast Bus

…

$D read

Create

SchedulerScheduler I-
cache

I-
cache

PipelinePipeline D-
cache

D-
cache

Local
Register file

Local
Register file

Initialise
$L0 Decoupled

Lw

Write $G

Create/write $G

$D read

Create

Independently synchronous domains

Ring interconnect for registers
and bus arbitration

Figure 1. Microgrid chip multiprocessor based on asynchronous collection of

microthreaded pipelines communicating with a broadcast bus and ring network.

schedulerread-only
cache

register
allocation

model

thread
control
and IF

context
switch

register
file

arbiter

ring

Broadcast bus

To nearest
neighbours

ALU cache
write
back

bypass

Shared memory

reschedule thread

broadcast decoupled lw

remote
register
readinit

create

register write

Figure 2. The pipeline of a microthreaded microprocessor, showing five stages including

an L1 D cache

Local
Register

file

In-order pipelineIF RR

Asynchronous interface

CQ

Context
switch

I-cache

Thread
create

Prefetch PC
Read TCB

RAU

Allocate/
deallocate

Reschedule
thread

Initialise
loop index

Create address

Local
Scheduler

Figure 3. Detail of the local scheduler showing its main components and the data paths
between it and other stages of the pipeline.

Figure 4. Diagram showing the mapping of microcontexts for a family of 4 threads (i=0
to i=3) mapped to two processors. The diagram shows the four register classes: globals,
shareds, dependents and locals for the main thread and for each microthread created. A
location is addressed by a base addresses plus a regular register specifier, whose value
determines the class. In any thread addressing requires a base address for that processor
and a base address for itself and any thread it is dependent upon. The latter two are stored
in the CQ slot for each thread, with one bit indicating whether the shared class is mapped
to the same or an adjacent processor.

Register file processor 1 Register file processor 2

Classes for: main

i = 0

i = 1 i = 2 i = 3

Global Global

Global Global

Shared

Local

Dependent

Shared

Local

Dependent
Dependent

Local

Shared

Local

Shared

Dependent

Global
Dependent

Shared

Base
addresses

globals

globals

i = 0

i = 1

i = 2

i = 3

Inter-processor

communication

Base
addresses

0

0.1

0.2

0.3

0.4

0.5

0.6
A

re
a

in
 m

m
^2

 (0
.0

7
um

)

128 256 512 1024

Number of registers in the register file (32-bit each)

3R,2W

Figure 5. Estimated area of one processor’s partition of a distributed register file
comprising 5 ports per processor. The area estimate is for 0.07µm technology.

0

0.2

0.4

0.6

0.8

1

1.2
A

re
a

in
 m

m
^2

 (0
.0

7
um

)

128 256 512 1024
Number of registers in the register file (64-bit each)

Microthreaded RF Alpha 21264 RF

Figure 6. Area comparison between different sizes of a microthreaded register file and for
the alpha 21264’s register file (both estimates are for 0.07µm technology). Note that the
21264 provides only 152 registers to the microarchitecture.

Figure 7. Diagram of the RAU and its interaction with the thread-create process. The
RAU has one logic slice for every block of n registers in the local register file.

Thread-create
process

CQ

Write PC and thread state
Read link field

Register
Allocation

Unit

Block base

Block size

Status
{available, error}

Control
{allocate, release, no op.}

FlagRegister allocation
combinational logic

One flag per n registers in
local register file

FlagRegister allocation
combinational logic

FlagRegister allocation
combinational logic

Figure 8. Register allocation unit’s combinational logic slice

Slice of allocation logic

BA ou
t

BA in

SS
B ou

t

SS
B in

CSB
ou

t

CSB
in

CSS
ou

t

CSS
in

SS
S ou

t

SS
S in

SA
ou

t

SA
in

SA
S ou

t

SA
S in

Er
ro

r ou
t

Er
ror

in

SASI

Flag

Fl
ag

pr
ev ou

t

Fl
ag

pr
ev ou

t

0

0.1

0.2

0.3

0.4

0.5

0.6

A
re

a
in

 m
m

^2
 (0

.0
7

um
)

128 256 512 1024

Number of registers in the register file (32-bit each)

RAU (4 registers/block) RAU (2 registers/block) Register File

Figure 9. Area comparison between the register allocation unit and the register file for 2-
and 4-register allocation blocks and for various sizes of register file.

Head

Tail

PC/bases next PC/bases next PC/bases X

Link
memory

Create
HeadE:=HeadE.next

Cache
TailA.next:=HeadE

TailA:=HeadE

HeadE + PC

Queues used
Active - A
Empty - E
Register continuation - Ri

Queues used
Active - A
Empty - E
Register continuation - Ri

Context switch or kill
HeadA:=HeadA.next

TailE.next:=Slot
TailE:=Slot

HeadA + PC/bases to IF

Add to continuation
TailRi.next:=TailRi
Reschedule from

Continuation
HeadRi:=HeadRi.next

Slot # of running thread

HeadRi & TailRi from Ri

Slot # + PC

Figure 10: Block diagram of the interactions within the CQ, which use its link field to
build: a) a queue for empty slots, b) a queue containing active slots and c) Any
continuation queues for threads suspended in the register file.

CQ 64

CQ
 128

CQ
256

256
 RF

CQ
128

CQ
256

CQ
512

512
 RF

CQ
256

CQ
 512

CQ
1024

1024
RF

0

0.2

0.4

0.6

0.8

1

1.2
A

re
a

in
 m

m
^2

 (0
.0

7
um

)
CQ (1,2 and 4 registers/slot) Register File

Figure 11. Area of the continuation queue compared with the register file for 1, 2 and 4-
registers per slot in the continuation queue.

Figure 12. Simulation results of an independent loop mapped to profiles of from 1 to
2048 processors. These results show scalability of performance (both figures) as well
well as complete invariance to cache size and mapping strategy – compare IPC for both
cases.

Characteristics of microthreaded kernal execution
(64K D-cache)

1.0E+00

1.0E+01

1.0E+02

1.0E+03

1.0E+04

1.0E+05

1.0E+06

1.0E+07

1 10 100 1000 10000

Number of processors used to execute kernal

C
y
c
le

s
,

I
P

C
 o

r
in

s
tr

u
c
ti

o
n

s
 e

x
e
c
u

te
d

0

10

20

30

40

50

60

70

80

90

100

H
it

 r
a
te

 (
%

)

Cycles to solution

IPC

Instructions executed

Inactive cycles

Hit Rate (%)

Characteristics of microthreaded kernal execution (1K D-
cache)

1.0E+00

1.0E+01

1.0E+02

1.0E+03

1.0E+04

1.0E+05

1.0E+06

1.0E+07

1 10 100 1000 10000

Number of Processers used to execute kernal

C
y
c
le

s
,

I
P

C
 o

r
in

s
tr

u
c
ti

o
n

s

e
x
e
c
u

te
d

0

10

20

30

40

50

60

70

80

90

100

H
it

 r
a
te

 (
%

)

Cycles to solution
IPC
Instructions executed
Inactive cycles
Hit Rate (%)

Figure 13: Memory architecture using COMA nodes and clusters of processors.

Processor Processor

…
D-cache D-cache

Line buffer Line buffer

COMA node

Cluster 0

Processor Processor

…
D-cache D-cache

Line buffer Line buffer

COMA node

Cluster 1

…

Word transfers Line transfers

Figure 14: Memory architecture using a flat structure of multiple banks with address
randomisation. Such an organisation would not use an L1 D-cache.

Processor

Word transfers

On-chip network

Mem bank

Address
randomiser

Processor

Address
randomiser

Processor

Address
randomiser

Mem bank Mem bank

…

…

Table 1: Concurrency-control instructions

Instruction Instruction Behavior
Cre Creates a new family of threads
Swch Causes a context switch to occur
Kill Terminates the thread being executed
Bsync Waits for all other threads to terminate
Brk Terminates all other threads

Table 2: Allocation logic parameters

Abbreviated
Name

Description

BA Base Address
SSB Selected Slice Base
CSB Current Slice Base
CSS Current Slice Size
SSS Selected Slice Size
SAS Set Allocate Size
SA Slice Available
Error Error Signal
Flagprev Previous Flag State
Flagout New Flag State
Flagin Current Flag State
SASI Set Allocate Size In
Reg Register

Table 3: Thread entry format in the continuation queue for 256-entry CQ and 512 entry
register file

Field name Number of bits
Program counter 32
Local base 9
Dependent base 10
Producer 8
Pointer 8

Table 4: Microgrid-Core estimate area using 0.07µm technology

Functional Block Size Area in mm2

(0.07µm)
%Core

L1 I-cache 8KB, Direct map 0.178 7%
L1 D-cache 64KB, 2-Way 1.15 47%
Register file 512 (32-bit each) 0.279 12%
RAU Allocate block of 2 0.167 7%
CQ 256-entry (67-bit each) 0.299 12%
FPU 64-bit 0.356 15%
Total Core Area mm2 2.43 100%

Table 5: Microgrid-Core estimate area without L1 D-cache using 0.07µm technology

Functional Block Size Area in mm2

(0.07µm)
%Core

L1 I-cache 4KB, Direct map 0.08927 8%
Register file 512 (32-bit each) 0.279 23%
RAU Allocate block of 2 0.167 14%
CQ 256-entry (67-bit each) 0.299 25%
FPU 64-bit 0.356 30%
Total Core Area mm2 1.19 100%

