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Abstract

A unital ring R is called SR1 if for any element a ∈ R and any left ideal L of R,
Ra + L = R implies a − u ∈ L for some unit u in R. From this perspective, for some
speci�c set L(R) of left ideals of R, the condition still hold. These rings will be called
then L-stable rings. For elements, an element a ∈ R is L-stable if Ra+L = R, L ∈ L(R),
implies that a− u ∈ L for some unit u of R. Then R is an L-stable ring if each element
of R is L-stable. A class C of rings is a�orded by L if C = {L-stable}-the class of all
L-stable rings, and C is a�ordable if this happens for some certain set of left ideals of R.
The class of all SR1 rings is a prototypical example of an a�ordable class of rings. Some
other well-known examples of L-stable rings are mentioned. It turns out that a�ordable
classes of rings share many interesting properties.
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Introduction

Throughout, all rings are assumed to be unital and associative unless otherwise stated.

In 1964, in his seminal work, Hyman Bass invented the concept of stable range in his
investigation of the stability properties of the general linear group in algebraic K -theory
[14]. A ring R is de�ned to have stable range 1 if for any a ∈ R, Ra+L = R, where L
is an arbitrary ideal of R implies a− u ∈ L for some unit u of R. Vaserstein has proved
that this notion is left-right symmetric for rings.

In 1949, in his work on elementary divisors [70], Irving Kaplansky invented the concept
of left uniquely generated rings, that is, if every a ∈ R satisfying Ra = Rb, b ∈ R,
implies b = ua for some u ∈ U(R). Lately in 2017, Nicholson de�ned an element a in a
ring R to be left annihilator-stable (left AS element) if the following condition holds if
Ra+l(b) = R, a, b ∈ R, then a−u ∈ l(b) for some unit u ∈ R. The well-known result of
Canfell [27, Corollary 4.4] applies to the rings R, and yet we conclude that a ring is left
UG if and only if it is left AS, while it is not the case for elements, because it is shown
that neither of the conditions AS and UG implies the other in general. Moreover, it is
shown that every SR1 ring is Left UG (equivalently, Left AS).

In 2003, Song Guang-tian, Chu Cheng-hao, Zhu Min-xian de�ned �regular version� of
the SR1 condition in [96]. A ring R has regular stable range 1 (written rsr(R) = 1)
if every a ∈ reg(R) has stable range 1. Since this condition applies only on regular
elements of the ring R, and not every element, this implies that for a ring R, we have
sr(R) = 1 =⇒ rsr(R) = 1. In 2002, Huanyin Chen [30, Lemma 1] proved that a ring R
is partially unit-regular (that is, when regularity implies unit-regularity) if and only if R
has regular stable range 1. A module M is said to have internal cancellation if, whenever
M = K ⊕ N = K0 ⊕ N0 as modules where K ∼= K0, then necessarily N ∼= N0. in 2005,
Khurana and Lam [73] called these rings IC rings. In 1976, G. Ehrlich [40] proved that
partially unit regular rings are precisely the IC rings. For completeness, Khurana and
Lam [73, Theorem 4.2] stated a short proof of the statement �R is IC ⇐⇒ rsr(R) = 1�.
Moreover, it is shown that any left UG ring is IC ring.

More trivial condition, but larger class of rings, the class of directly �nite rings, that
is, the class in which each left unit of its rings is right unit, i.e., R is directly �nite if and
only if Ra = R, a ∈ R, implies aR = R. This notion is obviuosly left-right symmetric.
An obvious observation is that any IC ring is DF. So we have these implications for a
ring R.

SR1 =⇒ left UG =⇒ IC =⇒ DF

1



The aforementioned classes of rings relations are studied under some certain con-
ditions, like regularity, exchange, self injectivity and more. Some of the classes has a
module-theoretic characterization, for example, a ring R is SR1 if and only if RR has the
substitution property, and is IC if and only if RR has the internal canellation property, and
DF if and only if RR is direcly �nite module (An R-moduleM is called Dedekind-�nite
if M ∼= M ⊕N for some module N , then N = 0.). It is shown that any module satisfying
substitution property (an R-module A has substitution if M ∼= A1 ⊕H ∼= A2 ⊕K
with A ∼= A1

∼= A2 implies that, for a suitable submodule C of M , M = C ⊕H = C ⊕K
holds, here again H, K are R-modules.) is cancellable (A is said to be cancellable (or
has the cancellation property) if, for any R-modules B, C , A ⊕ B ∼= A ⊕ C implies
B ∼= C)., and since cancellaation is clearly a stronger condition than internal cancellation,
so for a module we obtain the hierarchy of conditions

Substitution =⇒ Cancellation =⇒ Internal Cancellation =⇒ Dedekind-Finite

The module theoretic characteriztion of left UG rings is still not discovered untill this
day.

Lately, the concept of L-stability, it was �rst declared in 2018 by Ayman Horoub in
his seminal work [62] in�uenced by H. Bass the one who invented the concept of stable
range in [14], Irving Kaplansky, who invented the concept of left UG rings in [70] and
William Keith Nicholson who de�ned and characterized left AS rings [86]. Also with
Dinesh Khurana and Tsit-Yuen Lam by their generous survey about IC rings in [73].

This thesis is set in order to discuss the details of the classes: SR1, left UG, IC and
DF rings that turned to be L-stable rings. In fact, they are the only four known classes
of rings that are a�ordable. They, of course, may di�er in some aspects. Also, they share
many properties.

The skeleton of this thesis is as follows:

� Chapter 1: This chapter consists of preliminary results with no proofs at all. And
of some speci�c subclasses of exchange rings like regular, π-regular rings which will
be useful in our invistigations in later chapters.

� Chapter 2: We focus only on the four major key classes of rings, namely, SR1
rings, left UG rings, IC rings and DF rings and give su�cient information about
them.

� Chapter 3: We introduce the notion of L-stability and give examples of L-stable
rings and discuss their main properties.

� Chapter 4: We focus on the ring-theoretic constructions concerning L-stable rings:
Corners, direct products, factor rings, unital subrings, ideal extentions, polynimal
rings, rings of formal power series and matrix rings.
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Chapter 1

Preliminary Results and Basic

Concepts

As the name of this chapter suggests. In this chapter, we recall some de�nitions and
propositions that are worthy to mention in this context.

1.1 Basic Elementary Ring Theory and Module Theory

Facts

By a homomorphism or a morphism, we mean, a structure-preserving map be-
tween two algebraic structures of the same type, once it is a one-to-one correspon-
dence, it is called an isomorphism. An epimorphism is a morphism f : X 7→ Y
that is right-cancellative in the sense that, for all structured set Z and all morphisms
g1, g2 : Y 7→ Z, g1 ◦ f = g2 ◦ f =⇒ g1 = g2. Dually, a monomorphism is a morphism
f : X 7→ Y that is left-cancellative in the sense that, for all structured set Z and all
morphisms g1, g2 : Z 7→ X, f ◦ g1 = f ◦ g2 =⇒ g1 = g2. An endomorphism is a
mapping from X into itself. The endomorphism ring, denoted by End(R), the set of
all homomorphisms of a ring R into itself. Addition of endomorphisms arises naturally in
a pointwise manner and multiplication via endomorphism composition. Moreover, endo-
morphism rings always have additive and multiplicative identities, namely, the zero map
and identity map respectively. An isomorphism endomorphism is called automorphism.

A module RM is called simple if the only submodules of M are 0 and M itself.

Lemma 1.1.1. (Schur's Lemma) Assume that RM and RN are both simple modules.
If α :R M 7→R N is R-linear, then α = 0 or α is an isomorphism. Also, EndR(RM) is a
division ring.

However, even if EndR(RM) is a division ring, it not neccessary that RM is simple;

because if R =

[
D D
0 D

]
and e =

[
0 1
0 0

]
, where D is a division ring, and e is clearly an

idempotent of R, then Re =

[
0 D
0 D

]
, and eRe =

[
0 0
0 D

]
while Re is not simple since it

contains the ideal I :=

[
0 0
0 D

]
.
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We say that a (left, right, two-sided) ideal of R is left quasi-regular if all of its
elements are left quasi-regular1. Similarly, a (left, right, two-sided) ideal of R is right-
quasi-regular if all of its elements are right quasi-regular. If I is a left quasi-regular left
ideal of R, then I ⊆ J(R). Every element of the Jacobson radical of a ring is quasiregular.
If an element, r 6= 0, of a ring is idempotent, it cannot be a member of the ring's Jacobson
radical. This is because non-zero idempotent elements cannot be quasiregular. A (right,
left, two-sided) ideal I is nil if all elements of I are nilpotents. An ideal I is nilpotent
if there exists n ∈ N such that In = 0. It is equivalent to say that there exists n ∈ N
such that a1a2a3 · · · an = 0, ai ∈ I. All nilpotent ideals are nil ideals. If a left or right
ideal I of R is nil, then I ⊆ J(R). Every nilpotent element of a ring R is left quasi-
regular. The Jacobson radical of a ring does not contain nonzero idempotents. A subset
of a ring is called left T -nilpotent2 if for every sequence of elements {a1, a2, a3, . . . }
in the subset there is some positive integer n such that a1a2 · · · an = 0. To be right
T -nilpotent requires instead that an · · · a2a1 = 0. We will call a subset T -nilpotent if
it is both left and right T -nilpotent3. We say that a set S ⊆ R is locally nilpotent if
for any subset {s1, s2, . . . , sn} ⊆ S, there exists an integer t, such that any product of t
elements from s1, s2, . . . , sn is zero. Denote the sum of the nilpotent ideals of R, called
the Wedderburn radical, by W (R). we let Nil∗(R),Levi(R), and Nil∗(R) denote,
respectively, the upper nilradical (the sum of all nil ideals), the Levitsky radical (the
sum of all locally nilpotent ideals), and the lower nilradical4 (the intersection of all
prime ideals). One has the containments W (R) ⊆ Nil∗(R) ⊆ Levi(R) ⊆ Nil∗(R) ⊆ J(R),
where each containment may be proper. More generally, let I be a right ideal in R. The
following implications hold for some common nilpotence conditions on I.5. Moreover, we
have the following:

nilpotent T -nilpotent left T -nilpotent locally nilpotent nil

nil of bounded index

Let R be a ring and let e, f ∈ I(R) The idempotents e and f are isomorphic (in the
ring R) if eR ∼= fR as right R-modules. In this case we write e ∼=R f .6. The idempotents
e and f are conjugate (in the ring R) if f = u−1eu for some unit u ∈ U(R). In this case
we write e ∼R f . The idempotents e and f are left associate if Re = Rf . In this case
we write e ∼l f . Right associate idempotents are de�ned by the condition eR = fR,
and the relation is written e ∼r f . Finally, the idempotents e and f are equivalent if
there exist invertible elements u, v ∈ R such that f = uev.

1A ring element a ∈ R is said to be quasi-regular, if 1 − a is a unit in R, that is, invertible under
multiplication. The notions of right or left quasiregularity correspond to the situations where 1− a has
a right or left inverse, respectively.

2The �T � in �T -nilpotency� stands for �trans�nite�.
3this notion is not left-right symmetric
4The lower nilradical is also known as the prime radical.
5For more on nilpotency conditions, one good reference is [26].
6This relation is also commonly called the Murray-von Neumann equivalence, and the idempo-

tents are then said to be algebraically equivalent.
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In any ring R we have that 0 and 1 are always idempotents, and called trivial idem-
potents. Not surprisingly, e2 = e ∈ R with e 6= 0, 1 is called nontrivial7 (or, proper)
idempotent. If I is an ideal of R, and if r+ I is an idempotent in R/I, we say that r+ I
can be lifted to R if there exists an idempotent e2 = e ∈ R such that e+ I = r+ I, that
is if e− r ∈ I. We say that idempotents can be lifted modulo I, or that A is lifting,
if every idempotent in R/I can be lifted. units lift modulo an ideal ICR if x ∈ U(R/I)
implies that x = u + A for some u ∈ U(R). This holds whenever A ⊆ J(R). Letting I
be a one-sided ideal of a ring R, we say that x ∈ R is regular modulo I if there exists
y ∈ R such that x− xyx ∈ I. If x is a regular element modulo I, then we say that xlifts
regularly modulo I if there exists a regular element a ∈ R such that x− a ∈ I.8. when
we say isomorphic idempotents lift modulo an ideal I ≤ R, this means that given
any x, y ∈ R such that their images in the factor ring R/I are isomorphic idempotents,
then there exist isomorphic idempotents e, f ∈ R such that x − e, y − f ∈ I. Similarly,
conjugate idempotents lift modulo I when given x, y ∈ R such that their images in
R/I are conjugate idempotents, then there exist conjugate idempotents e, f ∈ R such
that x − e, y − f ∈ I. A one-sided ideal I of a ring R is said to be strongly lifting if
whenever x2− x ∈ I for some x ∈ R, there is an idempotent e ∈ xR such that e− x ∈ I.
Strong lifting is left-right symmetric, in the sense that we can always replace the conclu-
sion e ∈ xR with e ∈ Rx, or even e ∈ xRx. Let e be a nonzero idempotent of a ring R.
The set {e1, . . . , en} of idempotents in a ring R is said to be orthogonal if eiej = 0 for
any i 6= j.

We say that a matrix with exactly one entry equal to 1 and all other entries equal
to 0 is a matrix unit and is denoted by Eij when the entry in the ith row and jth
column is 1. Notice that the set of n× n matrix units {Eii}ni=1 is a �nite set of mutually
orthogonal idempotents in the full matrix ring Mn(R) for any ring R, and notice that the
sum E11 + E22 + · · · + Enn is equal to the n× n identity matrix. In general, a �nite set
of mutually orthogonal idempotents whose sum is equal to the identity 1 is said to be a
complete set of orthogonal idempotents.

The following lemma is a collection of well-known results concern aforementioned
relations

Lemma 1.1.2. ([74]) Let R be a ring and let e, f ∈ I(R).9.

1. The following are equivalent:

(a) eR ∼= fR as right R-modules (that is, e ∼=R f).

(b) Re ∼= Rf as left R-modules.

(c) There exist elements a ∈ eRf , b ∈ fRe satisfying e = ab and f = ba.

(d) There exist elements a, b ∈ R satisfying e = ab and f = ba.

7A ring in which all idempotents are trivial is called connected. Any domain or local ring would be
an example.

8One highly recommended reference in which these concepts are discussed is [74]
9Note that each of relations is an equivalence relation on the set I(R)
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2. The following are equivalent:

(a) e ∼R f .
(b) e ∼=R f and 1− e ∼=R 1− f .

3. The following are equivalent:

(a) e ∼l f .
(b) f = ue for some unit u ∈ U(R).

(c) f = e+ (1− e)xe for some x ∈ R.
(d) ef = e and fe = f .

A ring R is called simple if it contains no nontrivial10 ideals. A ring R is is called
local if R contains only one left maximal ideal (equivalently, R/J(R) is a division ring).
A ring R is semilocal1112 if R/J(R) is a semisimple ring. A ring R is called semiperfect
if R is semilocal, and idempotents of R/J(R) can be lifted to R. A left perfect ring
is a semilocal ring R whose Jacobson radical, J(R), is left T -nilpotent. semilocal rings
with a nilpotent Jacobson radical are called semiprimary rings. A ring R is called left
artinian if, whenever we have L1 ⊇ L2 ⊇ · · · ⊇ Li ⊇ · · · where each Li is a left ideal
of R, then Ln = Ln+1 for some n ∈ N. A left Noetherian ring is a ring that satis�es
the ascending chain condition on left ideals, that is, given any increasing sequence of
left ideals I1 ⊆ I2 ⊆ I3 ⊆ · · · there exists n ∈ N such that In = In+1. A ring is called
semiprimitive (or, Jacobson semisimple) if its Jacobson radical is the zero ideal. A
ring R is called prime if, for ideals A and B of R, AB = 0 implies A = 0 or B = 0. A
ring is called semiprime if An = 0, n ≥ 1 implies A = 0 where A is an ideal. A ring R
is said to be reduced if R has no nonzero nilpotent elements. If M is a left R-module
and l(RM) = 0, then M is called a faithful. A ring R is called left primitive if it has
a simple faithful left R-module.

Remark 1.1.3. ([78]) As a summing up, we have:

left artinian rings

semiprimary rings

left perfect rings

local rings semiperfect rings semilocal rings

And

division rings domains reduced rings

left primitive rings prime rings semiprime rings
10Here "nontrivial" means neither 0 nor R.
11A commutative ring is semilocal if it has only �nitely many maximal ideals.
12Some authers [14] call a ring R semilocal if R/J(R) is artinian ring. Another equivalent de�nition

[62] a ring R semilocal if R/J(R) is a left artinian ring
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The opposite of a ring (or simply, the opposite ring) is another ring with the same
elements and addition operation, but with the multiplication performed in the reverse
order. More explicitly, the opposite of a ring (R,+, ·) is the ring (R,+, ?)(= Rop) whose
multiplication ? is de�ned by a? b = b ·a for all a, b in R. Howerver, if R is a ring, then it
is not always the case that R ∼= Rop (of course it is the case whenever R is commutative).

Example 1.1.4. ([79, Ex. 1.22A, Ex. 1.22B.]) Consider the the upper triangular rings

R1 =

[
Z Z2

0 Z2

]
and R2 =

[
Z2k Z2

0 Z2

]
where k ≥ 2. Then R1 6∼= Rop

1 and R2 6∼= Rop
2 .

Every unital ring may be regarded as the endomorphism ring13 of a module, thus,
making all the module-theoretical statements available More precisely, we lose no gener-
ality in our assumption that R is an endomorphism ring.14

Homomorphic images and quotients of a ring are the same up to isomorphism. Every
ideal is the kernel of a ring homomorphism and vice versa.

Proposition 1.1.5. ([52]) Every quotient ring of a ring R is a homomorphic image of
R. And every homomorphic image of R is isomorphic to a quotient ring of R. Moreover,
every ideal of a ring R is the kernel of a ring homomorphism of R. In particular, an ideal
I is the kernel of the mapping r 7→ r + I from R to R/I.

Lemma 1.1.6. ([81], [46],[64],[73],[69], [78]) Let D be a division ring, R, S any rings, I
a left ideal of R, e2 = e ∈ R, V a countably in�nite dimensional vector space, M , N left
R-modules , m,n ∈ N, and ω a cardinal. Then the following statements are true:

1.

[
R R
0 R

]
∼=
[
R 0
R R

]
.

2. If M ∼= N as R-modules, then EndR(M) ∼= EndR(N) as rings.

3. Tn(Mm(R)) ∼= Mm(Tn(R)).

4. Mm(Mn(R)) ∼= Mmn(R).

5. EndR(RR) ∼= Rop. Analogously, EndR(RR) ∼= R.

6. Mn(R) ∼= EndR(Rn).

7. Mω(D) ∼= End(DV ).

8. EndR(eR) ∼= eRe.

9. R ∼=
[

eRe eR(1− e)
(1− e)Re (1− e)R(1− e)

]
.15

10. Tn(D)/J(Tn(D)) ∼= Πn
i=1D.

13Endomorphism rings play an important role in both module theory and ring theory. There are
numerous ring-theoretical properties of the endomorphism ring which can be re�ected by properties of
the module and vice versa.

14Non-unital rings cannot be endomorphism rings.
15No wonder the ring in the upper left corner eRe is called the Peirce corner ring of R (or simply,

corner ring), and its unity is 1eRe = e.
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11. Mn(R)[x] ∼= Mn(R[x]).

12. Mn(D[y])[x] ∼= Mn(D[y, x]) ∼= Mn(D[x, y]) ∼= Mn(D[x])[y].

13. Mn(R)/J(Mn(R)) = Mn(R/J(R)).

14. J(R/I) = J(R)/I if I ⊆ J(R).

15. J(R/J(R)) = 0.

16. J(I) = I ∩ J(R).

17. R = Re⊕R(1− e).

18. Z(p,q)/J(Z(p,q)) ∼= Zp × Zq.

19. H(Z(3))/J(H(Z(3))) ∼= M(Z3).

1.2 Regular Rings

Regularity captures important ring-theoretic and module-theoretic information. To
give one example, if R is the endomorphism ring of some module (for instance, by iden-
tifying R in the natural way with End(RR)), then regular elements correspond to those
endomorphisms whose kernels and images are direct summands. As each direct sum de-
composition of a module is determined by an idempotent in the endomorphism ring, we
see that regular elements are intricately connected to idempotents.

We follow von Neumann [85], by starting with the formal de�nition of von Neumann
regular rings which will be called simply, regular rings.

De�nition 1.2.1. An element a in a ring R is called regular if a = aba for some b ∈ R,
and a ring R is called a regular ring if every element in R is regular.16

It is quite remarkable that that if aba = a, then (ab)2 = ab and (ba)2 = ba, that is,
both ba and ab are idempotents. Also, for each regular element a ∈ R there exists an
element z ∈ R such that aza = a and zaz = z because if we let a = axa and de�ne
z = xax, then aza = axaxa = axa = a and zaz = xaxaxax = xaxax = xax = z.

Now we are ready for some examples.

Example 1.2.2. Any �eld or division ring is regular.

Proof. For any a 6= 0, we can choose b = a−1 in that �eld or division ring.

Lemma 1.2.3. ([16]) Every right (left) ideal of R generated by an idempotent is a di-
rect summand of R.

Proof. Let e2 = e ∈ R be an idempotent. Then notice that e and 1 − e are both
idempotents, e(1− e) = 0 and e+ (1− e) = 1. So every element a ∈ R can be written as
ea + (1− e)a = a. So we have that eR + (1− e)R = R. In order to show that this sum
is a direct sum consider x ∈ eR ∩ (1− e)R. So then x = er1 = (1− e)r2. Multiplying on
the left by e we get that x = er1 = 0. So then R = eR ⊕ (1− e)R and in particular any
ideal generated by an idempotent is a direct summand.

16Oftenly, b is sometimes called the inner inverse. Moreover, b need not be unique.
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Theorem 1.2.4. ([16]) Every �nitely generated ideal of a regular ring R is a direct
summand.

Proof. Let a ∈ R. First we shall show that aR = eR for some idempotent e. Let
a = axa, our observation above gives us ax is an idempotent, call it e, then aR =
axaR = eaR ⊆ eR. The other containment is clear since eR = axR ⊆ aR. So every
one sided ideal generated by a regular element is generated by an idempotent and thus a
direct summand. So consider the ideal generated by {a1, a2, . . . , an}. Consider the case
where n = 2 and then we can use induction from there. Since every principal ideal in a
regular ring is generated by an idempotent, we can rewrite a1R+a2R as eR+fR for some
idempotents e and f . We will start by showing eR + fR = eR + (1− e)fR. Note that
by multiplying out and grouping, eR+ (1− e)fR ⊆ eR+ fR. For the other containment
let er1 + fr2 ∈ eR + fR, and notice

er1 + fr2 = er1 + efr2 − efr2 + fr2 = e(r1 + fr2) + (1− e)fr2 ∈ eR + (1− e)fR

Now since (1 − e)fR is principally generated (1 − e)fR = e′R for some idempotent
e'. Note that ee′ ∈ e(1 − e)fR = 0 and thus (e + e′)e′ = e′. Now, since eR + fR =
eR+ (1− e)fR. We can see that both eR and fR can be written as elements of (e+ e′)R
our ideal is principally generated, thus a direct summand.

Example 1.2.5. Any product of regular rings is again regular.

Proof. Clear by elementary component-wise calculations.

Lemma 1.2.6. ([83]) If a is an element of R such that a ∈ aRa, then there exists an
idempotent e such that aR = eR and e− a ∈ (a− a2)R.

Proof. Say a = axa. Then a(x + 1 − ax)a = a(xa + a − a) = a so the element e =
a(x+ 1− ax) is an idempotent such that aR = eR and e− a = (a− a2)x.

Example 1.2.7. Regular domain is neccessary a division ring.

Proof. If 0 6= a = aba ∈ R, then a−aba = a(1− ba) = (1−ab)a = 0, and so ab = ba = 1.
Hence, a and b are both units.

The following gives two more additional ways to describe a regular ring.

Theorem 1.2.8. ([55]) For a ring R, the following conditions are equivalent:

1. R is regular.

2. Every principal right (left) ideal of R is generated by an idempotent.

3. Every �nitely generated right (left) ideal of R is generated by an idempotent.

Proof. (1) =⇒ (2): Given x ∈ R, there exists y ∈ R such that xyx = x. Then xy is an
idempotent in R such that xyR = xR.

(2) =⇒ (3): It su�ces to show that xR + yR is principal for any x, y ∈ R. Now,
xR = eR for some idempotent e ∈ R, and since y−ey ∈ xR+yR, we see that xR+yR =
eR + (y − ey)R. There is an idempotent f ∈ R such that fR = (y − ey)R, and we note
that ef = 0. Consequently, g = f − fe is an idempotent orthogonal to e. Observing that
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fg = g and gf = f , we see that gR = fR = (y − ey)R, whence xR + yR = eR + gR.
Inasmuch as e and g are orthogonal, we conclude that xR + yR = (e+ g)R.

(3) =⇒ (1) Given x ∈ R, there exists an idempotent e ∈ R such that eR = xR.
Then e = xy for some y ∈ R and x = ex = xyx.

Not all domains are regular because

Example 1.2.9. The ring of integers Z is not regular.

Proof. Since 2Z is a principal ideal but not generated by an idempotent of Z.

Also a regular ring need not be domain because the ring Z2 × Z2 exists.

Example 1.2.10. ([3]) The rings R[x] and R[[x]] are never regular.

Proof. The indeterminate x is not a regular element in either ring.

A ring R is called Abelian ring1718 if all idempotents in R are central.

Proposition 1.2.11. ([2]) Any left non-zero-divisor regular element in an Abelian ring
is a unit.

Proof. Let R be an Abelian ring and x a left non zero-divisor regular element of R. Let
y ∈ R be such that xyx = x. Then x(1 − yx) = 0 implies that yx = 1. On the other
hand, since e = xy is an idempotent, x = x2y, and x(1− xy) = 0. Hence xy = 1, and so
x is a unit.

Theorem 1.2.12. ([79]) If R is regular, then so is the corner eRe.

Proof. Assume now R is regular. Let a ∈ eRe and write a = axa where x ∈ R. Since
ae = a = ea, we have a = (ae)x(ea) = aya where y = exe ∈ eRe. This veri�es that eRe
is also regular.

Regularity condition passes to matrix rings, and so regularity is Morita invariant19

property of rings.

Theorem 1.2.13. ([104]) For any n ∈ N, a ring R is regular if and only if so doesMn(R).

Proof. The proof is omitted�see [104, Theorem 2.14].

Theorem 1.2.14. ([55]) The center of a regular ring is regular.

Proof. Let R be a regular ring with center S, and let x ∈ S. There exists y ∈ R such
that xyx = x, and we set z = yxy. Note that xzx = x. Given any r ∈ R, we have
zr = yxyr = y2rx = y2rxyx = yxyxry = yxry. By symmetry, rz = yrxy = yxry = zr,
whence z ∈ S. Therefore, S is regular.

17Abelian rings are also known as normal rings
18Unlike groups, where Abelian group means that the group is commutative. Abelian ring does not

mean that the ring is commutative. The ring of quaternions H is an example of an Abelian ring that is
not commutative. However, since all elements in a commutative ring are central (especially idempotent
ones), we have that any commutative ring is Abelian.

19a ring-theoretic property P is said to be Morita invariant if and only if, whenever a ring R enjoys
P, so do eRe for any full idempotent e ∈ R, i.e., ReR = R and Mn(R) (for any n ≥ 2).
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A ring R is indecomposable if R cannot be written as R ∼= R1 × R2 with non-zero
R1 or R2.

Corollary 1.2.15. ([55]) A nonzero regular ring R is indecomposable (as a ring) if and
only if its center is a �eld.

Proof. Assume that R is indecomposable. Let S denote the center of R, and let x be
any nonzero element of S. By Theorem 1.2.14, xyx = x for some y ∈ S, whence xy is a
nonzero central idempotent in R. Since R is indecomposable, xy = 1. Therefore S is a
�eld.

In 1968, Ehrlich [39] introduced the notion of unit-regular rings as follows.

De�nition 1.2.16. A ring R is called unit-regular if every element a in R is unit-
regular, that is, a = aua for some unit u in R.20

Clear that every unit-regular ring is regular. The following example proves the exis-
tence of a regular ring that is not unit regular.

Example 1.2.17. ([39]) Let MD be an in�nite-dimensional vector space over a division
ring D. Then the endomorphism ring R = End(MD) is regular but not unit-regular.

Proof. Let A ∈ R be a linear transformation which is surjective but not injective. Let
A−1 be a right inverse of A. If E is an idempotent in R such that XE = A for X is a
unit of R, then E 6= I since A is not a unit. But E = X−1A and EA−1 = X−1. This is
impossible since E is not surjective. Thus R is not unit-regular ring.

Example 1.2.18. Any division ring is unit-regular.

Note that Example 1.2.17 says also that not all units in a regular ring are two sided.
The following result determines exactly when the ring of integers modulo n becomes

unit-regular.

Theorem 1.2.19. ([39]) For n > 1, the ring Zn of integers modulo n is regular (hence
unit-regular21) if and only if n is squarefree.

Proof. Clearly, Zn is regular if and only if, for every integer a, there is an integer x such
that a2x ≡ a mod n. This congruence has a solution for each a ∈ Z if and only if
gcd (a2, n) divides a for each a ∈ Z. But this is the case if and only if n is squarefree.

The ring Z4 has a unique maximal ideal 2Z4, thus, local, but not unit-regular by The-
orem 1.2.19 because 4 is not squarefree. While Z6 is unit-regular because 6 is squarefree
and not local because 6 is not prime power. As a result, since squarefree prime powers
are just the primes, we obtain:

Corollary 1.2.20. Zn is a �eld if and only if Zn is both local and unit-regular ring.

Theorem 1.2.21. ([60],[61]) A ring R is unit-regular if and only if so is Mn(R).

Proof. The proof is omitted�see the if part in [61, Corollary 7] and the only if part in
[60, Theorem 7]

20Sometimes u is said to be the unit inner inverse of a
21Note that a commutative regular ring is always unir-regular.

11



And so, unit-regularity is a Morita invariant property of rings.

Lemma 1.2.22. ([55]) Let I be an ideal in a regular ring R, then R is unit regular if
and only if

(1) R/I is unit regular.

(2) If e and f are idempotents in I such that (1− e)R ∼= (1− f)R, then eR ∼= fR.

Proof. The proof is omitted �see [55, Lemma 4.15]

Lemma 1.2.23. ([55]) Let I be an ideal of a unit-regular ring S, and let R be a subring
of S that contains I. If R/I is unit-regular, then so is R.

Proof. Assume that I and R/I are unit-regular, then clearly both are regular. It follows
that R enjoys regularity condition, and so if e and f are idempotents in I with (1−e)R ∼=
(1−f)R, we have (1−e)S ∼= (1−f)S, hence, eS ∼= fS. Now, as e, f ∈ I, we get eR = eS
and fR = fS whenever eR ∼= fR. Henceforth, by Lemma 1.2.22, we have that R is unit-
regular.

Theorem 1.2.24. ([55]) The product of two unit-regular rings is again unit-regular (and
so any �nite product of such family).

Proof. Let R1 and R2 be two unit-regular rings. We are proceeding to show that this is
the case for R = R1 × R2. To �nish this, consider the ideal R1 × 0 of R, we get that
R/(R1 × 0) ∼= R2. It follows by Lemma 1.2.23 that R = R1 × R2 is unit-regular as
required.

De�nition 1.2.25. ([63],[25]) A ring R is said to be casilocal if R/J(R) is unit-regular
and called semi-unit-regular (SUR) if, in addition, J(R) is lifting.

So it is clear that every SUR ring R is casilocal since it enjoys one more additional
property, that is J(R) is lifting. So, the class of SUR rings is contained in the class of
casilocal rings. Moreover, the following example shows that this containment is proper.

Example 1.2.26. There exists a casilocal ring that is not SUR.

Proof. Consider the ring Z(2,3) =
{
a
b
∈ Q | 2 - b, 3 - b

}
, then Z(2,3)/J(Z(2,3)) ∼= Z2 × Z3.

Clear that Z(2,3)/J(Z(2,3)) is unit-regular being isomorphic copy of direct product of two
unit-regular rings, and so, Z(2,3) is casilocal. But since idempotents do not lift modulo
J(Z(2,3)), we have that Z(2,3) is not SUR.

Recall that Wedderburn-Artin Theorem states that a ring R is semisimple if and
only if R ∼= Mn1(D1) ×Mn2(D2) × · · · ×Mnk

(Dk) where each Di is a division ring. In
particular, if R is commutative, then R is a �nite direct sum of �elds.
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As an application of Wedderburn-Artin Theorem, we have that

Example 1.2.27. Semisimple rings are unit-regular.

Proof. By Wedderburn-Artin Theorem, if R is semisimple22 ring we have that R ∼=
Mn1(D1) × Mn2(D2) × · · · × Mnk

(Dk) for some n1, n2, . . . , nk ∈ N where each Di is a
division ring. But since any full matrix ring over a unit-regular ring is again unit-regular
by Theorem 1.2.21 any division ring is unit-regular by Example 1.2.18 and unit-regularity
is closed under �nite product by Theorem 1.2.24, we have that R is unit-regular.

The class containment of semisimple rings in the class of unit-regular rings is proper.
See [55, Example 5.15] which states that there exist unit-regular rings which contain
uncountable direct sums of nonzero pairwise isomorphic left ideals.

Lemma 1.2.28. ([79]) If a ∈ R is unit-regular, then a can be written as a product of a
unit and idempotent.

Proof. Let a ∈ R be unit-regular where u ∈ U(R), then a = aua. Now, consider (ua)2 =
uaua = u(aua) = ua, so that ua is an idempotent, name it e such that e = ua, so
a = u−1e. Henceforth, a can be written as a product of unit and an idempotent.

Theorem 1.2.29. ([61]) In a unit-regular ring R, left units are right units.

Proof. If u is a unit of R such that aua = a, then au = (aua)b = ab = 1 so ua = 1,
whence b = u is the (two-sided) inverse of a.

Theorem 1.2.30. ([60]) Let R be a unit-regular ring and e be an idempotent element
in R. Then eRe is unit-regular.

Proof. Let ere ∈ eRe and u = (ere + 1 − e)−1 be a unit. Since (1 − e)u(1 − e) = 1 − e,
ereu(1−e) = 0, (1−e)uere = 0, eu(1−e) = u(1−e)−(1−e) and (1−e)ue = (1−e)(u−1),
we have ere(e(u− u(1− e)u)e)ere = ere and

(u− u(1− e)u)e · eu−1e = e = eu−1e · e(u− u(1− e)u)e.

De�nition 1.2.31. A ring R is said to be strongly regular if for every element r ∈ R
there is some element x ∈ R such that r = r2x.

Its worthwhile noting the following remark.

Remark 1.2.32. Any commutative regular ring is strongly regular.

Theorem 1.2.33. ([67]) If R is a strongly regular, then R is unit-regular.

Proof. Let r be any element in a strongly regular ring R. Then there is some element
z ∈ R such that rzr = r with rz = zr according to Azumaya [10, Lemma 1]. Notice that
e = rz is idempotent, and that u = r− (1−e) is a unit of R with inverse v = ze− (1−e).
It now follows that r can be written as the product of a unit and an idempotent of R by
writing r = ue. Therefore, by 1.2.28 we have that R is unit-regular.

22Note that the class of semisimple rings does not contain every simple ring as one may expect. One of
most famous examples is the the Q-algebra, A = Q[x, y]/〈xy−yx−1〉. Moreover, A is a noncommutative
domain.
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So we have the following irreversible implications for rings (and elements).

commutative regular =⇒ strongly regular =⇒ unit-regular =⇒ regular

Strong regularity property for rings is inherited by corners.

Theorem 1.2.34. ([79]) If R is a strongly regular ring, then so is the corner eRe.

Proof. Assume R is strongly regular. Let a ∈ eRe and write a = a2x where x ∈ R. Since
ae = a = ea, we have a = (a2x)e = a2(exe) ∈ a2eRe, so eRe is strongly regular.

Under some certain idempotency conditions, regularity implies unit-regularity. But
before recognizing that condition, we need the following lemma �rst.

Lemma 1.2.35. ([20]) Let e and e′ be isomorphic idempotents in a ring R and e = ab,
e′ = ba for elements a, b ∈ R. If bab = (bab)u(bab) holds for a unit u ∈ U(R) and
c = (1− ue′b)u(1− e′), d = (1− e′)u−1(1− e) then cd = 1− e and dc = 1− e′.

Proof. By left and right multiplication with a, from bab = (bab)u(bab), we obtain ab =
abubab and aba = abuba. From the �rst we derive e(1− ue′b) = 0 or (1− e)(1− ue′b) =
1− ue′b. From the second we deduce

(1− ue′b)ue′ = uba− ubabuba = uba− ubaba = uba− uba = 0

Thus

cd = (1− ue′b)u(1− e′)u−1(1− e)
= (1− ue′b)[1− e− ue′u−1(1− e)]
= 1− e− ue′b(1− e)− (1− ue′b)ue′u−1(1− e)
= 1− e− 0− 0

= 1− e

because e′b = be. Finally,

dc = (1− e′)u−1(1− e)(1− ue′b)u(1− e′)
= (1− e′)u−1(1− ue′b)u(1− e′)
= (1− e′)u−1[(1− ue′b)u− (1− ue′b)ue′]
= (1− e′)u−1(1− ue′b)u
= 1− e′ − e′bu+ e′bu

= 1− e′
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Theorem 1.2.36. ([20])(Ehrlich-Handelman) A regular ring R is unit-regular if and
only if for every two idempotents, e ∼= e′ implies 1− e ∼= 1− e′.23

Proof. If e ∼= e′, there are elements a, b ∈ R with e = ab, e′ = ba. Choose u ∈ U(R),
c and d as in Lemma 1.2.35. Then cd = 1 − e and dc = 1 − e′ and so 1 − e ∼= 1 − e′.
Conversely, let a ∈ R be an arbitrary element. Since the ring is supposed to be regular,
there is an element x ∈ R such that a = axa. Without restriction of generality, we can
assume that also xax = x. Clearly, ax and xa are isomorphic idempotents in R. Hence
there exist elements c , d ∈ R such that1 − ax = cd and 1 − xa = dc. By left and right
multiplication with a and x, respectively, we obtain cda = 0 = adc and xcd = 0 = dcx.
Now consider u = x+ dcd and v = a+ cdc. It is readily checked (notice that both cd and
dc are idempotents) that a = aua and uv = 1 = vu, that is, u ∈ U(R), as desired.

Theorem 1.2.37. ([7]) A ring R is strongly regular if and only if it is Abelian regular.

Proof. Let R be Abelian regular. Given any x ∈ R, there is y ∈ R such that xyx = x.
Since xy is an idempotent and, thus, is central in R, it follows that x = (xy)x = x2x.
Conversely, let R be strongly regular. Obviously, an element x ∈ R can satisfy x2 only if
x = 0, from which we infer that R has no nonzero nilpotent elements.

Theorem 1.2.38. ([79]) The following conditions on a ring R are equivalent:

1. R is strongly regular.

2. R is regular and reduced.

3. R is regular and Abelian.

4. Every principal right ideal of R is generated by a central idempotent.

Proof. (1) =⇒ (2). Assume R is strongly regular. We have already observed in the last
Exercise that R is reduced. For any a ∈ R, write a = a2x where x ∈ R. Then

(a− axa)2 = a2 + axa2xa− a2xa− axa2 = a2 + axa2 − a2 − axa2 = 0, so a = axa

(2) =⇒ (3). Automatic since any reduced ring is Abelian.
(3) =⇒ (4). Trivial.
(4) =⇒ (1). Let a ∈ R. By (4), aR = eR for a central idempotent e ∈ R. Write e =

ax, a = ey, where x, y ∈ R. Then (1) follows since a2x = aax = eye = e2y = ey = a.

Following [99], An element q of a ring R is called quasi-idempotent if q2 = uq for
some central unit u of R. A ring R is called a quasi-Boolean ring if every element of R
is quasi-idempotent. Boolean rings and any direct product of �elds are quasi-Boolean.

Theorem 1.2.39. ([99]) A quasi-idempotent is a strongly regular element.

Proof. If q is a quasi-idempotent, then (u−1q)2 = u−1q is an idempotent. So we have that
an element q is a quasi-idempotent if and only if q = ue, where e is an idempotent and
u is a unit in R.

Corollary 1.2.40. Quasi-Boolean rings are unit-regular.

23In fact, this theorem characterizes the IC rings, which is a topic to discuss in later chapters.
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A ring R is said to be π-regular if for every element a ∈ R, there exist an element
b ∈ R and a positive integer n with an = anban. Clearly, the notion of π-regularity is left-
right symmetric and it generalizes the notion of regularity. An element a ∈ R is called left
π-regular if the chain Ra ⊇ Ra2 ⊇ Ra3 ⊇ · · · terminates, and right π-regular if the chain
aR ⊇ a2R ⊇ a3R ⊇ · · · terminates, and is called strongly π-regular if it is both right
and left π-regular. Dischinger [38] proved that if every element of R is right π-regular,
then every element of R is left π-regular, that is, the notion of strong π-regularity is also
left-right symmetric. It also generalizes the notion of strong regularity.

Now we start with the basic de�nition

De�nition 1.2.41. ([10]) A ring R is said to be π-regular if for every element a ∈ R,
there exist an element b ∈ R and a positive integer n with an = anban.

Fixing n at 1 implies that

Remark 1.2.42. Every regular ring is π-regular.

De�nition 1.2.43. ([10]) A ring R is called strongly π-regular if for every element
x ∈ R there is some y ∈ R such that xnyxn = xn with yx = xy for some positive integer
n (or equivalently, if for any x ∈ R there exist n ∈ N, y ∈ R such that xn = xn+1y). 24

By de�nition it is clear that

Remark 1.2.44. Every strongly π-regular ring is π-regular.

The class of strongly π-regular rings is contained properly in the class of π-regular
rings.

Example 1.2.45. ([67]) The upper triangular matrix ring T2(Z2) is stronglyπ-regular
but not regular and and hence a π-regular ring may not be regular in general.

Also, a unit-regular ring need bot be strongly π-regular ring as the following example
exhibits.

Example 1.2.46. ([34]) There exists a unit-regular ring R which is not a strongly π-
regular ring.

Proof. Let F be a �eld and R =
∏∞

n=1 Mn(F ). Then R is unit regular since every Mn(F )
is unit-regular. We prove that R is not strongly π-regular. Assume to the contrary, then
a = (a1, a2, ..., an, ...) is strongly π-regular, where, an = (aij)n×n ∈ Mn(F ) for all n ∈ N
with aij = 0 when i ≥ j, and aij = 1 when i ≤ j. Hence there exist b ∈ R and a
positive integer m such that am = a2mb. It follows that amm+1 6= 0 and a2mm+1 6= 0, which is
impossible.

In the following we see a semi-unit-regular ring but not unit-regular.

24If the natural number n ∈ N and a unique y ∈ R both depending on x such that the equality
xn = xn+1y is valid, then R is said to be uniquely strongly π-regular. Unique π-regularity and
Unique regularity are de�ned in similar manner. Moreover, we shall not discuss these classes because
in [37] it is shown that for a ring R, we have that R is uniquely π-regular if and only if R is uniquely
strongly π-regular if and only if R is uniquely regular if and only if R is a division ring, thus, a �trivial�
example.
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Example 1.2.47. ([8]) Let K be a �eld and R = K[[x]] be the (formal) power series
ring with indeterminate x over K. Note that R is not π-regular and J(R) = xK[[x]]. So
R/J ∼= K is unit-regular. Let f(x)2− f(x) ∈ J(R) and f(x) = a0 + a1x+ · · · ∈ R. Then
a20 = a0 and this yields that a0 = 0 or a0 = 1. When a0 = 0, 0 − f(x) ∈ J(R). When
a0 = 1, f(x) = 1 + a1x + · · · and so 1 − f(x) = a1x + · · · ∈ J(R). These imply that
idempotents lift modulo J(R).

Let A is an algebra over a �eld F . An element a of an algebra A over a �eld F is said
to be algebraic over F if a is the root of some non-constant polynomial in F [x]. A is
said to be an algebraic algebra over F if every element of A is algebraic over F . An
algebra over a �eld F that is �nite dimensional as a vector space over F is called a �nite
dimensional algebra over F . For instance, the 2× 2 matrix ring over F [x]/〈x2〉, where
F is any �eld, is a �nite dimensional algebra. If A is a �nite dimensional algebra over a
�eld, then A is an algebraic algebra. but A being algebraic over F does not necessarily
imply that A is �nite dimensional over F. For example, if Q is the algebraic closure of Q
in C, then it is easily seen that dimQ Q = ∞. Thus the matrix ring A = Mn(Q) is an
algebraic Q-algebra which is not �nite dimensional over Q.

Example 1.2.48. ([31]) Any algebraic algebra over a �eld is strongly π-regular.

Proof. Let A be an algebraic algebra over a �eld F , and let a ∈ A. Then a is the root of
some non-constant polynomial in F [x]. Thus, there exist some am, . . . , an ∈ F such that
ana

n + an−1a
n−1 + · · ·+ ama

m = 0, where am 6= 0. Thus,

xm = −a−1m (ana
n + · · ·+ am+1a

m+1) = −a−1m (ana
n−m−1 + · · ·+ am+1)a

m+1

Set b = −a−1m (ana
n−m−1 + · · · + am+1)a

m+1. Then am = bam+1, and so A is strongly
π-regular.

Following Badawi [12]. An element e ∈ R is said to be a near idempotent if en is an
idempotent for some positive integer n. Clearly, every idempotent is a near idempotent.
We say that R is Euler if every element of R is a near idempotent. If there exists a �xed
positive integer n such that xn is an idempotent for every x ∈ R, then R is said to be
exact-Euler. In particular, an exact-Euler ring is Euler.

Theorem 1.2.49. ([12]) If a ring R is Euler, then R is strongly π-regular.

Proof. Let x ∈ R and let n be a positive integer such that xn is an idempotent. Let
y = xn. Then x2ny = xn and xy = yx. Hence R is strongly π-regular.

Let R be a commutative ring. The Krull dimension of R, denoted dim(R) is the
supremum over all n for which there exist strictly descending chains of prime ideals
P0 ⊃ P1 ⊃ . . . ⊃ Pn. Zero-dimensional25 ring is a ring whose Krull dimension is zero.
Any integral domain which is not a �eld must have dimension at least one. In particular,
an integral domain is a �eld if and only if its Krull dimension is zero.

Theorem 1.2.50. ([79]) For a commutative ring R, the following are equivalent:

1. R has Krull dimension 0.

2. J(R) is nil and R/J(R) is regular.

25Note that if R is commutative and dim(R)= 0, then all prime ideals in R are maximal ideals.
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3. For any a ∈ R, the descending chain Ra ⊇ Ra2 ⊇ Ra3 ⊇ · · · stabilizes.

4. For any a ∈ R, there exists n ≥ 1 such that an is regular (i.e. such that an ∈ anRan).

Proof. The proof is omitted �see [79, Ex. 4.15]

Example 1.2.51. ([41]) Let p ∈ N be a prime number. We consider the localization at
the prime ideal, 〈p〉, Z(p) =

{
a
b
| a, b ∈ Z, b is not divisible by p

}
. Then Z(p) is not strongly

π-regular.

Proof. It follows from the fact that Z(p) is an integral domain which is not a �eld.

Following Cang Wu and Liang Zhao in[108], a ring R is called to be an RS (resp.,
π-RS) ring if all regular elements (resp., π-regular elements) in R are strongly regular
(resp., strongly π-regular). Let R be a ring. Then, R is strongly regular if and only if
R is RS and regular. R is strongly π-regular if and only if R is π-RS and π-regular. RS
rings are π-RS rings. However, we have a strongly π-regular ring (which is also a regular
ring) need not be an RS ring.

Example 1.2.52. ([108]) Let R = Mn(C) for n ≥ 2. Then it is well-known that R is
a strongly π-regular ring as well as a regular ring. However, regular elements such as

A =

[
0 1
0 0

]
are not strongly regular, since A2X = 0 6= A for any X ∈ R. Thus R is not

an RS ring.
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1.3 Exchange Rings

Exchange rings were �rst de�ned by War�eld [105]. Later, Nicholson [87] showed
these rings are exactly those for which idempotents lift modulo all ideals. Moreover, his
notion of suitability, captures at an element-wise level much of the information needed
to lift idempotents. Following Nicholson [87], given a ring R, an element a ∈ R is said to
be exchange (or sometimes, suitable) if there is an idempotent e ∈ a + R(a − a2). This
is a left-right symmetric notion.

De�nition 1.3.1. ([62],[87],[35]) A ring R is called an exchange ring if any element a
in R is left exchange, that is, if Ra+L = R, L is a left ideal of R, implies e2 = e ∈ Ra
exists with 1−e ∈ L. Equivalently, a ring R is exchange if it satis�es any of the following
conditions:

1. For any x ∈ R. There exists e2 = e ∈ R with e− x ∈ R(x− x2).

2. For any r ∈ R, there is an idempotent e in R with e ∈ rR and 1− e ∈ (1− r)R.

3. Idempotents lift modulo L for every left ideal L of R.26

4. R/J(R) is an exchange ring and idempotents lift modulo J(R).

The notion of exchange is left-right symmetric for rings in the case that someone
would call a ring right exchange if it satis�es condition (1) and left exchange if it
satis�es condition (2) in the following next Theorem 1.3.2

Theorem 1.3.2. ([35]) For any ring R the following are equivalent:

1. For any r ∈ R, there is an idempotent e in R with e ∈ rR and 1− e ∈ (1− r)R.

2. For any r ∈ R, there is an idempotent f in R with f ∈ Rr and 1− f ∈ R(1− r).

Proof. The proof is omitted �see [35, 11.16. Characterisations I]

The exhange property for rings passes to corners.

Theorem 1.3.3. ([87]) If R is exchange and e2 = e ∈ R the ring eRe is exchange.

Proof. If x ∈ eRe choose f 2 = f ∈ Rx such that 1 − f ∈ R(1 − x). Then fe = f so
(ef)2 = ef ∈ (eRe) and e− ef = e(1− f)e ∈ eRe(e− x).

As useful implications, we have some examples on exchange rings

Example 1.3.4. ([97]) Every π-regular ring is an exchange ring.

Proof. Let R be π-regular and let a ∈ R be given. Choose x ∈ R, n ∈ N with an = anxan.
Then g = xan and e = g + (1 − g)ang are idempotents, where e ∈ Ra and (1 − e) =
(1− g)(1− ang) = (1− g)(1− an) ∈ R(1− a).

Recall that a ring R is semiregular if R/J(R) is regular and idempotents can be
lifted modulo J(R).

26This is equivalent to saying that every left ideal of R is strongly lifting.
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Example 1.3.5. ([87]) Every semiregular ring is exchange

Proof. We may assume R is regular. If x ∈ R choose y ∈ R such that xyx = x and write
f = yx. If e = f + (1− f)xf then e2 = e ∈ Rx and 1− e = (1− f)(1− x).

The class containment of the class of semiregular rings in the class of exchange rings
is proper because of the following

Example 1.3.6. ([31]) Let Q be the �eld of rational numbers and L be the ring of all
rational numbers with odd denominators. De�ne

R(Q, L) = {(r1, . . . , rn, s, s, . . . ) | 1 ≤ n ∈ N, r1, . . . , rn ∈ Q, s ∈ L}

With componentwise operations, then R(Q, L) is a commutative exchange ring, while it
is not semiregular.

Following Nicholson in [87], a ring R is called clean if every element of R is the sum
of a unit and an idempotent. Clean rings are exchange, thus, a gate for examples, the
converse is not true in general. However, it is well known that abelian exchange rings are
clean.

De�nition 1.3.7. ([87]) Let R be a ring. An element a ∈ R is clean if we can write
a = u + e, where u ∈ U(R) is a unit and e ∈ R is an idempotent.If all the elements of
a ring are clean, we say the ring is a clean ring. If in addition, we pick u and e so that
they commute, we say that a is strongly clean. If all the elements of a ring are strongly
clean, we say the ring is a strongly clean ring.

Observe that a is clean if and only if 1 − a is clean, because if a = u + e where u is
a unit and e is an idempotent, then 1 − a = 1 − (u + e) = (−u) + (1 − e) is a sum of a
unit −u and an idempotent 1− e.

Example 1.3.8. ([92]) As examples of clean elements, we have:

� Units: u = u+ 0.

� Nilpotents: x = (x− 1) + 1.

� Idempotents: e = (2e− 1) + (1− e).

� Quasi-regular: x = −(1− x) + 1.

Example 1.3.9. Boolean rings, division rings, local rings.

Proof. Each consists of types of elements mentioned in Example 1.3.8.

Theorem 1.3.10. ([88]) Every strongly π-regular ring is strongly clean.27

Proof. Since a is strongly π-regular, there exists a natural number n ≥ 0 such that
an = fw = wf where f 2 = f , w ∈ U(R) and f , w and a all commute. If we show that
u = n− (1− f) is a unit, we are done with e = 1− f . De�ne

v := an−1x−1f − (1 + a+ a2 + · · ·+ an−1)(1− f)

27The original proof of this theorem of Burgess and Menal can be seen in [18, Proposition 2.6(iii)]
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Now, uv = vu and u = af − (1− a)(1− f) imply that

uv = (af − (1− a)(1− f))(an−1x−1f − (1 + a+ a2 + · · ·+ an−1)(1− f))

= anw−1f + (1− a)(1 + a+ a2 + · · ·+ an−1)(1− f)

= f + (1− an)(1− f)

= 1

because anf = an. Clearly e, u and a all commute.

The covnerse fails as the followng example exhibits

Example 1.3.11. ([88]) Let R = {m
n
∈ Q | n is odd}. Then , R is local, thus, clearly,

strongly clean. But it is not strongly π-regular because J(R) is not nil.

Example 1.3.12. The ring of integers Z is not clean.

Proof. The units of Z are −1 and 1, the idempotents of Z are 0 and 1, thus, the set of
clean elements of Z is {−1, 0, 1, 2} which is, obviously, not the whole ring.

Theorem 1.3.13. ([58]) Let I be an ideal of a ring R such that I ⊆ J(R). Then R is
clean i� the quotient ring R/I is clean and idempotents lift modulo I.

Proof. If R is clean so is R/I being an image of R. If r2 − r ∈ I, write r = e + u where
e2 = e and u is a unit in R. Then r − u−1(1 − e)u = u−1(r2 − r) ∈ I. so r + I lifts to
u−1(1 − e)u. Conversely, let x denote x + I in the ring R/I. If r ∈ R, write r = e + u
where e2 = e and u is a unit in R/I. By hypothesis we may assume that e2 = e. Since
r − e is a unit in R/I it follows that r − e is a unit in R because I ⊆ J(R).

So we note that

Corollary 1.3.14. A ring R is clean if and only if R/J(R) is clean and idempotents can
be lifted modulo J(R).

Moreover, since idempotents lift modulo any nil ideal and since every nil ideal of a
ring R is contained in its Jacobson radical, we have

Corollary 1.3.15. If N is any nil ideal of a ring R. Then R is clean if and only if the
quotient ring R/N is clean.

Another type of clean elements is de�ned as follows

De�nition 1.3.16. ([22]) We call an element a in a ring R special clean, if there exists
a decomposition a = e + u, such that aR ∩ eR = 0, where e ∈ I(R) and u ∈ U(R). A
ring R is called special clean, if every element of R is special clean.

Theorem 1.3.17. ([22])(Camillo-Khurana) A ring R is unit regular if and only R is
a special clean ring.

Proof. The proof is omitted �see [22, Theorem 1]
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However, for elements, the case is more sensitive. For instance, considering the matrix

ring M2(Z), we have that

[
12 5
0 0

]
is unit-regular since it can decompose as follows:[

12 5
0 0

]
=

[
12 5
0 0

] [
−2 5
5 −12

] [
12 5
0 0

]
. While it is proven to be not clean (See [72,

Example 4.5]).

Fortunately, we have that the other direction is always true.

Theorem 1.3.18. ([29]) Every special clean element in a ring is unit-regular.

Proof. Let a ∈ R be special clean. Then there exists an idempotent e ∈ R and a
unit u ∈ R such that a = e + u and aR ∩ eR = 0. Hence, au−1 = eu−1 + 1. Thus,
au−1e = eu−1e + e ∈ aR ∩ eR = 0. This yields au−1(a − u) = 0, and so au−1a = a.
Therefore, a ∈ R is unit-regular.

Example 1.3.19. ([87]) Every clean ring is exchange.

Proof. If x = e + u where e2 = e and u is a unit then u (x− u−1 (1− e)u) = ue + u2 −
u+ eu = x2 − x and the result follows.

Corollary 1.3.20. ([67]) Idempotents lift modulo every left (right) ideal of a clean ring.

The class containment of the class of clean rings in the class of exchange rings is
proper because of the following

Example 1.3.21. ([59]) Let k be a �eld, and A = k[[x]] the power series ring. Let K be
the �eld of fractions of A. De�ne

R = {r ∈ End(Ak) : ∃ q ∈ K and ∃ n > 0 with r(a) = qa ∀ a ∈ 〈xn〉}

Then R is an exchange ring but not a clean ring.

However, under some certain conditions, exchange rings become clean.

Theorem 1.3.22. ([87]) An Abelian exchange ring is clean.

Proof. If R is suitable and x ∈ R choose e2 = e ∈ Rx with 1 − e ∈ R(1 − x). If
e − ax we may assume ea = a so that axa = a. If the idempotents are central then
xa = x(ax)a− xa(ax) = (xa)ax = a(xa)x = ax. Similarly write 1− e = b(1− x) where
(1 − e)b = b and b(1 − x) = (1 − x)b. Then an easy calculation shows that a − b is the
inverse of x− (1− e).

It turns out that there is even weaker conditions for an exchange ring to be clean than
Abelian. But before we reach to this result, we need some de�nitions.

A ring R is called left idempotent re�exive if aRe = 0 implies eRa = 0 for all
a ∈ R and e ∈ I(R). Clearly, Abelian rings are left idempotent re�exive. A ring R is
called quasi-normal if ae = 0 implies eaRe = 0 for a ∈ N(R) and e ∈ I(R) and R is
said to be semiabelian (cf. [34]) if every idempotent of R is either left semicentral
or right semicentral, that is, if for every x ∈ R, ex = exe (resp., xe = exe). And a
ring R is called Abelian if every idempotent of R is central. Clearly, an Abelian ring
is semiabelian, and a semiabelian ring is quasi-normal. Moreover, we also need the fact
[107, Theorem 2.14] which asserts that if I is an ideal of a ring R and idempotents can
be lifted modulo I. If R is quasi-normal, then so is R/I.
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Theorem 1.3.23. ([107]) The following conditions are equivalent for a ring R:

1. R is Abelian

2. R is semiabelian and left idempotent re�exive

3. R is quasi-normal and left idempotent re�exive

Proof. (1) =⇒ (2) =⇒ (3) automatically.
(3) =⇒ (1) Let e ∈ I(R). Since R is quasi-normal, eR(1− e)Re = 0. Since R is left

idempotent re�exive, eReR(1 − e) = 0, that is, eR(1 − e) = 0, and so (1 − e)Re = 0.
Hence e is central and this shows that R is abelian.

Theorem 1.3.22 is generalized according to the following result.

Theorem 1.3.24. ([107]) Let R be a quasi-normal ring. Then R is clean if and only if
R is exchange.

Proof. For the other direction, let R be an exchange ring, then R/J(R) is exchange and
idempotents can be lifted modulo J(R). Since R/J(R) is semiprime, R/J(R) is left
idempotent re�exive. By Theorem 1.3.23, R/J(R) is abelian. Therefore, R/J(R) is clean
by Nicholson 1.3.22, so by Remark 1.3.14 , R is a clean ring.

So now, we have

Corollary 1.3.25. Let R be a semiabelian ring. Then R is clean if and only if R is
exchange.

Call a ring R potent if idempotents can be lifted modulo J(R) and every left (equiv-
alently right) ideal not contained in J(R) contains a nonzero idempotent. It turns out
that the class of potent rings is larger than the class of exchange rings as the following
result shows.

Theorem 1.3.26. ([87]) Every exchange ring is potent.

Proof. It su�ces to show that there is a nonzero idempotent in Rx for each x 6∈ J(R).
Suppose x ∈ R is such that e2 = e ∈ Rx implies e = 0. Given a ∈ R choose e2 = e ∈ Rax
such that 1−e ∈ R(1−ax). Then e = 0 and so 1 ∈ R(1−ax). This means x ∈ J(R).

The class of exchange rings is contained properly in the class of potent rings.

Example 1.3.27. ([62]) Consider the ring S = Q × Q × Q × · · · , and let R be the
subring of S consisting of sequences of the form (x1, x2, · · · , xn,m,m, · · · ) where n ≥ 1,
m ∈ Z and xi ∈ Q. Then, R is a non-exchange potent ring.

semiperfect =⇒ clean =⇒ exchange =⇒ potent

A ring R in which the Jacobson radical J(R) is a nil ideal and every left ideal of
R which is not contained in J(R) contains a nonzero idempotent is called Zorn ring.
Replacing �right ideal� with �left ideal� yields an equivalent de�nition. Left or right
Artinian rings, left or right perfect rings, semiprimary rings and regular rings are all
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examples of associative28 Zorn rings. The ring Z(2) of all rational numbers with odd
denominators (when written in lowest terms) is exchange but not Zorn. An arbitrary
Zorn ring need not π-regular according to [106, Example 20].

We enclose this chapter by a summarization of the distinguished irreversible implica-
tions.

commutative regular strongly regular unit-regular π-regular Zorn

zero-dimensional comm stronglyπ-regular clean exchange potent

28Kaplansky [71], named an alternative ring in which for every non-nilpotent x there exists an element
y such that xy is a non-zero idempotent a Zorn ring after Max Zorn, this explains why associativity
assumption is not super�uous. Every associative ring is alternative. The ring of octonions O is an
example of an alternative ring that is not associative.
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Chapter 2

Four Classes of Rings

In 1964, in his seminal work, Hyman Bass invented the concept of stable range in his
investigation of the stability properties of the general linear group in algebraic K -theory
[14]. A ring R is de�ned to have stable range 1 if for any a ∈ R, Ra+L = R, where L
is an arbitrary ideal of R implies a− u ∈ L for some unit u of R. Vaserstein has proved
that this notion is left-right symmetric for rings.

In 1949, in his work on elementary divisors [70], Irving Kaplansky invented the concept
of left uniquely generated rings, that is, if every a ∈ R satisfying Ra = Rb, b ∈ R,
implies b = ua for some u ∈ U(R). Lately in 2017, Nicholson de�ned an element a in a
ring R to be left annihilator-stable (left AS element) if the following condition holds if
Ra+l(b) = R, a, b ∈ R, then a−u ∈ l(b) for some unit u ∈ R. The well-known result of
Canfell [27, Corollary 4.4] applies to the rings R, and yet we conclude that a ring is left
UG if and only if it is left AS, while it is not the case for elements, because it is shown
that neither of the conditions AS and UG implies the other in general.

In 2003, Song Guang-tian, Chu Cheng-hao, Zhu Min-xian de�ned �regular version� of
the SR1 condition in [96]. A ring R has regular stable range 1 (written rsr(R) = 1)
if every a ∈ reg(R) has stable range 1. Since this condition applies only on regular
elements of the ring R, and not every element, this implies that for a ring R, we have
sr(R) = 1 =⇒ rsr(R) = 1. In 2002, Huanyin Chen [30, Lemma 1] proved that a ring R
is partially unit-regular (that is, when regularity implies unit-regularity) if and only if R
has regular stable range 1. A module M is said to have internal cancellation if, whenever
M = K ⊕ N = K0 ⊕ N0 as modules where K ∼= K0, then necessarily N ∼= N0. in 2005,
Khurana and Lam [73] called these rings IC rings. In 1976, G. Ehrlich [40] proved that
partially unit regular rings are precisely the IC rings. For completeness, Khurana and
Lam [73, Theorem 4.2] stated a short proof of the statement �R is IC ⇐⇒ rsr(R) = 1�

More trivial condition, but larger class of rings, the class of directly �nite rings, that
is, the class in which each left unit of its rings is right unit, i.e., R is directly �nite if and
only if Ra = R, a ∈ R, implies aR = R. This notion is obviuosly left-right symmetric.
An obvious observation is that any IC ring is DF. So we have these implications for a
ring R.

In this chapter, we shall start discussing the strongest condition among the aforemen-
tioned and then the weaker ones. So we start with
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2.1 SR1 Rings

A sequence {a1, . . . , an} in a ring R is said to be left unimodular if

Ra1 +Ra2 + · · ·+Ran = R.

In case n ≥ 2, such a sequence is said to be reducible if there exist r1, . . . , rn ∈ R such
that R (a1 + r1an) + R (a2 + r2an) + · · · + R (an−1 + rn−1an) = R. This reduction
notion leads directly to the de�nition of stable range. A ring R is said to have left stable
range ≤ n if every left unimodular sequence of length > n is reducible. The smallest
such n is said to be the left stable range of R, we write simply srl (R) = n. (If no such
n exists, we say srl (R) =∞). The right stable range is de�ned similarly, and is denoted
by srr (R). Vaserstein has proved that srl (R) = srr (R) for any ring R. So, we may write
sr (R) for this common value, and call it simply the stable range of R. In fact we need
Vaserstein's result only in the case of stable range 1 and so we call the ring R is an SR1
ring.

SR1 rings have been characterized by many mathematicians, and for ease of use,
we avoid the the original de�nition by means of unimodularity and replace it with the
following one.1

De�nition 2.1.1. ([32]) A ring R has stable range 1 (SR1) if it satis�es the following
equivalent conditions:

1. Ra+Rb = R implies that ua+ tb = 1 where t ∈ R and u ∈ R is a unit.

2. ra+ b = 1 in R implies that a+ tb is a unit for some t ∈ R.

3. Ra+L = R where L ⊆ R is a left ideal implies that a+ c is a unit for some c ∈ L.

In 1984, L.N. Vaserstein showed that these conditions are equivalent to their left right
analogues.

Theorem 2.1.2. ([103]) If srr(R) = 1, then srl(R) = 1 (and, of course, conversely).

Proof. Start with Rb+ Rd = R. Then ab+ c = 1 for some c ∈ Rd. From aR + cR = R,
we have a right invertible element u = a + cx (for some x ∈ R). Say uv = 1. For
w = a+ x(1− ba), we have

w(1− bx) = a+ x(1− ba)− abx− xb(1− ab)x
= a+ x− xba− abx− xb(u− a)

= a+ x− abx− xbu
= a+ cx− xbu
= (1− xb)u

Therefore, for y = (1− bx)v, we have wy = 1− xb.
It follows that w(b + yc) = ab + x(1 − ba)b + (1 − xb)c = ab + xbc + (1 − xb)c = 1.

Thus, R(b+ yc) = R, with yc ∈ yRd ⊆ Rd, as desired.

1Further results on SR1 rings can be found, for instance, in [102], [103],[31],[42],[77],[110],[111]
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And so we always have that R ∼= Rop for any SR1 ring R.

Theorem 2.1.3. ([103]) In SR1 ring, one-sided inverses are two-sided.

Proof. Let ax = 1. For b = 1 − xa we have Ra + Rb = R. Hence there exists t with
u = a+ tb left invertible. Since bx = x− xax = x− x =0, 1 = ux so that u is also right
invertible. Thus, u is a unit, and so are x and a.

As an observation we have that

Example 2.1.4. Any division ring or �eld is SR1.

Proof. By exhaustion, let R be a division ring, L an ideal of R, then L is either 0 or R. If
L = 0, then Ra+L = Ra = R, choosing c = 0 implies that a+ c is a unit. Else if L = R,
then Ra+ L = Ra+R = R for c 6= −a we have that a+ c is always a unit. Hence, R is
SR1. (Fields are treated the same way).

Now we de�ne a module-theoretic property which has something to do with SR1 rings.

De�nition 2.1.5. ([47]) We say that an R-module A has substitution if M ∼= A1 ⊕
H ∼= A2 ⊕ K with A ∼= A1

∼= A2 implies that, for a suitable submodule C of M ,
M = C ⊕H = C ⊕K holds, here again H, K are R-modules.

Substitution property passes to summands and back as the following result shows.

Theorem 2.1.6. ([77]) A direct sum of modules A⊕D has the substitution property i�
A and D both do.

Proof. Suppose A ⊕ D has the substitution property. To see that A does, consider a
module M = A ⊕ B = A′ ⊕ C, where A′ ∼= A. In D ⊕M , the submodules B and C
have complements isomorphic to A ⊕D, so they have a common complement X. Then
X ∩M is a common complement for B and for C in M . Conversely, suppose both A
and D have the substitution property. To check that A⊕D also does, consider a module
N = (A⊕D)⊕B = (A′⊕D′)⊕C, where A′ ∼= A and D′ ∼= D. Then D⊕B and D′⊕C
have a common complement A0 in N . But then A0⊕B and A0⊕C must have a common
complement D0 in N . Now A0 ⊕ D0 gives a common complement for B and for C in
N .

The linkage between SR1 property for rings and substitution property for modules is
seen through the following.

Theorem 2.1.7. ([31]) Let A be a right R-module, and let E = EndR(A). Then the
following are equivalent:

1. E is SR1.

2. Given any right R-module decompositions M = A1⊕B1 = A2⊕B2 with A1
∼= A ∼=

A2, there exists C ⊆M such that M = C ⊕B1 = C ⊕B2.

Proof. (1) =⇒ (2) We are given M = A1⊕B1 = A2⊕B2 with A1
∼= A ∼= A2. Using the

decomposition M = A1⊕B1
∼= A⊕B1, we have projections p1 : M 7→ A1

∼= A, p2 : M 7→
B1 and injections q1 : A ∼= A1 7→M , q2 : B1 7→M such that p1q1 = 1A, q1p1 + q2p2 = 1M .
Using the decomposition M = A2⊕B2

∼= A⊕B2, we have a projection f : M 7→ A2
∼= A

and an injection g : A ∼= A2 7→M such that fg = 1A. As (fq1)(p1g)+fq2p2g = 1A, there

27



exists some y ∈ E such that fq1 + fq2p2gy ∈ U(E). This implies that M = ker(f)⊕ C,
where C = Im(q1 + q2p2gy). As p1(q1 + q2p2gy) = 1A, we also get M = ker(p1) ⊕ C.
Therefore M = C ⊕B1 = C ⊕B2.

(2) =⇒ (1) Suppose that ax + b = 1A with a, x, b ∈ E. Set M = 2A, and let
pi : M 7→ A, qi : A 7→ M (for i = 1, 2) denote the projections and injections of this
direct sum. Set A1 = q1(A) and B1 = q2(A), so that M = A1 ⊕ B1 with A1

∼= A. De�ne
f = ap1+bp2 fromM to A and g = q1x+q2 from A toM . Observing that fg = 1A, we get
M = ker(f)⊕ g(A). Set A2 = g(A) and B2 = ker(f), so that M = A2 ⊕B2 and A2

∼= A.
By assumption, M = C ⊕ B1 = C ⊕ B2 for some C ⊆ M . Let h : A ∼= A1 ∼= C 7→ M
be the natural injection. Then C = h(A). So M = ker(p1) ⊕ h(A), we infer that
p1h is an isomorphism. On the other hand, M = ker(f) ⊕ h(A). Hence, fh is an
isomorphism. Clearly, fh = (ap1 + bp2)h = (a + bp2h(p1h)−1)p1h ∈ U(E). Therefore
a+ bp2h(p1h)−1 ∈ U(E), as required.

As another related result, we have

Theorem 2.1.8. ([31]) If EndR(M1) · · · ,EndR(Mn) are SR1, then so does EndR(M1 ⊕
· · · ⊕Mn).

Proof. Given right R-module decompositions M = A1 ⊕ B1 = A2 ⊕ B2 with A1
∼= M1 ⊕

· · ·⊕Mn
∼= A2, then we haveA1 = A11⊕· · ·⊕A1n andA2 = A21⊕· · ·⊕A2n withA1i

∼= Mi
∼=

A2i (1 ≤ i ≤ n). So M = A11 (⊕A12 ⊕ · · · ⊕ A1n ⊕B1) = A21 ⊕ (A22 ⊕ · · · ⊕ A2n ⊕B2)
with A11

∼= M1
∼= A12. Since EndR(M1) is SR1, by virtue of Theorem 2.1.7, we can �nd a

submodule C1 ⊆M such thatM = C1⊕A12⊕· · ·⊕A1n⊕B1 = C1⊕A22⊕· · ·⊕A2n⊕B2 .
Likewise, we have submodules C2, · · · , Cn ⊆M such thatM = C1⊕C2⊕· · ·⊕Cn⊕B1 =
C1⊕C2⊕· · ·⊕Cn⊕B2. By Theorem 2.1.7 again, we conclude that EndR(M1⊕· · ·⊕Mn)
is SR1.

And so, we conclude that substitution is an ER-peoperty2.

Corollary 2.1.9. Let M be a simple R-module, then M is substitutible.

Proof. By Schur's lemma3, EndR(RM) is a division ring and so EndR(RM) is SR1 by
Example 2.1.4, and hence M is substitutible by Theorem 2.1.7.

Example 2.1.10. The ring of integers Z is not SR1.

Proof. For elements a, b and s in Z, set a = 2, b = 3 and s = −5, then (2)(3) + (−5) = 1
implies that 2−5x 6= ±1, thus, 2−5x /∈ U(Z) for any x ∈ Z. Therefore, Z is not SR1.

Corollary 2.1.11. ([47])The ring Z of integers (as a module) fails to have the substitution
property.

More generally, we have

Example 2.1.12. ([42]) The ring of algebraic integers of any �nite �eld extension of Q
is not SR1.

Proof. The proof is omitted �see [42, Corollary 7.7].

2A module-theoretic property P is called an endomorphism ring property (ER-property, for short)
if for any module MR, MR has P if and only if EndR(M) has P as a module over itself.

3Remember that Schur's lemma asserts that if RK and RN are simple modules and α :R K 7→R N is
R-linear implies that either α = 0 or α is an isomorphism (In particular, End(K) is a division ring).
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However, on the other hand, we have:

Example 2.1.13. ([103]) The ring of all algebraic integers Z is SR1 ring.4

Proof. The proof is omitted �see [103, Example 1.2] or alternatively [31, Corollary
10.1.11].

We de�ne another module theoretic property as follows.

De�nition 2.1.14. ([77]) If A is an R-modules, A is said to be cancellable (or has the
cancellation property) if, for any R-modules B, C , A⊕B ∼= A⊕ C implies B ∼= C.

Like substitution, cancellation property passes to summands as the following theorem
veri�es.

Theorem 2.1.15. ([77]) A module A⊕D is cancellable i� A and D themselves are.

Proof. First assume A and D are cancellable. If (A ⊕D) ⊕ B ∼= (A ⊕D) ⊕ C, then we
can cancel A �rst and then cancel D, to get B ∼= C. Conversely, if A⊕D is cancellable,
then from D ⊕B ∼= D ⊕ C, we can add A and cancel A⊕D, to get B ∼= C. This shows
D is cancellable, and by symmetry the same holds for A.

Example 2.1.16. ([77]) If R is a Dedekind domain5. Then the module RR is cancellable.

Proof. The proof is omitted �see [77, Proposition 3.6] or alternatively [77, Theorem
5.8].

Theorem 2.1.17. ([35]) A substitutable module M is cancellable.

Proof. Let A, M1, M2, N1, and N2 be modules such that A = M1 ⊕ N1
∼= M2 ⊕ N2,

where M1
∼= M ∼= M2. Then A = M1 ⊕ N1 = M3 ⊕ N3, where M3

∼= M2 and N3
∼= N2.

Since M is substitutable, this then gives A = M0 ⊕ N1 = M0 ⊕ N3 where M0
∼= M and

so N1
∼= A/M0

∼= N3
∼= N2, as required.

In fact, Theorem 2.1.17 makes Evan's cancellation theorem crystal clear.

Corollary 2.1.18. ([43, Theorem 2]) If End(RM) is SR1, then RM is cancellable.

Unfortunately, the cancellation property on modules is not ER as the following exapmle
illustrates.

Example 2.1.19. ([77]) The cancellation property on modules is not ER.

Proof. We work over the ring k = Z, and use the Z-module A constructed in [77, Example
3.2 (5)]. To be more speci�c, let A be the subgroup of Q generated by 1

p
, where p ranges

over, say, the (in�nite) set of primes ≡ 3 mod 4. According to [77, Example 3.2 (5)],
A is not cancellable. To compute R = End(A), note that any R is the restriction of
an endomorphism of QZ (since Q is injective over Z), so is given by multiplication by
a rational number r. But in order that rA ⊆ A, r must clearly be an integer. Thus,
R ∼= Z, and according to Example 2.1.16, RR = ZZ is cancellable. This shows that the
cancellation property on modules is not ER.

4An algebraic integer is a complex number that serves to be a root for a monic polyniomal with
coe�cients from Z.

5A Dedekind domain is a Noetherian integrally closed integral domain R in which every nonzero
prime ideal of R is maximal.
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The previous example shows also that the class of substitutable modules is contained
properly in the class of cancellable modules, i.e., the following implication is irreversible:

substitution =⇒ cancellation

Now we back on track.

Theorem 2.1.20. ([103]) Let R be a ring and I ⊆ J(R) . Then sr (R) = sr (R/I) = 1.

Proof. ( =⇒ ) Let a, b, x ∈ R = R/I satisfying ax+ b = 1. Since I ⊆ J , ax+ b is a unit
in R. Let u be in R such that (ax+ b)u = 1. By hypothesis, there exists y ∈ R such that
a+ buy is a unit. Hence, a+ buy is a unit.

( ⇐= ) Let a, b, x ∈ R such that ax + b = 1. Since R is SR1 1, there exists y ∈ R
such that a + by is a unit. Assume that a + by is a unit. Then there exists u ∈ R such
that 1− (a+ by)u ∈ I ⊆ J . This implies that a+ by is a unit.

Which enables us to use the following useful tool.

Lemma 2.1.21. A ring R is SR1 if and only if R/J(R) is SR1.

As an application of Lemma 2.1.21 we obtain

Example 2.1.22. Any local ring is SR1.

Proof. Assume that R is local and let I be the maximal ideal of R. Now since I is unique,
it follows that I = J(R). Maximality of I in R implies that R/J(R) is a division ring. It
follows by Example 2.1.4 that R is SR1.

An R-module M is called strongly indecomposable if the endomorphism ring
EndR(M) is local. From which it follows that

Corollary 2.1.23. ([77]) Strongly indecomposable modules are substitutable and can-
cellable.

Theorem 2.1.24. ([62]) Every homomorphic image of any SR1 ring R is again SR1.

Proof. For simplicity, we prove the result for factor rings. Let R be SR1, and let R̄ = R/X
be its factor ring where X is an ideal of R. Assume that R̄ā + R̄b̄ = R with ā, b̄ ∈ R̄.
Then, r̄ā + c̄ = 1̄ where r̄ ∈ R̄ and c̄ ∈ R̄b̄. Hence, (ra + c) + X = 1 + X, and then,
ra + c− 1 = x ∈ X. So, ra + (c− x) = 1, which implies Ra + R(c− x) = R. And since
R is already assumed to be SR1, then we have that a− u ∈ R(c− x) for some u ∈ U(R).
That is, a+ t(c−x) = u for some t ∈ R, and so, a+ tc−u = tx ∈ X. Thus, ā+ t̄c̄− ū = 0̄,
it follows that ā − ū = −t̄c̄ ∈ R̄b̄ where ū ∈ U(R̄). Therefore, ā is an SR1 element in R̄
and so R̄ is SR1 as promised.

The following couple of observations are due to L. N. Vaserstein [103]

Theorem 2.1.25. ([103]) If R is the direct product of a family {Rα} of rings, then R is
SR1 ring if and only if each Rα is SR1.

Proof. By component-wise calculations �see [103, Theorem 2.3].
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Theorem 2.1.26. ([103]) For any natural number n, a ring R is SR1 ring if and only if
the full matrix ring over R, Mn(R) is SR1.6

Proof. Using Theorem 2.1.8, ifR ∼= EndR(R) is SR1, then so is EndR(RR
n) ∼= EndR(Rn

R) ∼=
Mn(R). The converse is now clear by Theorem 2.1.6.

Let c be a condition on an element in a ring R. We say that c is a translation
invariant if, whenever a ∈ R satis�es the condition c, then ua and au both satisfy c for
every unit u ∈ R.

Lemma 2.1.27. ([86])The following statments hold:

1. SR1 condition is translation invariant.

2. Unit-regularity condition is translation invariant.

Proof. 1. Let a be SR1. If Rua + Rb = R, then Ra + Rb = R so a − v ∈ Rb, v a
unit. Hence ua − uv ∈ Rb. As to au, Rau + Rb = R implies Ra + Rbu−1 = R, so
a− w ∈ Rbu−1, w a unit. Thus au− wu ∈ Rb.

2. Let a be unit-regular. Write a = vf where v ∈ U (R) and f 2 = f . Then ua = (uv) f
shows that ua is unit-regular. An analogous argument shows that au is unit-regular.

Theorem 2.1.28. ([86]) If a is unit-regular then a is SR1.

Proof. If a is unit-regular write a = ve, e2 = e, v a unit. So it su�ces to show that
e is SR1. If Re + Rb = R, b ∈ R, we need a unit u such that e − u ∈ R. Let
1 − re ∈ Rb where r ∈ R, and de�ne u = 1 − (1 − e)re. Then u is a unit, and
e− u = (e− 1) + (1− e) re = (e− 1) (1− re) ∈ Rb.

Note that the class of unit-regular rings is contained properly in the class of SR1 rings
since the ring element 2̄ ∈ Z4 is an SR1, but is not unit-regular.

Example 2.1.29. If R is a Boolean ring, then R is SR1.

Proof. Let R be Boolean ring, then if e ∈ R, we have that e is an idempotent, that is,
e = e2 and each idempotent is a unit-regular element since e = e2 = e · 1 · e , thus, e is
an SR1 element. Therefore, R is SR1.

In view of unit-regularity, we can see that any division ring is SR1 since it consists of
0 and units, 0 is an idempotent, and so unit-regular, thus, SR1. Units are unit-regular
and so SR1.

Theorem 2.1.30. (Bass)([44]) Any semilocal ring is SR1.

Proof. By de�nition, if R is semilocal, then R/J(R) is semisimple, and so R/(J) is unit-
regular, thus, R/(J) is SR1, this is equivalent to saying that R is SR1.

6This result can also be concluded from Vasrstein's formula ([102, Theorem 3]): sr(Mm(R)) = 1 +

b sr(R)−1
m c for any ring R and m ≥ 1.
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Example 2.1.31. Any One-sided artinian ring (hence artinian ring), semiprimary ring,
left or right prefect ring or semiperfect ring is SR1 ring.

Proof. By Remark 1.1.3 and Theorem 2.1.30.

Corollary 2.1.32. Any ring with �nitely many elements is SR1.

Proof. Clear since any ring with �nitely many elements is artinian, thus, SR1 by Example
2.1.31. (e.g., the ring of integers Zn modulo n)7

Recall that a ring R is casilocal if R/J(R) is unit-regular.

Theorem 2.1.33. (Horoub)[63] If R is casilocal, then R is SR1.

Proof. By de�nition, if we assume R to be casilocal, then R/J(R) is unit-regular, thus,
SR1 by Theorem 2.1.28. It follows by Lemma 2.1.21 that R is SR1.

The converse of Horoub's Theorem 2.1.33 fails to be true in general; because the
existence of an SR1 integral domain which is not a �eld8 is guaranteed by Theorem [42,
Theorem 4.4], and so, the class containment of casilocal rings in SR1 rings is proper.

The following theorem shows that, in fact, SR1 elements form a multiplicative sub-
monoid of a ring R.

Theorem 2.1.34. ([32]) If R is any ring, the product of SR1 elements is again SR1.

Proof. Let a and a′ be stable, and assume that ra′a+b = 1 in R. Since a is SR1, it follows
that a + tb = u ∈ U(R) for some t ∈ R. Hence 1 = ra′(u − tb) + b = ra′u + xb, x ∈ R.
Conjugating by u gives 1 = ura′+uxbu−1. As a′ is SR1 we obtain a′+t′bu−1 = u1 ∈ U(R)
where t′ ∈ R.Hence a′u + t′b = u1u so, since u = a + tb, a′a + (a′t + t′)b = u1u ∈ U(R),
proving that aa′ is SR1.

The following theorem shows that SR1 condition passes to corner.

Theorem 2.1.35. ([103]) If R is SR1 ring and p2 = p ∈ R, then pRp is also a SR1 ring.

Proof. Let a and b be in pRp = R′ and R′a + R′b = R′. Consider a + 1 − p and b in
R. We have R′(1 − p) = 0, so R (a+ 1− p) + Rb ⊇ R′a + R′b 3 p. On the other hand,
(1− p) a = 0 = (1− p) b. So R (a+ 1− p) +Rb 3 (1− p) (a+ 1− p) + (1− p) b = 1− p.
Thus, R (a+ 1− p) + Rb 3 p + 1 − p = 1. Since R is SR1, there is t in R such that
R (a+ tb+ 1− p) = R. We have

(1− (1− p)tb)(1 + (1− p)tb) = 1 = (1 + (1− p)tb)(1− (1− p)tb)

So, 1− (1− p) tb is a unit of R, hence

R = R (a+ tb+ 1− p) (1− (1− p) tb) = R (a+ ptb+ 1− p)

Therefore, R′ (a+ ptpb) = R′.

7Note that the class of SR2 rings (rings with stable range 2) is not closed under homomorphic images
as Z is SR2 but its homomorphic image Zn is SR1.

8Note that regular integral domains are always �elds.
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And so, SR1 is a Morita invariant property for rings.

Theorem 2.1.36. ([33]) A regular ring R is SR1 if and only if it is unit regular.

Proof. Assume that R is SR1 and let a ∈ R. Since R is regular,there exists x ∈ R such
that axa = a. Clearly, ax + (1 − ax) = 1. By the assumption on R, there exists y ∈ R
such that u = a+ (1− ax)y is invertible. Therefore, axu = ax(a+ (1− ax)y) = axa = a.
It follows that ax = au−1 from which we have au−1a = axa = a. Hence, R is unit-regular.
The converse is already proved in Theorem 2.1.28.

De�nition 2.1.37. ([88]) A module RM is said to satisfy Fitting's lemma (or, �tting
module) if, for all α ∈ End(RM), there exists an integer n ≥ 1 such that M = Mαn ⊕
ker(αn).

Theorem 2.1.38. ([6]) An R-moduleM satis�es Fitting's Lemma if and only if End(M)
is strongly π-regular.

Proof. The proof of this theorem is omitted �see [6, Proposition 2.3]

Example 2.1.39. ([5]) Every strongly π-regular ring is SR1.9

Proof. The proof is omitted �see [5, Theorem 4] or alternatively [100, Theorem 5.23].

Corollary 2.1.40. If RM is a left R-module satisfying Fitting's lemma then RM substi-
tutable.

Let A be a ring and E be an A-module. The trivial ring extension of A by E (also
called the idealization of E over A) is the ring R = A n E whose underlying group is
A × E with multiplication given by (a, e)(a′, e′) = (aa′, ae′ + a′e). The jacobson radical
of An E is J(An E) = J(A) n E. Moreover, (An E)/(J(A) n E) ∼= A/J(A).

Theorem 2.1.41. ([41]) Let A be a ring and, E be an A-module, and let R = AnE be
the trivial ring extension of A by E. Then, R is SR1 if and only if so does A.

Proof. Since (An E)/(J(A) n E) ∼= A/J(A), it follows that by Lemma 2.1.21 that R is
SR1 if and only if so does A.

Theorem 2.1.42. Let R be the polynomial ring R = S[x] over the ring S. If R is SR1,
then so is S.

Proof. If R is SR1, then so is its factor ring R/〈x〉 using Theorem 2.1.24. Hence, S is
SR1 because S ∼= R/〈x〉.

The converse of Theorem 2.1.42 fails as the following example shows

Example 2.1.43. The polynomial ring over SR1 ring need not be SR1 in general.

Proof. According to [102, Theorem 8], for any �eld F ⊆ R, sr(F [x1, x2, . . . , xn]) = n+ 1.
In particular, sr(F [x]) = 2 6= 1.

9This result can also be seen in [19]. In fact there is two more classes lie strictly between strongly
π-regular rings and SR1 rings. [19, Corollary 4.1(1)] asserts that every strongly π-regular ring is feckly
polar, but the converse is not. The localization Z(2) of integers at prime 2 is a pseudopolar ring, but
it is not strongly π-regular. While [19, Corollary 4.2] states that every feckly polar ring is SR1. More
explicitly, {strongly π-regular} ⊆ {pseudopolar rings} ⊆ {feckly polar rings} ⊆ {SR1}
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De�nition 2.1.44. ([76]) A ring R is called uniquely morphic if for any element a
in the ring R there exists a unique element b in the ring R such that Ra = l (b) and
l (a) = Rb.

Uniquely morphic rings are fully classi�ed up to isomorphism according to the follow-
ing theorem.

Theorem 2.1.45. ([76]) Any uniquely morphic ring R is one of the following �ve types:

1. R is a division ring.

2. R is a Boolean ring.

3. R ∼= Z2[x]/〈x2〉

4. R ∼= Z4

5. R ∼= M2(Z2)

Proof. The proof is omitted�see [76, Theorem 7].

So we observe that

Example 2.1.46. Any uniquely morphic ring is SR1.

Proof. By Theorem 2.1.45, If a ring R is division ring, then it is SR1 by Example 2.1.4.
Else, if R is Boolean ring, then it is SR1 by Example 2.1.29. Else, if R ∼= Z2[x]/〈x2〉 ={

0, 1, x, x+ 1
}
, then it is semilocal, thus, SR1 by Theorem 2.1.30. Alternatively, R is

�nite, thus, SR1 by Remark 2.1.32. Else, if R ∼= Z4, then it has a unique maximal,
namely, {0̄, 2̄}, and so, local, thus, SR1 by Example 2.1.22. Alternatively, R is �nite,
thus, SR1 by Remark 2.1.32. Finally, SR1 condition passes to matrix ring, then since Z2

is �eld (and hence, SR1) we have that M2(Z2) is again SR1. Alternatively, R is �nite,
thus, SR1 by Remark 2.1.32.

Theorem 2.1.47. ([107]) Quasi-normal exchange rings are SR1.

Proof. Let R be a quasi-normal exchange ring. Then R/J(R) is exchange with all idem-
potents central by Theorem 1.3.23, so by [110, Theorem 6], R/J(R) has stable range 1.
Therefore, R is SR1.

It turns out that Theorem 2.1.47 is very generous because it implies directly that

Corollary 2.1.48. The following are true:

1. Semiabelian exchange rings are SR1.

2. Quasi-normal clean rings are SR1.

3. Quasi-normal π-regular rings are SR1.

4. Abelian exchange rings are SR1.

5. Abelian clean rings are SR1.

6. Commutative exchange rings are SR1.
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7. Commutative clean rings are SR1.

8. Commutative π-regular rings are SR1.

Also, since strongly π-regular rings are precisely the reduced π-regular rings as seen in
[80, Lemma 4], we have that strongly π-regular rings are Abelian π-regular rings, and so
Quasi-normal exchange and so SR1 by Theorem 2.1.47, thus, another proof of Example
2.1.39

SR1 rings can be characterized in terms of unit lifting, before proving this, we need
this lemma.

Lemma 2.1.49. ([54]) Let a, b, c be elements of a ring R, such that ab+ c = 1. If there
exists x ∈ R such that a + cx is invertible, then there exists y ∈ R such that b + yc is
invertible.

Proof. Set u = a+ ex, and set v = b+ (1− bx)u−1c and w = a+x(1− ba). Now, observe
that:

va = ba+ (1− bx)u−1ca (1)

vx = bx+ (1− bx)u−1(u− a) = 1− (1− bx)u−1a (2)

vx(1− ba) = (1− ba)− (1− bx)u−1(1− ab)a = 1− ba− (1− bx)u−1ca (3)

Adding equations (1) and (3) yields vw = 1. Next, observe that:

wb = ab+ xb(1− ab) = ab+ xbc (4)

w(1− bx) = a+ x(1− ba)− abx− xbcx
= a+ (1− ab)x− xb(a+ cx)

= a+ cx− xbu = (1− xb)u
(5)

w(1− bx)u−1c = (1− xb)c (6)

Adding equations (4) and (6) yields wv = ab+ c = 1.

Theorem 2.1.50. ([95]) Let R be a ring. Then the following are equivalent:

1. R is SR1.

2. Every left unit lifts modulo every left principal ideal.

3. Every right unit lifts modulo every right principal ideal.

Proof. (1) =⇒ (2) We assume R is SR1. Let a, b, c ∈ R such that ab− 1 ∈ Rc i.e b is a
left unit modulo the left principal ideal Rc. We show that there exists a left unit u ∈ R
such that b − u ∈ Rc. Let x ∈ R such that ab − 1 = xc. Then ab − xc = 1. Since R is
SR1, from the above Lemma 2.1.49, there exists t ∈ R, u ∈ U(R) such that b− txc = u.
Therefore b− u ∈ Rc where u is invertible (and hence left invertible) in R.

(2) =⇒ (1) We show that R is SR1. Let a, b, c ∈ R such that ab + c = 1. Then
ab − 1 ∈ Rc. So by our hypothesis, there exists a left unit u ∈ R such that b − u ∈ Rc.
Then from Lemma 2.1.49 we have that in R every left unit is a right unit and hence
invertible in R. Thus b − u = xc for some x ∈ R, u ∈ U(R) i.e b + (−x)c = u ∈ U(R).
Therefore from Lemma 2.1.49, R is SR1.
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2.2 Left UG Rings

In this section we shall discuss some basics about left uniquely generated rings (left
UG Rings).10. These rings are invented by Irving Kaplanky [70].

We state the condition for rings in which a ring must be left UG.

De�nition 2.2.1. ([73]) An element a in a ring R is called left uniquely generated
(left UG) if Ra = Rb, b ∈ R, implies b = ua for some u ∈ U(R), and R is called a left
UG ring if every element in R is left UG.

As an observation, Kaplansky observed that

Theorem 2.2.2. ([70]) Let R be a ring in which all right divisors of 0 are in the radical.
Then aR = bR implies that a, b are right associates.

Proof. We have a = by, b = ax, so a = axy. If a, b = 0 there is nothing to prove.
Otherwise a (1− xy) = 0 shows that 1−xy is in the radical, whence x and y are units.

The following example is prototypical.

Example 2.2.3. The ring of integers Z is a left UG ring.

Proof. We know that nZ = mZ i� n = ±m. Now, since ±1 ∈ U(Z), this implies that Z
is a left UG ring.

As a commutative non-example is

Example 2.2.4. ([13]) Let R = C([0, 3]), the ring of continuous real-valued functions
on the real interval [0, 3]. Certainly R is a commutative ring whose identity element is
the constant function 1. Note that R× = {f ∈ R : f(t) 6= 0 ∀ t ∈ [0, 3]}. Consider the
following three functions in R:

a(t) =


1− t : t ∈ [0, 1]

0 : t ∈ [1, 2]

t− 2 : t ∈ [2, 3]

, b(t) =


1− t : t ∈ [0, 1]

0 : t ∈ [1, 2]

2− t : t ∈ [2, 3]

and c(t) =


1 : t ∈ [0, 1]

3− 2t : t ∈ [1, 2]

−1 : t ∈ [2, 3]

Clearly (a) = (b) since c(t)a(t) = b(t) and c(t)b(t) = a(t). However, there is no unit
u(t) ∈ R with a(t)u(t) = b(t). Indeed, if a(t)u(t) = b(t), then it must be the case that
u(0) = 1 and u(3) = −1. By the Intermediate Value Theorem, since u ∈ R is continuous,
u(t0) = 0 for some t0 ∈ (0, 3), whence u /∈ R×.

And so, a commutative ring need not be left UG.

10Further results on left UG rings can be found, for instance, in [86], [27], [28], [70], [13], [95],[111],
[82], [9], [109]
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Theorem 2.2.5. ([27]) (Canfell's Theorem). For any ring R, the following are equiv-
alent:

1. If Ra+ l (a) = R, a, b ∈ R, then a− u ∈ l (b) for some unit u ∈ R.

2. R is left UG.

3. If Ra = Rb, a, b ∈ R, then a = vb for some left unit v ∈ R.

Proof. The proof is omitted �see[27, Corollary 4.4] or alternatively, [86, Theorem 5]

Also, noncommutative rings are not so far from being left UG as the following example
shows.

Example 2.2.6. ([27]) Let R = Z[x, y]/〈y2, yx〉. Then R is a noncommutative ring with
zero-divisors, whose principal right ideals and principal left ideals are uniquely generated,
and which is not SR1. In addition, R is left noetherian but not right noetherian.

Proof. Each element of R can be written as f(x) + g(x)y where f(x), g(x) ∈ Z[x]. The
units of R have the form ±1 + g(x)y, and one-sided inverses in R are two-sided. We
note that r(y) = Z[x]x ⊕ Z[x]y and this is the only non-trivial right annihilator of an
element of R. To show that principal right ideals are uniquely generated, we we apply
Canfell's theorem. Suppose that a, e ∈ R satisfy aR + r(e) = R. Then ab + j = 1
for h ∈ R, ej = 0. The only nontrivial case is when j ∈ Z[x]x ⊕ Z[x]y. Writing
a = f(x) + g(x)y, b = h(x) + k(x)y, j = xs(x) + t(x)y, and substituting int ab + j = 1,
we �nd that f(x)h(x) = 1. Hence, f(x) = ±1, and so a = ±1 + g(x)y is a unit of R.
Similarly, left principal ideals of R are uniquely generated. Finally, to see that R is not
SR1, we note that R contains Z as a subring and then use an argument similar to that
in Example 2.1.10.

Unit-regular elements have the left UG property as the following result proves.

Theorem 2.2.7. ([73]) If a, a′ ∈ ureg(R), then aR = a′R i� a′ = au for some u ∈ U(R).

Proof. Let a = ev and a′ = e′v′, where e, e′ are idempotents, and v, v′ ∈ U(R). Since
aR = evR = eR, and a′R = e′v′R = e′R, we have aR = a′R i� eR = e′R. Thus, it su�ces
to handle the case where a = e and a′ = e′. We need only check the �only if� part, so
assume that eR = e′R. Then ee′ = e′, and e′e = e. Since ee′(1−e) is an element of square
zero, we have u := 1+ee′(1−e) = 1+e′−e ∈ U(R). Now eu = e(1+e′−e) = e+e′−e = e′,
as desired.

And so we conclude that

Corollary 2.2.8. Unit-regular rings are left UG.

More generally, we have

Theorem 2.2.9. ([111]) If R is SR1, then R is left UG.

Proof. We have a = by, b = ax so a = axy. If a = b = 0 there is nothing to prove.
Otherwise a(1 − xy) = 0. Let 1 − xy = c, then xR + cR = R, ac = 0. Since R is SR1,
we have x + cv = u ∈ U(R) for v ∈ R. Thus ax + acv = au. Then ax − au = b and
bu−1 = a.
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And so, we have the following irreversible implications

unit-regular =⇒ SR1 =⇒ left UG

Recall that, the �rst implication fails to be reversed because the ring Z4 exists, and
the second one fails because the ring Z exists.

As it is the case for SR1 rings, the left UG rings are closed under products.

Theorem 2.2.10. ([86]) Πi∈IRi is a UG ring if and only if Ri is UG for each i ∈ I.

Proof. Coordinate-wise calsulations.

Kaplansky's subring is a ring of the form Kp =
{

(n, λ) ∈ Z× Zp[x] | λ(0) = n
}
.

In [86, Example 8], it is proven that if p = 2 or 3, then Kp is left UG, and it is not the
case whenever p ≥ 5. So for the smallet possible p, we have that:

Example 2.2.11. ([70]) Let K5 =
{

(n, λ) ∈ Z× Z5[x] | λ(0) = n
}
, where k = k + 5Z in

Z5. Then (0, x) and (0, 2x) generate the same ideal of K5 but are not unit multiples.

Recall that a regular ring has the property that every �nitely generated right (left)
ideal is generated by an idempotent. Regular rings are left PP rings11, that is, principal
left ideals are all projective (the left ideal Ra is projective if and only if l(a) = Re where
e is an idempotent.). A commutative ring R is called PP ring if each element x ∈ R
can be written in the form x = re where r is regular and e is idempotent. And so, a
commutative regular ring is a PP ring.

So we have that

Theorem 2.2.12. ([4]) Every commutative PP ring is UG.12

Proof. Trivial.

The converse of Theorem 2.2.12 fails because

Example 2.2.13. ([11]) Z× Z is a PP ring that is not regular.

Commutativity in Theorem 2.2.12 is not super�uous because

Example 2.2.14. ([63]) Not every left PP-ring is left UG.

Proof. If D is a division ring the ring Mω(D) is regular and so left PP but not left UG
because it is not Dedekind �nite.13

A ring R is called left quasi-morphic if the collection of all left principal ideals
coincides with the collection of all left annihilators in the ring.

Theorem 2.2.15. ([95]) Let R be a ring. If R is left quasi-morphic, then the following
are equivalent:

1. R is left UG.

2. R is SR1.
11left PP rings are also known as left Rickart rings
12commutative UG rings have been called strongly associate rings in [4]
13left UG rings are known to be Dedekind �nite (one-sided units are two sided).

38



Proof. (1) =⇒ (2) In view of Theorem 2.1.50. It su�ces to show that every left unit
lifts modulo every left principal ideal in R. Let x be a left unit that lifts modulo the left
principal ideal Ry i.e there exists z ∈ R such that zx − 1 ∈ Ry. We would like to show
that there exists a unit (and hence left invertible) u ∈ U(R) such that x− u ∈ Ry. Since
R is left quasi-morphic, there exists a, b ∈ R such that Ry = l(a) and R(xa) = l(b).
Since zx− 1 ∈ Ry we have Rx+Ry = R. But for any r ∈ R, rx(ab) = (rxa)b = 0 since
rxa ∈ R(xa) = l(b). Also ry(ab) = ((ry)a)b = 0 · b = 0 since ry ∈ Ry = l(a). Therefore
Rx ⊆ l(ab) and Ry ⊆ l(ab). Hence we have

R = Rx+Ry = l(ab) =⇒ ab = 0 =⇒ a ∈ l(b) =⇒ Ra ⊆ l(b)

Also we have l(b) = R(xa) ⊆ Ra Therefore l(b) = R(xa) = Ra. Now since R is left
uniquely generated and R(xa) = Ra, there exists a unit u ∈ R such that xa = ua. This
implies that (x − u)a = 0 =⇒ (x − u) ∈ l(a) = Ry. Thus, from Theorem 2.1.50, the
ring R is .

(2) =⇒ (1) Theorem 2.2.9 says that it is always the case.

Recall that a topological space is continuum if it is both compact14 and con-
nected15. And C(X) denotes the ring of all continuous real-valued functions on
a completely regular Hausdor� space X. For f ∈ C(X), the zero set of f is
Z(f) = {x ∈ X : f(x) = 0}, the support of f is Supp(f) = clX(X − Z(f)). Moreover,
If Z(f) is a neighborhood of Z(g), then f is a multiple of g, that is, f = hg for some
h ∈ C(X). C∗(X) is the ring of bounded continuous functions on X. A subspace
A ⊆ X is said to be C∗-embedded (in X) if every f ∈ C∗(A) can be extended to some
g ∈ C∗(X). (See [53] for further results and notations).

Theorem 2.2.16. ([9]) Let X be continuum and f ∈ C(X). Then f is UG if and only
if Supp(f) is connected.

Proof. Let Supp(f) be connected and (f) = (g) for some g ∈ C(X). Then there exist
s, t ∈ C(X) such that f = sg and g = tf . Take x0 ∈ Supp(f). We claim that s(x0) = 0 =
t(x0). If s(x0) = 0, we may take a net (xλ) in X − Z(f) such that xλ −→ 0. Since t = 1

s

on X − Z(f), t(xλ) −→ ∞ which means that t is discontinuous at x0, a contradiction.
Similarly, we have t(x0) = 0. Hence Z(s) and Z(t) are disjoint from Supp(f). On the
other hand, if s changes sign on Supp(f), then Supp(f) will be disconnected which is
impossible by our hypothesis. Without loss of generality, let s > 0 on Supp(f). But
Supp(f) is compact, so s has a minimum value on Supp(f), say s(y0) = α, y0 ∈ Supp(f).
We have α > 0, for otherwise if α = 0, as in the above argument, t will be discontinuous
at y0. Now take u = s ∨ α. Clearly u is unit and f = ug. Conversely, suppose that
Supp(f) is disconnected. We show that f is not UG. Let U and V be two disjoint open
sets in X such that U ∩ Supp(f) 6= ∅ 6= V ∩ Supp(f) and Supp(f) ⊆ U ∪ V . Therefore,
we have also U ∩ (X − Z(f)) 6= ∅ 6= V ∩ (X − Z(f)). Now de�ne

g(x) =


f(x) : x ∈ U ∩ (X − Z(f))

0 : x ∈ Z(f)

−f(x) : x ∈ V ∩ (X − Z(f))

, s(x) =

{
1 : x ∈ U ∩ Supp(f)

−1 : x ∈ V ∩ Supp(f)

14A topological space is compact if each open cover (collection of open sets in which their union is a
superset or equal the the whole space) admits a �nite subcover.

15A topological space is connected if it can not be expressed a union of two proper clopen sets.
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then g ∈ C(X) and s ∈ C(Supp(f)) for U ∩Supp(f) and V ∩Supp(f) are disjoint clopen
sets in Supp(f) whose union is Supp(f). Since Supp(f) is compact, it is C∗-embedded
. Hence s has an extension s∗ in C(X). Clearly, f = s∗g and g = s∗f , i.e. (f) = (g).
Now if there exists a unit u ∈ C(X) such that f = ug, then u = 1 on the nonemptyset
U ∩ (X−Z(f)) and u = −1 on the nonempty set V ∩ (X−Z(f)), i.e. pos u 6= ∅ 6= neg u.
But X = pos u ∪ neg u implies that X is disconnected, a contradiction. Therefore, f is
not UG.

Example 2.2.17. ([9]) The product of two UG elements need not be UG in general.

Proof. Let X = [−1, 1] × [−1, 1]. Let A =
{

(x, y) : −1
2
≤ x ≤ 1

2
, y ≥ 0

}
and B ={

(x, y) : −1
2
≤ x ≤ 1

2
, y ≤ 0

}
, we choose A and B to be such that A = Z(f) and B = Z(g)

where f, g ∈ C(X). By Theorem 2.2.16 f and g are both UG as both clX(X − A) and
clX(X − B) are obviously connected and X is continuum. But clX(X − (A ∪ B)) =
clX(X − Z(fg)) is disconnected, hence, again by Theorem 2.2.16, the product fg is not
UG.

Theorem 2.2.18. ([82]) Let R be a regular ring. Then R is unit-regular if and only if
every principal right ideal is uniquely generated.

Proof. Suppose every principal right ideal of the regular ring R is uniquely generated.
For any x ∈ R, choose y ∈ R such that x = xyx, then xR = xyR implies xy = xu for
some unit u, whence x = xux. So R is unit-regular.

Conversely, suppose R is unit-regular. Let a, b ∈ R satisfy aR = bR. Choose units
u, v ∈ R such that a = aua and b = bvb. Now, a = bs and b = at for some s, t ∈ R, thus,
1 − st ∈ r(b) = (1 − vb)R. Consequently, sR + (1 − vb)R = R. Since R is SR1, there
exists some r ∈ R such that s + (1 − vb)r is a unit of R. Since a = b(s + (1 − vb)r),
we conclude that a and b are right associates. Thus, every principal right ideal of R is
uniquely generated.

And so, for a regular ring R, we have the following equivalence:

unit-regular =⇒ SR1 =⇒ left UG =⇒ unit-regular

In 2017, Nicholson [86] de�ned the left annihilator-stabilty conditions as follows:

De�nition 2.2.19. ([86]) An element a in a ring R is called left annihilator-stable
(left AS element) if Ra+ l(b) = R, b ∈ R, then a− u ∈ l(b) for some unit u ∈ R. A ring
R is called a left annihilator-stable ring (a left AS ring) if every element of R is left
AS.

It is observe that

Theorem 2.2.20. ([86]) A ring R is left AS if and only if R is left UG.

Proof. Obvious, by Canfell's Theorem 2.2.5.

Theorem 2.2.21. ([9]) If f ∈ C(X), then f is SR1 if and only if f is AS.

Proof. Let f ∈ C(X) be AS and (f)+(g) = C(X) for some g ∈ C(X). Then Z(f)∩Z(g) =
∅ and hence there is t ∈ C(X) such that t(Z(f)) = 0 and t(Z(g)) = 1. Take Z(h) =
{x ∈ X : t(x)} and Z(k) = {x ∈ X : t(x)}. Since k ∈ ann(h) and Z(f) ∩ Z(k) = ∅, we
have (f) + ann(h) = C(X). But f is AS, so (f − u)h = 0 for some unit u ∈ C(X). This
implies that X−Z(h) ⊆ Z(f −u) whence X−Z(h) ⊆ intXZ(f −u). On the other hand,
Z(g)X − Z(h), so Z(g) = intXZ(f − u). Hence f − u is a multiple of g, i.e. f − u ∈ (g).
This means that f is SR1.
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Lemma 2.2.22. ([86]) Left AS condition is translation invariant.

Proof. Let a be left AS. If R(ua) + l(b) = R then Ra + l(b) = R so a− x ∈ l(b) where
x ∈ R is a unit. Hence ua− ux ∈ l(b), and ux is a unit. This shows that ua is left AS.
Turning to au, let R(au) + l(b) = R so Ra+ l(b)u−1 = R. But l(b)u−1 = l(ub), and we
obtain Ra+ l(ub) = R. Hence a− z ∈ l(ub) = l(b)u−1, z a unit, and so au− zu ∈ l(b).
Thus, au is left AS.

Lemma 2.2.23. ([86]) Let R be a ring. The following are equivalent for an element a in
R :

1. a is left AS.

2. If Rab = Rb, b ∈ R, then ab = ub for some unit u ∈ R.

Proof. (1) =⇒ (2). Given (1), suppose Rab = Rb, b ∈ R. If b = rab, r ∈ R, we have
1 − ra ∈ l(b) so Ra + l(b) = R. Then a − u ∈ l(b) for some u ∈ U(R) by (1). Hence
ab = ub, proving (2). (2) =⇒ (1). Assume (2) and let Ra + l(b) = R, b ∈ R, say
1 = ra + m, r ∈ R, m ∈ l(b). Hence b = rab, so Rab = Rb. But then (2) implies that
ab = ub, where u ∈ U(R), so a− u ∈ l(b), proving (1).

Proposition 2.2.24. ([86]) For any ring R, if a ∈ J(R), then a is left AS.

Proof. If a ∈ J(R) let Ra + l(b) = R. Then l(b) = R as Ra ∈ J(R), so a− u ∈ l(b) for
any unit u.

Theorem 2.2.25. ([86]) If a is regular and left AS then a is unit-regular.

Proof. Let axa = a where x ∈ R. We may assume that xax = x too (via x 7→ xax).
It follows that 1 − xa ∈ l(x) = l(xa) so R = Ra + l(xa). As a is left AS, let a − u ∈
l(xa) = l(x) for some unit u in R. Hence ax = ux, so a = axa = uxa. Thus u−1a = xa,
and so au−1a = axa = a.

So, assuming regularity, we have the equivalence for rings:

unit-regular =⇒ SR1 =⇒ left AS =⇒ unit-regular

Nicholson observed that

Theorem 2.2.26. ([86]) If either R[x] or R[[x]] is left AS then R is left AS.

Dealing with elements is, in fact, more sensitive than dealing with rings. As shown in
Example 2.2.17, the product of two UG elements need not be UG. However, this is not
the case when elements are AS.

Theorem 2.2.27. ([109]) If a, b ∈ R are left AS, then ab is left AS.

Proof. Assume that Rab + l(c) = R with c ∈ R. Then 1 = rab + x where r ∈ R and
x ∈ l(c), so c = rabc. From Rab + l(c) = R, it follows that Rb + l(c) = R. Since b
is left AS, b − u ∈ l(c) for some unit u ∈ R. Thus, bc = uc, and so abc = auc and
c = rabc = rauc. Hence, 1− rau ∈ l(c), so Rau + l(c) = R. Since a is left AS and u is
a unit, au is left AS by Lemma 2.2.22. It follows that au − v ∈ l(c) for a unit v in R.
Thus, auc = vc. As auc = abc, we obtain that abc = vc, i.e., ab− v ∈ l(c). Hence, ab is
left AS.
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Even more sensitive. The conditions UG and AS are skew (none implies the other)
for elements. Before showing this, we need the following couple of lemmas.

Lemma 2.2.28. ([9]) f ∈ C(X) is UG if and only if f 2 is UG. (Inductively, f ∈ C(X)
is UG if and only if fn is UG where n ∈ N)

Proof. Let f be UG. First we show that f 3 is UG. Let (f 3) = (h), h ∈ C(X). Clearly
(f) = (h

1
3 ) and since f is UG, there is a unit u ∈ C(X) such that f = uh

1
3 . Therefore,

f 3 = u3h , i.e. f 3 is UG. Next we show that f 2 is UG. Let (f 2) = (h), h ∈ C(X).
Hence we have (f 3) = (fh) and since f 3 is UG, f 3 = ufh, where u ∈ C(X) is unit. So
f(f 2 − uh) = 0 implies that f 2 − uh = 0 on X − Z(f) and since Z(f) = Z(h), we have
also f 2 − uh = 0 on Z(f) and therefore f 2 − uh = 0. Conversely, suppose that f 2 is
UG and (f) = (h), h ∈ C(X). Clearly (f 2) = (fh) and hence f 2 = ufh for some unit
u ∈ C(X). Hence f(f−uh) = 0 and by a similar argument as above, we have f−uh = 0,
i.e. f is UG.

Lemma 2.2.29. ([9]) If f ∈ C(X) and 0 ≥ f (or f ≥ 0), then sr(f) = 1

Proof. Suppose there exists g ∈ C(X) such that (f) + (g) = C(X), then Z(f)∩Z(g) = ∅
implies that f + g2 = u for some unit u in C(X). Hence f − u ∈ (g) and this means that
sr(f) = 1.

The following lemma serves as a criterion for an element in C(R) to be or not to be
UG.

Lemma 2.2.30. ([9]) Let f, g ∈ C(R).

1. Let Z(f) = Z(g) = [a,∞) (Z(f) = (−∞, a]). Then (f) = (g) if and only if
limx→a−

f(x)
g(x)

(limx→a+
f(x)
g(x)

) exists and it is nonzero. Furthermore, if Z(f) = [a,∞)

or Z(f) = (−∞, a] then f is UG.

2. Let Z(f) = Z(g) = [a, b]. Then (f) = (g) if and only if limx→a−
f(x)
g(x)

and limx→a+
f(x)
g(x)

exist and both are nonzero. Furthermore, if f ∈ C(R) and Z(f) = [a, b], then f is
never UG.

Proof. 1. Whenever (f) = (g), then f = tg and g = sf for some s, t ∈ C(R).
Hence t = fg and s = gf on (−∞, a), so limx→a− t(x) and limx→a− s(x) exist
and clearly limx→a− t(x) = 0 (otherwise limx→a− s(x) = ∞ ). Conversely, suppose
that limx→a−

f(x)
g(x)

= α 6= 0. We de�ne u ∈ C(R) such that u = fg on (−∞, a) and
u = α on [a,∞). Clearly u is unit and f = ug. This implies that (f) = (g) and
since u is a unit, this also shows that f is UG. In case Z(f) = (−∞, a], the proof
is similar.

2. If (f) = (g), then f = tg and g = sf for some s, t ∈ C(R). As in the above ar-
gument, we observe that limx→a− t(x), limx→a+ t(x), limx→a− s(x) and limx→a+ s(x)

exist and all are nonzero. Conversely, let limx→a−
f(x)
g(x)

= α 6= 0 and limx→a+
f(x)
g(x)

=

β 6= 0. De�ne h ∈ C(R) such that h = fg on R− [a, b] and h(x) = α + β−α
b−a (x− a)

for each x ∈ [a, b]. Clearly h ∈ C(X) and f = hg. Similarly, there is k ∈ C(X) such
that g = kf and hence (f) = (g). Finally, suppose that f ∈ C(R) and Z(f) = [a, b].
Consider g ∈ C(R) such that Z(g) = [a, b], g = f on (b,∞) and g = −f on (−∞, a).
In this case, limx→a−

f(x)
g(x)

= −1 and limx→b+
f(x)
g(x)

= 1. Hence using the �rst part of
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(2), (f) = (g). Now if there exists a unit u ∈ C(R) such that f = ug, then u = 1
on (b,∞) and u = −1 on (−∞, a). But u is unit and it does not take the value
zero, so R = pos u ∪ neg u, i.e. R is disconnected, a contradiction.

The following couple of examples show that neither of the conditions AS and UG for
elements of C(X) necessarily implies the other.

Example 2.2.31. ([9]) De�ne functions f, g ∈ C(R) as follows:

f(t) =


t− 1 : t ≥ 1

0 : −1 ≤ t ≤ 1

−t− 1 : t ≤ −1

, g(t) =


−t+ 1 : t ≥ 1

0 : −1 ≤ t ≤ 1

−t− 1 : t ≤ −1

Since f ≥ 0, f is SR1 by Lemma 2.2.29 and hence it is AS by Theorem 2.2.21. By Lemma
2.2.30, f is not UG.

Example 2.2.32. ([9]) De�ne functions g, h ∈ C(R) as follows:

g(t) =

{
0 : |x| ≤ 1

x2 − 1 : |x| ≥ 1
, h(t) =

{
x2 − 1 : |x| ≤ 1

0 : |x| ≥ 1

Let i ∈ C(R) be identity function. Since hg = 0, h ∈ ann(g). On the other hand,
Z(i) ∩ Z(h) = ∅ implies that (i) + ann(g) = C(R). But if there exists a unit u ∈ C(R)
with (i−u)g = 0, then i = u on coz(g). Hence u(x) is positive for x > 1 and it is negative
for x < −1. Since u is continuous, it must take the value zero, a contradiction. It is clear
that every non-zero-divisor is a UG element. Hence i is a UG element but it is not AS.
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2.3 IC Rings

Recall that a module RM is said to have internal cancellation (or M is internally
cancellable) if it sati�es the condition: If M = N ⊕ K = N1 ⊕ K1 and N ∼= N1,
then K ∼= K1. From this perspective, a ring R is called an IC ring if RR has internal
cancellation. It is well-known that IC is an ER-property. We start this section with the
following de�nition.

De�nition 2.3.1. ([73]) A ring R said to have internal cancellation (IC) if it satis�es
the following equivalent conditions:16

1. RR has internal cancellation.

2. Isomorphic idempotents in R have isomorphic complementary idempotents.

3. Any regular element in R is also a unit-regular.17

4. For any idempotent e ∈ R, aR+ eR = R (or alternatively, ar+ e = 1) implies that
a+ ex ∈ U(R) for some x ∈ R.

Moreover, if Mn(R) is IC whenever R is IC, then R is called stably IC.

We now shall mention some examples.

Example 2.3.2. Any unit-regular is an IC ring.

Proof. Regular elements is such ring would be exactly the unit-regular ones.

Example 2.3.3. Every RS18 ring is IC.

Proof. If R is RS, a ∈ R is regular implies that a is strogly regular, thus, a unit-regular
by Theorem 1.2.33. Therefore, R is IC.

Example 2.3.4. Any commutative ring is IC.

Proof. Let R be commutative ring. If a ∈ R is regular, then a is strongly regular by
Remark 1.2.32, thus, unit-regular by Theorem 1.2.33. Henceforth, R is IC.

More generally, we have

Example 2.3.5. Any Abelian ring is IC

Proof. Any Abelian regular ring must be strongly regular. Hence, in an Abelian ring,
regular elements must be strongly regular ones, thus, unir-regular.

A module is indecomposable if it is non-zero and cannot be written as a direct sum
of two non-zero submodules.

16In any ring R, we say that a is similar to b (or that a and b are similar) if a = u−1bu for some
u ∈ U(R). And a is said to be pseudo-similar to b (or that a and b are pseudo-similar) if there exist
x, y, z, w ∈ R such that a = zbx, b = xaw, and x = xzx = xwx. Note that it is always the case that if
a, b are similar in R, then a is pseudo-similar to b by taking x = u and w = z = u−1. Moreover, IC rings
are precisely the rings in which pseudo-similarity implies similarity.

17Because of this characterization, IC rings have also been called partially unit-regular rings (p.u.r
for short) in [57].

18These rings have been called strongly IC in [75]
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Example 2.3.6. ([73]) Any right artinian ring is IC.

Proof. Assume that e, e′ ∈ R are idempotents in R such that eR ∼= e′R. Applying
the classical Krull�Schmidt Theorem19 to RR implies that (1 − e)R = (1 − e′)R.
Therefore, R is IC.

IC rings have been characterized by many authers, one of nice characterizations of IC
rings is the following.

Theorem 2.3.7. ([73]) For any ring R, the following are equivalent:

1. R is IC.

2. Every regular element in R has right UG.

3. Every unit-regular element in R has right UG.

4. Every idempotent in R has right UG.

Proof. (4) =⇒ (1): we verify the condition reg(R) = ureg(R). Given x ∈ reg(R), write
x = xyx (for some y ∈ R). Then xy is an idempotent, and xR = xyR. By (4), we have
therefore xy = xv for some v ∈ U(R), and hence x = xyx = xvx ∈ ureg(R).

(1) =⇒ (2): Suppose xR = zR, where x ∈ reg(R). We can write x = xyx for
some y ∈ U(R). As in the above, xR = eR, where e := xy is an idempotent. Since
ex = x, z ∈ xR implies that ez = z also. Now, zR + (1 − e)R = xR + (1 − e)R = R,
and 1 − e is an idempotent. Thus, there is a unit u = z + (1 − e)r for some r ∈ R.
Leftmultiplying this equation by e, we get eu = ez = z, and thus z = x(yu) with
yu ∈ U(R), as desired.

So we conclude that

Corollary 2.3.8. Any left or right UG ring is IC.

As another characterizations of IC rings we have.

Theorem 2.3.9. ([49]) For a ring R, the following are equivalent:

1. R is an IC ring.

2. If erse = e for some e2 = e, r, s ∈ R, then there exists u ∈ U(R) such that erue = e.

3. If erse = e for some e2 = e, r, s ∈ R, then there exists v ∈ U(R) such that evse = e.

Proof. (1) =⇒ (2): Suppose erse = e for some e2 = e, r, s ∈ R. As erR = eR, by
Theorem 2.3.7, there exists u ∈ U(R) such that e = eru, then e = erue.

(2) =⇒ (1): Let a be a regular element in R, so that a = axa for some x ∈ R. Then
e = ax is an idempotent in R and e = eaxe. By (2), there exists a unit u in R such that
e = eaue, so ea = eauea. As ea = axa = a, we have a = aua, that is, a is unit-regular.

By the left�right symmetry of internal cancellation of R, we have (1) ⇐⇒ (3).
19Given a chain of submodules ofM of the formM0 ⊂M1 ⊂ · · · ⊂Mn = M , we say that n is the length

of the chain. The length of M is de�ned to be the largest length of any of its chains. If no such largest
length exists, we say that M has in�nite length. The classical Krull�Schmidt Theorem [45] asserts that
if M is a module of �nite length, then any two direct sum decompositions M = M1 ⊕M2 ⊕ · · · ⊕Mn

∼=
N1 ⊕N2 ⊕ · · · ⊕Nm, of M into indecomposable summands Mi, Nj are isomorphic.
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Theorem 2.3.10. ([73]) If R is an IC ring, then so is the corner ring eRe (for any
idempotent e ∈ R).

Proof. R being IC means that the module RR is internally cancellable. Since RR =
eR⊕ (1− e)R, we see easily that its direct summand (eR)R is also internally cancellable.
Since internal cancellation is an ER-property, it follows that the endomorphism ring
EndR(eR) ∼= eRe is an IC ring.

Example 2.3.11. ([73]) There exists a stably IC (hence, IC) ring R such that the poly-
nomial ring R[x] is not IC.

Proof. The proof is omitted �see[73, Proposition 5.10]

Theorem 2.3.12. ([73]) Let S be a (unital) subring in an IC ring R. If R = S ⊕ I for
some ideal I ⊆ R, then S is also IC.

Proof. Let e, e′ be a pair of isomorphic idempotents in S. Then, e, e′ are also isomorphic
in R, and so 1− e, 1− e′ are isomorphic in R. Applying the natural ring homomorphism
from R to R/I ∼= S, we see that 1− e, 1− e′ are also isomorphic in S. This checks that
S is an IC ring.

Theorem 2.3.13. ([74]) If R is an IC ring and isomorphic idempotents lift (in particular,
if regular elements lift) modulo an ideal I ≤ R, then R/I is also an IC ring.

Proof. Given a pair of isomorphic idempotents of R/I, any isomorphic lifts to R will be
conjugate from the IC hypothesis. Conjugate idempotents in R push down to conjugate
idempotents in R/I. Thus, all isomorphic idempotents of R/I are conjugate.

Lemma 2.3.14. ([79, Ex. 21.20]) Let I be an ideal in R which contains no nonzero
idempotents (e.g. I ⊆ J(R)). Let e, f be commuting idempotents in R. If e = f in R/I,
then e = f in R. Moreover, If e, f are orthogonal in R/I, then e, f are orthogonal in R.20

Proof. Since ef = fe, we have (e−ef)2 = e2(1−f)2 = e(1−f), so e−ef is an idempotent.
On the other hand, e−f ∈ J implies that e− ef = e(e−f) ∈ I, so e− ef = 0. Similarly,
f − ef = 0, so f = ef = e. For the last statement, assume that ef = 0 ∈ R/I. Then
ef ∈ I. Since (ef)2 = e2f 2 = ef , we have ef = 0.

Theorem 2.3.15. ([73]) Let I be an ideal in a ring R, and let R = R/I .

1. If I ⊆ J(R) and R is IC, then R is IC.

2. Assume that either I ⊆ reg(R), or I ⊆ J(R) and idempotents of R can be lifted to
R. If R is IC, then so is R.

Proof. 1. Suppose e, e′ are isomorphic idempotents in R. Then e and e′ are isomorphic
in R, and so by assuming that R is IC, we have 1− e, 1− e′ are isomorphic in R.
Since I ⊆ J(R), Lemma 2.3.14 implies that 1 − e and 1 − e′ are isomorphic in R.
This proves that R is IC.

20Commutativity assumption is not super�uous because considering the ring R = M2(Z), the ideal

M2(2Z), and the two (noncommuting) idempotents e =

[
1 0
0 0

]
, f =

[
1 2
0 0

]
implies f − e =

[
0 2
0 0

]
∈ I

so e = f ∈ R/I, but e 6= f . Similarly, for f as above and e′ =

[
1 2
0 0

]
= e′2 we have we have

e′f = 0, fe′ =

[
0 2
0 0

]
∈ I, so e′, f are orthogonal in R/I, but not in R.
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2. Now assume R is IC. If I ⊆ J(R) and idempotents in R can be lifted to R, the
same argument as in (1) shows that R is IC. Next, assume that I ⊆ reg(R). To
see that R is IC, it su�ces to check the equation reg(R) = ureg(R). Let a ∈ R be
such that a ∈ reg(R), say a = axa, for some x ∈ R. Then a− axa ∈ I ⊆ reg(R), so
there exists y ∈ R such that

a− axa = (a− axa)y(a− axa) = a(1− xa)y(1− ax)a ∈ aRa.

This gives a ∈ aRa, so a ∈ reg(R). Since R is IC, we have a = aua for some
u ∈ U(R). Then a = aua with u ∈ U(R), so we have a ∈ ureg(R), as desired.

Khurana and Tsit-Yuen Lam deduced the following result

Theorem 2.3.16. ([73]) The following statements hold:

1. A ring S is IC i� the power series ring R = S[[x]] is IC.

2. S is IC if the polynomial ring S[x] is IC.

As an element-wise version of [73, Theorem 6.5], we have:

Theorem 2.3.17. ([62]) If a is a left exchange element in a ring R, then the following
statements are equivalent:

1. a is left SR1.

2. a is left UG.

3. a is left IC.

Proof. (1) =⇒ (2) =⇒ (3) are automatic implications.
(3) =⇒ (1). Assume that a is both left IC and left exchange, and let Ra + L = R

where L is a left ideal of R. Since a is left exchange, we choose e2 = e in R with e ∈ Ra
and 1−e ∈ L. Now, as R = Re+R(1−e) and Re ⊆ Ra, it follows that Ra+R(1−e) = R.
Hence, a− u ∈ R(1− e) ⊆ L for some u ∈ U(R) because a is left IC by assumption, and
so a is left SR1, proving (1).

Beside exchange rings, this also holds for any left pseudo-morphic ring R (R is
called (left) pseudo-morphic if {Ra : a ∈ R} ⊆ {l(b) : b ∈ R}, that is, every (left)
principal ideal is a left annihilator ideal). In fact, every regular ring is pseudo-morphic.

Theorem 2.3.18. ([86]) If a ring R is left pseudo-morphic, the following are equivalent:

1. R is SR1.

2. R is left UG.

3. R is right UG.

Proof. Since �SR1� is left-right symmetric, we only prove (1) =⇒ (3). Assume (1) and
let Ra+ Rb = R. As R is left pseudo-morphic write Rb = l(c) where c ∈ R. Because R
is left AS by Canfell's theorem, we have a − u ∈ l(c) = Rb for some unit u ∈ R. This
shows that R is SR1.
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Following S.Garg and H.K.Grover [49], modules in which any two isomorphic sum-
mands have a common complement are said to be perspective modules. Two summands
A,B of a module M will be denoted by A ∼ B, if they have a common complement, i.e.,
there exists a submodule C such thatM = A⊕C = B⊕C. It is clear that A ∼ B implies
A ∼= B. A module M is perspective when A ∼= B implies A ∼ B for any two summands
A,B of M . It is clear that perspective modules satisfy the internal cancellation property
in the sense that complements of isomorphic summands are isomorphic. Moreover, a
module having the substitution property is a perspective module. Perspectivity is an
ER-property.

De�nition 2.3.19. ([49]) A ring R is said to be perspective if it satis�es any of the
followng equivalent conditions:

1. If Ra+ Rb = R for some a, b ∈ R and if aR⊕X = R for some right ideal X of R,
then br(a) and X have a common complement.

2. If Ra + Rb = R for some a, b ∈ R and aR ⊕ X = R for some right ideal X of R,
then there exists e ∈ I(R), such that eR = X and a+ eb is a unit.

3. If aR⊕X = R for some a ∈ R, then r(a) and X have a common complement.

Example 2.3.20. ([49]) Any SR1 ring is perspective.

Proof. Since any substitutable module is perspective.

Example 2.3.21. ([49]) Every Abelian ring is a perspective ring.

Proof. If e and f are idempotents in an abelian ring R such that eR ∼= fR,then e = f ,
implying that (1− e)R = (1− f)R is a common complement of eR and fR.

Example 2.3.22. ([49]) Any perspective ring is an IC ring.

Proof. Clearly, since any perspective module satis�es the internal cancellation.

So, for modules, we have that:

substitution =⇒ perspectivity =⇒ internal cancellation

And for rings, we have:

SR1 =⇒ perspective =⇒ IC

Regular elements in IC rings and arbitrary elements in SR1 rings both are left UG.
Also an exchange IC ring is SR1. So one may wonder if suitable elements in a perspective
ring have the left UG property. The following example shows that this is not the case
even in commutative rings!

Example 2.3.23. ([49]) Let R = {(n, f(x)) ∈ Z × Z16[x] : n ≡ f(0) mod 16}. Then
a = (0, 2x) ∈ R is a nilpotent and therefore, a suitable element. If b = (0, 6x), then
b = (0, 6x) = (0, 2x)(3, 3) ∈ aR. Also a = (0, 2x) = (0, 6x)(11, 11) ∈ bR, implying that
aR = bR. If a and b are associates, then there exists u ∈ U(R) such that a = bu. If
u = (n, f(x)), then n = ±1 and f(x) = ±1 + a1x + a2x

2 + · · · + akx
k mod 16. So

(0, 2x) = (1, f(x))(0, 6x) implies that 2x = 6xf(x) mod 16. This is not possible. Thus
a and b are not associates.

48



Internal cancellation is, in fact, a weaker property than cancellation.

Theorem 2.3.24. ([77]) If a module A is cancellable, then A is internally cancellable.

Proof. Say A = N ⊕K = N ′ ⊕K ′, with N ∼= N ′. Since N is a direct summand of A, N
is also cancellable. Thus, from N ⊕K = N ′ ⊕K ′ ∼= N ⊕K ′, we get K ∼= K ′.

So, we have for an R-module:

substitution =⇒ cancellation =⇒ internal cancellation

De�nition 2.3.25. ([77]) A module AR over a ring R is said to have the n-exchange
property (or A is an n-exchange module) if, whenever (a copy of) A is a direct summand
in any module M = M1⊕· · ·⊕Mn, A has a complement in M of the form M ′

1⊕· · ·⊕M ′
n

for suitable submodules M ′
i ⊆Mi.

Observe from the de�nition that, each M ′
i is a direct summand of M , and hence of

Mi. Thus, we can write Mi = M ′
i ⊕M ′′

i for suitable submodules M ′′
i ⊆Mi.

The notion of exhcange of modules coincide with that of rings.

Theorem 2.3.26. ([87]) If R is a ring, the following conditions are equivalent for a left
R-module M :

1. EndR(RM) is right exchange.

2. M has the �nite exchange property.

3. EndR(RM) is left exchange.

Proof. The proof of this theorem is omitted �see [87, Theorem 2.1]

And so for a ring R and a left R-module M we always have that:

R is exchange ⇐⇒ EndR(M) is exchange ⇐⇒ RR is exchange ⇐⇒ RR is exchange

Theorem 2.3.27. ([77]) Let A be a module with the �nite exchange property. Then the
following conditions on A are equivalent:

1. A has the substitution property.

2. A is cancellable.

3. A is internally cancellable.

Proof. (1) =⇒ (2) =⇒ (3) by Theorem 2.1.17 and Theorem 2.3.24.
(3) =⇒ (2). Assume that A is internally cancellable, and consider a module M =

A ⊕ B = A′ ⊕ C, where A′ ∼= A. Since A is assumed to have 2-exchange, we can write
M = A′ ⊕ X ⊕ Y for suitable submodules X ⊆ A and Y ⊆ B. Write A = U ⊕ Xand
B = V ⊕ Y . Then A′ ∼= MX ⊕ Y = A⊕BX ⊕ Y ∼= U ⊕ V . Since A′ ∼= A = U ⊕X has
internal cancellation, we have X ∼= V . Therefore, B = V ⊕ Y ∼= X ⊕ Y ∼= M/A′ ∼= C,
so we have proved the cancellation property for A.

(3) =⇒ (1) For a ring-theoretical approach, see [73, Theorem 6.5].21

21The module-theoretic approach is of our interests.
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2.4 DF Rings

In this last section of current chapter, we �nally discuss direct �niteness condition -
a condition that characterizes the question �When left unit is right unit?�. We say that
a ring R has IBN22 if and only if for any pair of matrices A ∈Mn×m(R), B ∈Mm×n(R)
such that AB = In, BA = Im, one can infer that n = m. This reveals the left-right
symmetry of the IBN notion. In fact, we are more interested the subclass of the directly
�nite rings. We start with the following de�nition:

De�nition 2.4.1. A ring R is called directly �nite (DF) if for all a, b ∈ R, ab = 1,
implies ba = 1 (equivalently, R is DF if and only if Ra = R, a ∈ R, implies aR = R). And
called direclty in�nite if it is not directly �nite. Moreover, a ring R is called stably
�nite if for all A,B ∈ Mn(R) , AB = I implies BA = I. (that is, Mn(R) is directly
�nite for any n ∈ N).

So now, it is clear by De�nition 2.4.1 that saying ba = 1 implies ab = 1 is redundant,
that is, the notion of direct �niteness is left-right symmetric.

Remark 2.4.2. For a ring R we have the implications:

stably �nite =⇒ directly �nite =⇒ IBN

Example 2.4.3. Any commutative ring is stably �nite.

Proof. Let R be commutative ring, since ab = ba for any a, b ∈ R, it follows that R is
directly �nite. Now, Let AB = I for A,B ∈ Mn(R), I = AB implies 1 = det(AB) =
det(A)det(B). Commutativity of R implies that det(A) ∈ R is a two sided unit, the same
for det(B). Hence, BA = I. Therefore, R is stably �nite.

Example 2.4.4. Any domain is directly �nite

Proof. Assume that R is a domain, then ab = 1 implies that ab−1 = 0, and so, (ab−1)a =
a(ba− 1) = 0, thus, ba = 1 as a cancels from left. Therefore, R is directly �nite.

The following example is, in fact, a nostalgic recall of linear algebra.

Example 2.4.5. The ring of complex numbers C is stably �nite.

Theorem 2.4.6. ([77]) Any SR1 ring is DF.

Proof. Let R be SR1 where ac = 1. Then Ra + R(1 − ca) = R implies that some
u := a+s(1−ca) is left-invertible. Right-multiplying by c, we get uc = ac+s(c−cac) = 1.
Thus, u ∈ U(R), and hence c ∈ U(R). Therefore, R is DF.

Theorem 2.4.7. Any SR1 ring is stably �nite.

Proof. Let R be SR1 ring, then by Theorem 2.4.6, R is DF. Moreover, it follows by 2.1.26
that any full matrix ring over R is DF. Henceforth, R is stably �nite.

22There exist rings R in which R ∼= R⊕R as left modules. Hence RR may have bases of one and two
elements. In fact, Rn ∼= R for each n ≥ 1, so R contains a basis of n elements for each n ≥ 1
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Example 2.4.8. ([1]) Every left Noetherian ring R is Dedekind-�nite.

Proof. Suppose that ab = 1 for some a, b ∈ R. De�ne the map f : R 7→ R by f(r) = rb.
Clearly f is an R-module homomorphism and f is onto because f(ra) = (ra)b = r(ab) =
r, for all r ∈ R. Now we have an ascending chain of left ideals of R

ker f ⊆ ker f 2 ⊆ ker f 3 ⊆ · · · .

Since R is left Noetherian, this chain stabilizes at some point, i.e. there exists some n
such that ker fn = ker fn+1. Clearly fn is onto because f is onto. Thus fn(c) = ba − 1
for some c ∈ R. Then

fn+1(c) = f(ba− 1) = (ba− 1)b = b(ab)− b = 0

Hence c ∈ ker fn+1 = ker fn and therefore ba− 1 = fn(c) = 0.

Theorem 2.4.9. ([86]) If a left AS element a ∈ R is either left or right invertible, then
a is a unit. In particular every left AS ring is DF.

Proof. If ba = 1, b ∈ R, then Ra+ l(1) = R so, as a is left AS, a− u ∈ l(1) = 0 for some
unit u. It follows that ab = 1. In the other case, suppose ac = 1. Then Rac = R = Rc
so, by Lemma 2.2.23, ac = vc where v is a unit. As ac = 1 we have c = v−1. Hence a = v
is a unit in this case too, so ca = 1. Now the last statement is clear.

So it follows by Theorem 2.4.9 and Theorem 2.2.20 that

Remark 2.4.10. Left UG rings are DF.

The following example shows that direct �niteness property of a ring R does not pass
to full matrix rings Mn(R), even when n = 2!

Example 2.4.11. ([94])(Shepherdson) If R is directly �nite, then the full matrix ring
Mn(R) need not be directly �nite.

Proof. Let S = Z[x11, x12, x21, x22, y11, y12, y21, y22] be the polynomial ring in noncommut-
ing indeterminants xij and yij , and let A denote the ideal of S generated by the following
four polynomials:

x11y11 + x12y21 − 1, x11y12 + x12y22, x21y11 + x22y21, x21y12 + x22y22 − 1.

De�ne R = S/A, and write aij = xij + A and bij = yij + A for all i and j. Then, the
matrices a = [aij] and b = [bij] in Mn(R) satisfy ab = 1, but ba 6= 1.

Note that R constructed in Example 2.4.11 is a domain, thus, left UG and IC. From
which it follows that also property of a ring R being left UG, IC, or DF does not pass to
full matrix rings Mn(R) in general.

Remark 2.4.12. Not every R is left UG, IC, or DF is stably IC or stably DF.

The following example shows that DF condition does not pass to factor rings in
general.
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Example 2.4.13. ([73]) Let R = Q〈x, y〉, then R is a domain and so, directly �nite, but
the factor ring using the relation xy = 1 is not directly �nite (Hence, neither IC nor left
UG).

And so, it turns out that left UG, IC and DF properties do not pass to factor rings
in general.

Theorem 2.4.14. ([60]) A ring R is DF if and only if R/J(R) is DF.

Proof. ( =⇒ ) For ease of use, R = R/J(R). Let ab = 1, then 1 − ab ∈ J(R), which
implies that 1 − (1 − ab)1 = ab is a unit. That is abc = 1 = cab for some c. Since R is
DF, it follows that bca = 1 and so, (bc)a = 1. Hence, a has left and right inverses, thus,
a unit. ( ⇐= ) Conversely, suppose that R is DF and that ab = 1. Then, ab = 1 = ba
implies that 1 − ba ∈ J(R). And so 1 − (1 − ba)1 = ba is a unit in R implying that
bac = 1 = cba for some c ∈ R. Hence a has left and right inverses and thus is a unit.

Theorem 2.4.15. ([17]) Let e2 = e ∈ R . If R is DF, then so is the corner ring eRe.

Proof. If ab = e for a, b ∈ eRe and f = 1− e. It follows that (a + f)(b + f) = ab + f =
e+ f = 1. So, (b+ f)(a+ f) = 1. Henceforth, ba = 1− f = e, thus, eRe is DF.

Theorem 2.4.16. ([60]) If R is a DF ring and S is a subring with unity, then S is DF.

Proof. Let R be a DF ring and let S be a subring of R with unity e. Suppose that
x, y ∈ S and xy = e. If f = yx = f 2, then (fxf)(fyf) = f and thus since fRf is DF by
Theorem 2.4.15, it follows that y2x2 = fyf(fxf) = yx. On premultiplication by x and
postmultiplication by y this yields yx = eyxe = e.

Example 2.4.17. ([62]) Consider the ring S = Q × Q × Q × · · · , and let R be the
subring of S consisting of sequences of the form (x1, x2, · · · , xn,m,m, · · · ) where n ≥ 1,
m ∈ Z and xi ∈ Q. R is DF and IC, but it is not SR1.

Proof. R is IC and DF using because it is commutative. In addition, R is not SR1 because
R has an epimorphic image that is isomorphic to Z, where the latter ring is not SR1.

The following example shows that DF condition is not closed under homomorphic
image in general.

Example 2.4.18. ([17]) If R is DF, then a homomorphisc image of R need not be DF.

Proof. Let R have no zero divisors and let R[x, y] be the polynomial ring over R in
noncommuting indeterminates x and y. Let I be the ideal of R[x, y] generated by xy− 1.
Then x+ I is right invertible but not invertible in the quotient ring R/I.

Theorem 2.4.19. ([17]) Let I be a nilpotent ideal in a ring R. Then R is DF if and
only if R/I is DF.

Proof. Suppose R is DF and let (a + I)(b + I) = ab + I = 1 + I ∈ R/I. Then ab ∈
1 + I ⊆ U(R), so that a is left invertible and hence invertible. Thus a + I is invertible
in R/I so that R/I is DF. Conversely, let R/I be DF and suppose ab = 1. Then
(a+ I)(b+ I) = 1 + I = (b+ I)(a+ I) so ba ∈ U(R). Hence a is left invertible and R is
DF.
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Theorem 2.4.20. ([17]) Let R be a ring and Tn(R) be the ring of upper triangular
matrices over R. Then R is DF if and only if Tn(R) is DF.

Proof. The ideal I of R consisting of the strictly upper triangular matrices is nilpotent
and R/I is isomorphic to the direct sum of n copies of R.

The following example shows that DF ring need not be regular in general.

Example 2.4.21. ([60]) Let R =

[
R R
0 R

]
. Then, clearly R is not regular, since

[
0 1
0 0

] [
a b
0 c

] [
0 1
0 0

]
=

[
0 0
0 0

]
However, R is DF by Theorem 2.4.20. (In particular, regularity, unit-regularity and
strong regularity properties do not pass to the ring of upper triangular matrices.)

In 1999, Cohn [36] de�ned a new class of rings, the class reversible rings. A ring
R is said to be reversible if for any a, b ∈ R, ab = 0 implies ba = 0. Clear that in
the class of reversible rings every left zero-divisor is a right zero-divisor and, of course,
conversly. Lately in 2017, Ghashghaei and Ko³an [50] de�ned the class of rings which
characterizes the answer of the question "when is every left zero-divisor a right zero-
divisor and conversely?" and the class is called so, the class of eversible rings. Interesting
results related to DF rings have been found. A ring R is called eversible if every left
zero-divisor in R is also a right zero-divisor and conversely.

We shall show that the class of reversible rings is contained properly in the class of
eversible rings.

Example 2.4.22. Any reversible ring is eversible. The converse need not be true.

Proof. Clear that every revesible ring is eversible. To deny the converse, consider the

eversible ring R =

[
R R
R R

]
, a =

[
0 1
0 0

]
, b =

[
1 0
0 0

]
, then ab =

[
0 0
0 0

]
, while ba =[

0 1
0 0

]
.

Next we mention an example of a ring in which every right zero-divisor in R is a left
zero-divisor. while the converse is not.

Example 2.4.23. ([50]) There exists a ring that is not eversible.

Proof. Consider the upper triangular matrix ring R =

[
Z Z2

0 Z2

]
. Obviously, every right

zero-divisor in R is a left zero-divisor while R =

[
2 0
0 1

]
is a left zero-divisor which is not

a right zero-divisor.

Example 2.4.24. Every domain is eversible.

Proof. Trivial, as there is no disagreement with de�nition.
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Theorem 2.4.25. ([50]) Every eversible ring is DF.

Proof. Let R be an eversible ring and ab = 1. Thus a = aba and a(1 − ba) = 0. We
are proceeding to show that ba = 1. If 1 − ba 6= 0, then a is a left zero-divisor. Since R
is eversible, we obtain that a is a right zero-divisor. Thus there exists c 6= 0 such that
ca = 0. Hence, c = c1 = cab = (ca)b = 0b = 0 that is a contradiction. This means
1− ba = 0, thus, ba = 1. Therefore, R is DF.

Let R be an Artinian ring. It is clear that any injective homomorphism ϕ : R 7→ R
is surjective. Hence every left zero-divisor is a right zero-divisor and conversely. This
means that every Artinian ring is eversible. In particular, every �nite ring is eversible.23

Theorem 2.4.26. ([50]) A regular ring is DF if and only if it is eversible.

Proof. Assume that R is DF. Suppose a is a left zero-divisor in R. Since R is assumed
to be regular then there exists b such that aba = a. Therefore, we have a(1− ba) = 0. If
1−ba = 0 then a is would not be a left zero-divisor which leads to a contradiction. Hence,
we conclude that 1− ba 6= 0. Since R is DF then 1− ba 6= 0. Henceforth, (1− ab)a = 0
and a is a right zero-divisor. The converse is trivial.

As a result we have

Corollary 2.4.27. Every unit-regular ring is eversible.

Proof. Clear, since every unit-regular ring is DF and every regular DF is eversible by
Theorem 2.4.26.

Theorem 2.4.28. Every IC ring is DF.

Proof. Since any R-module R with internal cancellation is directly �nite by Theorem
2.4.34, left-right symmetry of direct �niteness condition implies that R ∼= End(RR),
Hence, by Theorem 2.4.35, R is DF.

Corollary 2.4.29. Every stably IC ring is stably DF.

The converse of Theorem 2.4.28 fails as the following example exhibits.

Example 2.4.30. ([55]) Choose a �eld F , let T = F [[t]] be the ring of formal power
series over F in an indeterminate t, and let K denote the quotient �eld of T . Let
S = {x ∈ EndF (T ) | (x − a)(tnT ) = 0, for some a ∈ K and n > 0}. By [55, Example
4.26], for each x ∈ S there is an unique elementϕx ∈ K such that (x − ϕx)(tnT ) = 0
for some n > 0. Since K is commutative, the map ϕ : S 7→ K also de�nes a ring map
ϕ : Sop 7→ K. Consequently, the set R = {(x, y) ∈ S × Sop | ϕx = ϕy} is a subring of
S × Sop and R is regular, stably �nite but not unit-regular.

Proof. For even more details �see [8, Examples 3.13] and [65, Example 2.7], or alterna-
tively, [55, Example 5.10, Example 5.12].

23Note that the existence of identity in a �nite ring is not super�uous condition, for example the

ring

[
Z2 Z2

0 0

]
is not eversible. Moreover, Ganesan [48] showed that if a ring has only �nitely many

zero-divisors, then it is �nite. Hence every ring with �nitely many zero-divisors is eversible.
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Every SR1 ring is left UG by Theorem 2.2.9, the converse fails by Example 2.1.10.
Every left UG ring is IC by 2.3.7, the converse fails Example 2.2.11. Finally, every IC
ring is DF by 2.4.28, the converse fails by Example 2.4.30. So now we have the following
irreversible inclusions:

SR1 =⇒ left UG =⇒ IC =⇒ DF

Let X be a set of indeterminates of arbitrary cardinality. Let R[X] and R[X̃] denote
the rings of polynomials in commuting elements of X and polynomials in noncommuting
elements of X respectively. Let R[[X]] be the power series ring in X.

Theorem 2.4.31. ([17]) The following are equivalent:

1. R is DF.

2. R[X] is DF.

3. R[X̃] is DF.

4. R[[X]] is DF.

Proof. Since R is a subring, each of (2), (3) and (4) implies (1), so it remains to show that
(1) implies each of (2), (3) and (4). In each case, suppose f(X)g(X) = 1, and let f0 and
g0 be the corresponding terms of degree 0. Then f0g0 = 1 so g0f0 = 1. In cases (2) and
(3), this implies that f0 and g0 are not zero divisors, so that f(X) and g(X) are invertible.
In case (4), g0f0 = 1 implies immediately that f(X) and g(X) are invertible.

Theorem 2.4.32. ([74]) Let I ≤ R, and suppose that I contains no nonzero idempotents
(such as with the Jacobson radical). If isomorphic idempotents lift modulo I (e.g. if
regular elements lift), then R is Dedekind-�nite if and only if R/I is Dedekind-�nite.

Proof. Suppose �rst that R is not Dedekind-�nite. We can then �x x, y ∈ R with xy = 1
but yx 6= 1. It is easy to check that 1− yx is an idempotent. Since I contains no nonzero
idempotents, we have 1 − yx 6∈ I and so R/I is also not Dedekind-�nite. Next assume
R is Dedekind-�nite. The Dedekind-�nite property is equivalent to saying that the only
idempotent isomorphic to 1 is 1 itself. So assume there is an idempotent e+ I ∈ I(R/I)
with e + I ∼=R/I 1 + I, it su�ces to show that e ≡ 1 mod I. By hypothesis, there exist
two isomorphic idempotents g, h ∈ I(R) such that g − e, h − 1 ∈ I. As 1 − h ∈ I and
I does not contain any nonzero idempotents, h = 1. So we have g ∼=R 1, and as R is
Dedekind-�nite, we get that g = 1. But that means e ≡ g = 1 mod I as needed.

De�nition 2.4.33. An R-moduleM is called Dedekind-�nite ifM ∼= M ⊕N for some
module N , then N = 0. Otherwise, M is called Dedekind-in�nite.

Theorem 2.4.34. If an R-moduleM is internally cancellable, thenM is Dedekind-�nite.

Proof. LetM be an internally cancellable R-module and consider the isomorphism, M ∼=
M ⊕ N . Now, since it is always true that M ∼= M ⊕ 0, we get M ∼= M ⊕ 0 ∼= M ⊕ N .
Internal cancellability of M implies that N = 0. Therefore, M is Dedekind-�nite.
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Theorem 2.4.35. ([55]) A right R-module A is directly �nite if and only if xy = 1
implies yx = 1, for all x, y ∈ EndR(A).

Proof. If A is directly in�nite, then A = B ⊕ C with B ∼= A and C 6= 0. Choose an
isomorphism y : A 7→ B, and de�ne x ∈ EndR(A) such that xC = 0 and x restricts to
y−1 : B 7→ A. Then xy = 1 and yx 6= 1. Conversely, suppose that x, y ∈ EndR(A) with
xy = 1 and yx 6= 1. Since yx is idempotent and yxy = y, we obtain A = yA⊕ (1− yx)A.
Observing that yA = A and (1− yx)A 6= 0, we conclude that A is directly in�nite.

So, Dedekind-�niteness is an ER-property.
Gathering results of Theorem 2.1.17, Theorem 2.3.24 and Theorem 2.4.34, we have

the following hierarchy of module-theoretic properties on an R-Module M .

Substitution =⇒ Cancellation =⇒ Internal Cancellation =⇒ Dedekind-Finite

Theorem 2.4.36. ([17]) Let M be an R-module. If M is a DF module, then so is any
direct summand of M .

Proof. Let M = N ⊕K. If L is a proper direct summand of N isomorphic to N , then
L⊕K is a direct summand of M isomorphic to M , a contradiction.

Theorem 2.4.37. ([17]) There is a monomorphism f ∈ End(M) with Im f a proper
direct summand if and only if there is an epimorphism g ∈ End(M) with ker g a proper
direct summand.

Proof. Suppose such an f exists and let M = K ⊕ Im f . Let h : Im f 7→ M be any
isomorphism and de�ne g to be zero on K and h on Im f . Conversely, letM = ker g⊕N .
Note that M ∼= M/ ker g = N and let f : M 7→ N be any isomorphism, regarded as an
endomorphism of M .

A module AR over a ring R is called quasi-injective if, for any submodule B ⊆ A,
any f ∈ HomR(B,A) can be extended to an endomorphism of A. Quasi-injective modules
are de�ned by a weakening of the well-known notion of injectivity because if AR is an
injective module, then for any two modules B ⊆ C, any f ∈ HomR(B,A) can be extended
to some g ∈ HomR(C,A). Since we can, in particular, take C to be A, we see that an
injective module A is always quasi-injective. However, the convers fails (For more details,
see [77]).

Theorem 2.4.38. ([77]) Any quasi-injective module A is an exchange module.

Proof. The proof is omitted �see [77, Theorem 7.8]

Theorem 2.4.39. ([77]) If a direct sum A⊕D is quasi-injective, then so are A and D.

Proof. The proof is omitted �see [77, Corollary 7.4].

Note also, R ∼= Rop if R is an exchange ring. Furthermore, as a summing up, for
modules we always have that:

injective =⇒ quasi-injective =⇒ exchange

De�nition 2.4.40. ([17]) A right (left) R-module M is called right (left) Hop�an
if every surjective R-endomorphism is invertible, it is co-Hop�an if every injective R-
endomorphism is invertible.
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Theorem 2.4.41. ([17]) If an R-module M is Hop�an or co-Hop�an, then it is DF.

Proof. Suppose M is not DF, so M it has a proper isomorphic summand N . If M is
Hop�an, then the canonical projection of M on N , composed with an isomorphism of N
onto M is an epimorphism in End(M) containing a non-trivial kernel, a contradiction.
If M is co-Hop�an, then any isomorphism of M onto N is a monomorphism in End(M)
which is not surjective, again a contradiction.

Theorem 2.4.42 (Suzuki). ([98]) LetA be a quasi-injective module. ThenA is Dedekind-
�nite i� any isomorphism f : N 7→ N ′ from one submodule of A to another extends to an
automorphism of A. In particular, if A is Dedekind-�nite, then for any two isomorphic
submodules N ∼= N ′ in A, we have A/N ∼= A/N ′.

Proof. The proof is omitted �see [98].

Theorem 2.4.43. ([77]) For any quasi-injective module A, the following are equivalent:

1. A is Dedekind-Finite.

2. A is internally cancellable.

3. A is cancellable.

4. A is substitutable.

5. A is co-Hop�an.

Proof. (1) =⇒ (2). Follows from Suzuki's Theorem 2.4.42
(2) ⇐⇒ (3) ⇐⇒ (4). Follows from Theorem 2.3.27 since quasi-injective modules

has the exchange property by Theorem 2.4.38
(3) =⇒ (5) Assume that A is cancellable, and consider any injection f : A 7→ A.

Then B := f(A) ∼= A, so we can take an isomorphism B 7→ A, and extend it to an
endomorphism g : A 7→ A (using the quasi-injectivity of A). For K = ker(g), we then
have A = K ⊕ B. Since B ∼= A, cancellation of A yields K = 0, so B = A. This proves
that f is an automorphism, and hence A is cohop�an.

(5) =⇒ (1) By Theorem 2.4.41

A ring R is left self-injective if the module RR is an injective module. While rings
with unity are always projective as modules, they are not always injective as modules.

Theorem 2.4.44. ([77]) For a right self-injective ring R, the following are equivalent:

1. R is SR1.

2. R is left UG.

3. R is stably IC.

4. R is IC.

5. R is stably DF.

6. R is DF.
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Theorem 2.4.45. ([90]) Let R be a ring. Every left non-zero-divisor of R is a unit if
and only if RR is cohop�an.

Proof. We have a natural isomorphism End(RR) ∼= R, and injective endomorphisms
correspond to left non-zero-divisors.

As a ring-theoretic conclusion of Theorem 2.4.43, we have the following.

Corollary 2.4.46. ([77]) For a left self-injective ring R, the following are equivalent:

1. R is SR1.

2. R is left UG.

3. R is right UG.

4. R is IC.

5. R is DF.

6. Every left non-zero-divisor of R is a unit.

The classes of modules satifying substitution, cancellation, internal cancellation or
Dedekind-Finiteness can coincide under another module-theoretic condition. But before
reaching this result, we need some de�nitions.

A left R-module M is called a Utumi-module (U -module for short) if for any two
non-zero submodules A and B of M with A ∼= B and A ∩ B = 0, there exist two
summands K and L ofM such that A ⊆ess K, B ⊆ess L and K⊕L ⊆⊕ M . A moduleM
is called square-free if it contains no non-zero submodules isomorphic to a square A⊕A
(note that every square-free module is a U -module). A module M is said to satisfy the
C1-condition if every submodule of M is essential in a direct summand. Morover, it
satis�es the C3-condition if the sum of any two summands of M with zero intersection
is a summand of M . And M is called quasi-continuous if it satis�es both the C1- and
C3-conditions. Finally,a module N is said to be M-injective if for every submodule K
of M , any homomorphism ϕ : K 7→ N can be extended to a homomorphism ψ : M 7→ N .

The following implications always hold for modules:24

injective =⇒ quasi-injective =⇒ quasi-continuous =⇒ U -module

We also need the following triple of lemmas

Lemma 2.4.47. ([66]) If M is a U -module, then M = Q⊕ T where:

1. Q is a quasi-injective module.

2. Q = A⊕B ⊕D, where A ∼= B and D is isomorphic to a summand of A⊕B.

3. T is a square-free module.

4. T is Q-injective.

Proof. This proof is omitted �See [66, Theorem 3.13]
24For more results on these properties, the reader is referred to [101],[66],[84].
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Lemma 2.4.48. ([66]) Every square-free right R-module M with the �nite internal ex-
change property satis�es the internal cancellation property. In particular, every square-
free right R-module M with the �nite exchange property has the substitution, and hence
the cancellation, property.

Proof. This proof is omitted �See [66, Lemma 5.7]

Lemma 2.4.49. ([84]) In a quasi-continuous module M , isomorphic directly �nite sub-
modules have isomorphic complements. In particular M has the internal cancellation
property if and only if M is directly �nite.

Proof. This proof is omitted �See [66, Theorem 2.33]

Theorem 2.4.50. ([66]) If M is a right U -module with the (�nite) exchange property,
then the following are equivalent:

1. M has the substitution property.

2. M has the cancellation property.

3. M has the internal cancellation property.

4. M is Dedekind-�nite.

Proof. (1) =⇒ (2) =⇒ (3) =⇒ (4) automatically, (3) implies (1) since M has
exchange. It su�ces to show that (4) =⇒ (2). By Lemma 2.4.47, M can be decomposed
asM = Q⊕K with Q quasi-injective andK square-free, and by Lemma 2.4.48, K has the
cancellation property. Since summands of Dedekind-�nite modules are again Dedekind
�nite, we infer from Lemma 2.4.49 that Q has the internal cancellation property. Since Q
has also the �nite exchange property, we conclude that Q has the cancellation property.
Now, by 2.1.15, M has the cancellation property, completing the proof.
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Chapter 3

L-stability

Now that the four major key classes in Chapert 2 are fully discussed. We are ready to
introduce the concept that is common between them. The concept of L-stability, it was
�rst declared in 2018 by Ayman Horoub in his seminal work [62] in�uenced by H. Bass
the one who invented the concept of stable range in [14], I. Kaplansky, who invented the
concept of left UG rings in [70] and WK Nicholson who de�ned and characterized left AS
rings [86]. Also with D. khurana and TY Lam by their generous survey about IC rings
in [73].

3.1 Idealtors and A�ordability

We start with the following de�nition:

De�nition 3.1.1. ([63]) A left-ideal-map L is a function that associates to every ring
R a well-de�ned non-empty set L(R) of left ideals of R.

Two important properties of left-ideal-maps are also de�ned as follows:

De�nition 3.1.2. ([63]) Let L be a left-ideal-map, and let θ : R 7→ S be an onto ring
morphism.

1. θ is called L-�t if L ∈ L(R) implies θ(L) ∈ L(S).

2. θ is called L-full if X ∈ L(S) implies X = θ(L) for some L ∈ L(R).

The following lemma is a key one:

Lemma 3.1.3. ([63]) Let L be any left-ideal-map. The following are equivalent.

1. Every ring isomorphism is L-�t.

2. Every ring isomorphism is L-full.

Proof. Let σ : R 7→ S be a ring isomorphism.
(1) =⇒ (2). If X ∈ L(S) then σ−1(X) ∈ L(R) by (1). So X = σ(L) where

L = σ−1(X) ∈ L(R).
(2) =⇒ (1). Let L ∈ L(R): By (2), L = σ−1(X) for some X ∈ L(S), so σ(L) = X ∈

L(S).
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The following example is to prove the existence of isomorphisms that are not neces-
sarily L-�t or L-full for a given left idealtor L.

Example 3.1.4. ([62]) Fix a ring R0 with J(R0) 6= 0. De�ne, the left idealtor L for each
ring R as follows:

L(R) =

{
{J(R0)} if R = R0

{0} if R 6= R0

Write S = R0 × {0}, and de�ne the isomorphism φ : S 7→ R0 by (r, 0)φ = r for any
r ∈ R0. Then, φ is neither L-�t nor L-full.

Proof. If L ∈ L(S), then by de�nition we have L = 0. Thus, φ(L) = φ(0) = 0 6∈
L(R0), and hence φ is not L-�t. In addition, if X ∈ L(R0), then by de�nition we
have X = J(R0) 6= 0. On the other hand, L = 0 is the only element in L(S) and
φ(L) = φ(0) = 0 6= J(R0) = X which implies that φ is not L-full, as required.

From the previous Example 3.1.4, we coclude that, isomorphisms do not preserve
L-stability in general. However, if the left idealtor L enjoys the followng property, then
isomorphisms do preserve L-stability.

De�nition 3.1.5. ([63]) A left-ideal-map L is natural if every ring isomorphism is L-�t.
(equivalently, L-full). In this case we shall call L a left idealtor.

The following will be an example of left idealtors that will be used for the rest of this
context.

Example 3.1.6. ([62]) Let R be any ring.

1. The set of all left ideals of R will be denoted by

B(R) = {L | L is a left ideal of R} 1

2. The set of all left principal ideals of R generated by a will be denoted by

P(R) = {Ra : a ∈ R}

3. The set of left annihilators of a in R will be denoted by

K(R) = {l(a) : a ∈ R} 2

4. The set of all left principal ideals of R generated by idempotent e will be denoted
by

E(R) = {Re : e2 = e ∈ R}

5. The set of all left ideals of R contained in its Jacobson's radical will be denoted by

J (R) = {L ≤ R : L ⊆ J(R)}
1The calli letter �B� stands for Bass
2The calli letter �K� stands for Kaplanski
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Example 3.1.7. ([62]) For the ring of integers Z, we have:

1. B(Z) = {nZ | n ∈ Z}

2. P(Z) = {nZ | n ∈ Z}

3. K(Z) = {0,Z}

4. E(Z) = {0,Z}

5. J (Z) = {0}

De�nition 3.1.8. ([63]) Let L be a left idealtor. An element a in a ring R is called
L-stable3 if Ra + L = R where L ∈ L(R) implies a− u ∈ L for some unit u in R. And
a ring R is called L-stable if every element a in R is L-stable.

Again, we are insisting that every idealtor L is natural, that is L has the property that
all ring isomorphisms are both L-�t and L-full. The reason for this is because otherwise
L-stability may not be preserved under ring isomorphisms!

Example 3.1.9. ([63]) Given a division ring D, let E = Mω(D) and let S = E × 0
where 0 is the zero ring. With this de�ne a left-ideal-map L such that L(E) = {E} and
L(R) = {0} for any ring R 6= E. Then E ∼= S as rings, E is L-stable, but S is not
L-stable.

Proof. First E ∼= S as rings via α 7→ (α, 0) for α ∈ E. To see that E is L-stable, assume
that Eα+L = E, α ∈ E, L ∈ L(E). Since L(E) = {E} we have L = E so α− 1 ∈ L, as
required. To see that S is not L-stable, we show that if S is L-stable then S is Dedekind
�nite (a contradiction as S ∼= E). So let ba = 1 in S. Then Sa+ 0 = S and 0 ∈ L(S) as
S 6= E. If S is L-stable this implies a − u ∈ 0 where u ∈ U(R). Thus a is a unit so, as
ab = 1, we get ba = 1.

Note that the left-ideal-map L in Example 3.1.9 is not natural because E 7→ R 6∈ L(R).
Hence L is not a left idealtor. However, this is not the case when the left-ideal-map is an
idealtor.

Theorem 3.1.10. ([63]) Let L be any left idealtor. If σ : R 7→ S is a ring isomorphism,
then R is L-stable if and only if S is L-stable.

Proof. Let R be L-stable. To show that S is L-stable, let Sb + X = S, X ∈ L(S),
b ∈ S. Apply σ−1 to get Rσ−1(b) + σ−1(X) = R. But σ−1(X) ∈ L(S) because σ−1 is
L-�t by hypothesis, so the fact that R is L-stable shows that σ−1(b)−u ∈ σ−1(X) where
u ∈ U(R). Applying σ shows that b− σ(u) ∈ X. Since σ(u) ∈ U(S), this proves that S
is L-stable. The converse is analogous.

Remark 3.1.11. If L is a left idealtor and θ : R 7→ S is any onto ring morphism, we
regard θ as a map i.e., θ : L(R) 7→ L(S) where L 7→ θ(L). Observe that:

1. θ is L-�t if and only if θ[L(R)] ⊆ L(S).

2. θ is L-full if and only if L(S) ⊆ θ[L(R)].

3Note that we did not say that the element a is �left L-stable� here; because �sidedness� of an L-stable
element stands for the �sidedness� of the unit u in the de�nition.
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3. θ is L-�t and L-full if and only if θ[L(R)] = L(S).

Proposition 3.1.12. ([63]) Let L be a left idealtor, and let σ : R 7→ S be a ring
isomorphism. Then:

1. |L(R)| = |L(S)| via the bijection L 7→ σ(L) from L(R) 7→ L(S).

2. L(S) = {σ(L) | L ∈ L(R)}.

Proof. Because L is natural, σ is L-�t so L 7→ σ(L) de�nes a map L(R) 7→ L(S).
Similarly X 7→ σ−1(X) carries L(S) 7→ L(R). As these maps are mutually inverse, (1)
and (2) follow.

Here we list some useful facts about when onto ring morphisms are full or �t.

Remark 3.1.13. Let L be a left idealtor, and let ϕ and θ denote onto ring morphisms.

1. If ϕ and θ are L-�t (L-full), then so is the composition ϕ ◦ θ.

2. If σ, τ are ring isomorphisms then θ ◦ σ (respectively τ ◦ θ) is L-�t (L-full) if and
only if the same is true for θ.

3. θ : R 7→ S is L-�t (L-full) if and only if the same is true of the coset map R 7→
R/ ker(θ).

De�nition 3.1.14. ([62]) We say that a class C of rings is a�orded by a left idealtor L
if C is the class of all L-stable rings. We say that a class C of rings is a�ordable if it is
a�orded by some left idealtor L (or, that the left idealtor L a�ords the class of rings C).

Now, the following example seems familiar.

Example 3.1.15. ([62]) The class of SR1 rings is a�orded the left idealtor B(R) = {L | L
is a left ideal of R}

Proof. By de�nition, a ring R is SR1 if Ra + L = R, a ∈ R and L is a left ideal of R,
implies that a − u ∈ L for some u ∈ U(R). So, a would be B-stable, thus, the class of
SR1 rings is precisely the class of B-stable rings, i.e., {SR1} = {left B-stable}

Lemma 3.1.16. ([62]) Let M and L be two left idealtors. If M(R) ⊇ L(R) for each
ring R, then {leftM-stable} ⊆ {left L-stable}.

Proof. Let R be left M-stable. Suppose that Ra + L = R with L ∈ L(R) and a ∈ R.
Then, by assumption, L ∈ M(R) and hence a − u ∈ L for some unit u in R because R
is leftM-stable. Hence, a is left L-stable, and so R is left L-stable, as required.

The following example proves that the left idealtor that a�ords a class of rings need
not be unique.

Example 3.1.17. ([62]) The class of SR1 rings is a�orded by the left idealtor P(R) =
{Ra | a ∈ R}.

Proof. Since {left B-stable} = {SR1}, we show that {left P-stable} = {left B-stable}.
Assume that R is left P-stable. To see that R is left B-stable, let Ra + L = R with
a ∈ R and L ∈ B(R), say ra+ b = 1 where r ∈ R and b ∈ L. Thus, Ra+ Rb = R which
implies that a − u ∈ Rb ⊆ L for some unit u in R because a is left P-stable . Hence,
{left P-stable} ⊆ {left B-stable}. Now, because P(R) ⊆ B(R) for every ring R, we have
{left B-stable} ⊆ {left P-stable} by Lemma 3.1.16, as required.
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Example 3.1.18. ([63]) The class of all left UG rings is a�orded by the left idealtor
K(R) = {l(b) | b ∈ R}.

Proof. Let R be left UG. If Ra + l(b) = R then Rab = Rb so, as R is left UG, ab = ub
with u ∈ U(R). Hence a − u ∈ l(b), so R is K-stable. Conversely, if R is K-stable and
Ra = Rb, write a = pb and b = qa where p, q ∈ R. Then b = qpb, so 1 − qp ∈ l(b) and
we have Rp+ l(b) = R. Since p is K-stable we have p− u ∈ l(b) for some u ∈ U(R), so
pb = ub, that is, a = ub.

Example 3.1.19. ([63]) The class of IC rings are a�orded by the left idealtor E(R) =
{Re | e2 = e ∈ R}.

Proof. Suppose R is left E-stable. To see that R is IC, let a ∈ R be regular, say a = aba,
and write e = ba. Then e2 = e and Ra = Re, so Ra + R(1 − e) = R. As a is E-stable
we have a− u ∈ R(1− e) for some u ∈ U(R). Hence ue = ae = a, so a(u−1a) = ae = a,
as required. Conversely, if R is IC, letRa + Re = R, e2 = e, say ra + se = 1. We
must show that a − u ∈ Re for some u ∈ U(R). Write f = 1 − e. As ra + se = 1
we have raf = f ; so af(raf) = af 2 = af . Thus af is regular, hence unit-regular (by
hypothesis), whence SR1 (by Theorem 2.1.28). But raf = f = 1− e, so Raf +Re = R.
As af is SR1 it follows that af − u ∈ Re for some u ∈ U(R). Finally af = a − ae so
a− u = (af + ae)u = (af − u) + ae ∈ Re, as required. Finally, E is clearly natural.

Theorem 3.1.20. ([63]) Let L be a left idealtor such that for each ring R, there exists
I ∈ L(R) such that I ⊆ J(R), then Then {L-stable} ⊆ {DF}.

Proof. Let R be L-stable. Choose I ∈ L(R) where I ⊆ J(R). To prove R is DF, let
Ra = R. Then certainly Ra+ I = R so, as R is L-stable, let a− u ∈ I, u ∈ U(R). But if
we write a− u = b then a = u+ b is a unit too as b ∈ I ⊆ J(R). Hence aR = R, proving
that R is DF.

Example 3.1.21. ([63]) The class of DF rings is a�orded by the left idealtor D(R) =
{L | L ⊆ J(R)}.

Proof. We have {left D-stable} ⊆ {DF} by Theorem 3.1.20. Conversely, assume R is DF
and let Ra + L = R, L ∈ D(R). Thus L ⊆ J(R), and so Ra = R: But then a is a unit
(R is DF), so a− u ∈ L where u = a ∈ U(R). So R is D-stable.

We now show that the class of DF rings is a�orded by some left idealtors, which gives
a new perspective on these rings, as follows

Example 3.1.22. ([62]) The class {DF} is a�orded by the left idealtor T (R).

Proof. Since {DF} is a�orded by J (R) which in turn, contains T (R). It follows that
{DF} = {left J -stable} ⊆ {left T -stable}. So it su�ces to show that {left T -stable} ⊆
{DF}. To �nish this, Let ba = 1 in R, we need to show that a is a unit in R. Now, since
ba = 1 we have Ra + 0 = R. As 0 ∈ T (R), it follows that a− u ∈ 0 for some u ∈ U(R)
because R is left T -stable. Therefore, a = u is a unit in R which implies that R is a DF
ring, as required.
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Remark 3.1.23. Let C be an a�ordable class of rings by the left idealtors L(R) and
N (R), where R is a ring in C. IfM(R) is a left idealtor such that L(R) ⊆M(R) ⊆ N (R),
then C is a�orded byM(R) too.

Proof. Since C is a�orded by the left idealtors L(R) and N (R), then by Lemma 3.1.16
we have that C = {left Lstable} ⊇ {leftM-stable} ⊇ {left N -stable} = C, which implies
that C = {leftM-stable}, i.e., C is a�orded byM(R).

Corollary 3.1.24. The class {DF} is a�orded by each one of the following left idealtors:

1. DTnilpotent(R) = {L | L is a left T -nilpotent ideal of R}.

2. Dlocally(R) = {L | L is a locally nilpotent ideal of R}.

3. Dnilbdd(R) = {L | L is nil of bounded index ideal of R}.

4. DWedderburn(R) = {W (R)}

5. DLevitsky(R) = {Levi(R)}.

6. Dlower(R) = {Nil∗(R)}

7. Dupper(R) = {Nil∗(R)}

8. D(R) = {L | L ⊆ J(R)}.

9. DJacobson(R) = {J(R)}.

10. Dnil(R) = {L | L is a nil left ideal of R}.

11. Dnilpotent(R) = {L | L is a nilpotent ideal of R}.

12. Dqreg(R) = {L | L is a left quasi-regular ideal of R}.

13. T (R) = {0}.

Proof. All of the listed idealtors lie between T (R) and D(R). And the result follows by
applying remark 3.1.23.

It is quite remarkable that the class of all SR1 rings acts like a �lower bound� among
all a�ordable classes. We have the following relatable theorem.

Theorem 3.1.25. ([63]) If C is an a�ordable class of rings, then {SR1} ⊆ C.

Proof. Since the left idealtor B(R) consists of all left ideals of R, then for any left idealtor
L(R), it would be always the case that B(R) ⊇ L(R). It follows by Lemma 3.1.16 that
{B-stable} ⊆ {L-stable}. Henceforth, {SR1} ⊆ C.

Corollary 3.1.26. Let C ⊆ {SR1} where C is a�ordable. By Theorem 3.1.25, {SR1} ⊆ C

Thus, the contrapositive of Theorem 3.1.25 gives an explicit statement which make
us decide when a class of rings is not a�ordable.

Remark 3.1.27. (Non-a�ordability Criterion) A class of rings C is not a�ordable if
there exists an SR1 ring that is not in C.
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A ring R is called an SBI ring or Lift/rad ring if all idempotents of R lift modulo
J(R).4. The class of SBI rings includes: regular rings, π-regular rings, exchange rings,
Zorn rings and potent rings.

Corollary 3.1.28. ([63]) Any class C of rings in which J(R) is lifting for each R ∈ C is
not a�ordable (In particular, {exchange} is not a�ordable).

Proof. Consider the ring Z(2,3) =
{
a
b
∈ Q | 2 - b, 3 - b

}
, then Z(2,3)/J(Z(2,3)) ∼= Z2 × Z3,

so Z(2,3) is SR1 but J(Z(2,3)) is not lifting, thus, not exchange. Hence, in particular,
{exchange} is not a�ordable class of rings and the result follows.

Proposition 3.1.29. If C is not a�ordable class of rings and D is a class of rings such
that D ⊆ C, then D is not a�ordable as well.

Proof. Let C be not a�ordable, then by Remark 3.1.27 we have an SR1 ring R such that
R 6∈ C and since D ⊆ C, we have that R 6∈ D too. Hence, D is not a�ordable.

However, If C ⊆ D are classes of rings and D is a�ordable then C need not be
a�ordable. We have plenty of denials, for instance

� {eversible} ⊆ {DF}. {DF} is a�ordable but {eversible} is not.

� {Abelian} ⊆ {IC}. {IC} is a�ordable but {Abelian} is not.

� {domain} ⊆ {left UG}. {left UG} is a�ordable but {domain} is not.

� {semilocal} ⊆ {SR1}. {SR1} is a�ordable but {semilocal} is not.

A ring is said to be right duo if all right ideals are two-sided ideals. Left duo
rings are de�ned similarly, and a ring is called duo if it is both left and right duo [24].
A ring R is quasi-Frobenius if R is Noetherian on one side and self-injective on one
side. A ring R is left P -injective (left mininjective) if every R-linear map L 7→R R,
L ⊆R R, extends to R where L is any principal (respectively simple) left ideal. (Clearly
left self-injective rings are left P -injective) [89]. A ring R is called left quasi-morphic
if, for every a ∈ R, we have Ra = l(b) and l(a) = Rc for some b and c in R and
it is left morphic if b = c for each a ∈ R. R is called (left) pseudo-morphic if
{Ra : a ∈ R} ⊆ {l(b) : b ∈ R}, that is, every (left) principal ideal is a left annihilator
ideal. Obviuosly, left quasi-morphic rings are left pseudo-morphic [23]. A ring R is called
left special if R is left morphic, local and J(R) is nilpotent. A ring R is called (left)
generalized morphic if {l(b) : b ∈ R} ⊆ {Ra : a ∈ R}, that is, every left annihilator
ideal is a left principal ideal5. A ring is called left PP if principal left ideals are all
projective (equivalently, l(a) is a direct summand of RR). Left PP are left generalized
morphic [112]. A ring R is called Baer if the left annihilator of every nonempty subset
of R is generated by an idempotent. Every Baer ring is left PP [93]. A ring R is said
to satisfy the IFP (insertion of factors property) if l(a) is an ideal of R for all a ∈ R
(equivalently, l(X) is an ideal of R for all nonempty subsets X of R). IFP rings are
Abelian [15]. A ring R is called left fusible if every nonzero element is left fusible,
that is, the sum of a left zero-divisor and a non-left zero-divisor. [51]. An element a in

4The abbreviation �SBI� was introduced by Irving Kaplansky and stands for �suitable for building
idempotent elements�. For further results on SBI rings, the reader is referred to [68, Chapter 3]

5The left ideal Ra is projective if and only if l(a) = Re where e is an idempotent.
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R is said to be left G-morphic if there exists n > 0 with an = 0 such that an is left
morphic, equivalently, there exist n > 0 with an 6= 0 and b ∈ R such that l(an) = Rb and
l(b) = Ran. The ring itself is called left G-morphic if every element is left G-morphic.
A ring is SSP if the sum of two direct summands is a direct summand. R is SSP and IC
if and only if The product of two regular elements is unit-regular. [29]. A ring R is called
a left-max ring if every nonzero right R-module has a maximal submodule. A ring R
(equivalently, if R/J(R) is a left-max ring, and the ideal J(A) is left T -nilpotent). We
call R a right complemented ring, if for each a ∈ R, there is ab ∈ R such that ab = 0
and a + b is regular. Clear that if R is right (left) complemented, then R is right (left)
fusible because if we let 0 6= a ∈ R and choose b ∈ R such that ab = 0 and a+b is regular,
then a = (a + b) − b is a right fusible representation. it is also reduced for a ∈ R such
that a2 = 0, choose d regular such that ad = a2. This forces a = 0. A ring is called an
idempotent-�ne ring (brie�y, an IF ring) if all its nonzero idempotents are �ne, that
is, a sum of a nilpotent and a unit. A nonzero element in a ring is called �ne if it is a sum
of a unit and a nilpotent and a ring is a �ne ring if every nonzero element is �ne . Rings
whose all nonzero nilpotents are �ne are be called nilpotent-�ne (brie�y, NF) [21]. We
call a ring left soclin if every simple left ideal is contained in the Jacobson radical [64]

Example 3.1.30. None of the following classes of rings are a�ordable:

1. {commutative},{Abelian}, {reversible}, {unit-central}.

2. {exchange} , {clean}, {strongly clean}, {special clean} , {semiperfect},
{commutative regular} , {regular}, {π-regular} , {semiregular}, {unit-regular},
{SUR}, {0-dimensional commutative}, {strongly regular}, {local}, {semisimple} ,
{Euler}, {exact Euler}, {Boolean} , {division ring}, {�eld}.

3. {artinian} , {one-sided artinian}, {semiprimary} , {left perfect}, {perfect}, {semilocal}
, {casilocal}.

4. {�eld}, {Euclidean domain}, {PID}, {UFD}, {integral domain}, {domain}.

5. {quasi-normal}.

6. {Zorn}, {potent}.

7. {one-sided Noetherian}, {Noetherian}, {quasi-Frobenius}

8. {prime}, {semiprime}, {left mininjective}, {left P-injective}, {left self-injective},
{left Kasch}.

9. {left generalized morphic}, {left PP} ,{Baer}, {left morphic}, {left quasi-morphic},
{left pseudo-morphic}, {left special}.

10. {left fusible}, {left complemented}

11. {left G-morphic}.

12. {eversible}.

13. {SSP}

14. {idempotent-�ne}, {nilpotent-�ne}, {�ne}.

67



15. {J-Abelian}, {J-quasipolar}, {J-clean}, {J-Armendariz}.

16. {left soclin}.

17. {RS}

Proof. 1. Because

[
C C
C C

]
is SR1 but not Abelian. Hence, {Abelian} is not a�ordable,

and the result follows since all are subclasses of {Abelian}.6

2. All are subclasses of exchange rings. And the fact that they are not a�ordable
follows from Corollary 3.1.28

3. All are proper subclasses of SR1 rings.

4. All are connected, thus, Abelian.

5. Let D be a division ring and R =

D D D
0 D D
0 0 D

. Then R is SR1. Consider the idem-

potent e = e11 + e33; by computing, we can see that eR(1− e)Re =

0 0 D
0 0 0
0 0 0

 6= 0

so R is not quasi-normal.

6. A Zorn ring must satisfy that J(R) is nil, so J(R) is lifting. A potent ring must
satisfy that J(R) is lifting.

7. The ring of all algebraic integers Z is SR1 by Example 2.1.13 but not left-Noetherian.
For example, it contains the in�nite ascending chain of principal ideals.

〈2〉, 〈2
1
2 〉, 〈2

1
4 〉, 〈2

1
8 〉, · · ·

8. R =

[
D D
0 D

]
is SR1 but enjoys none of the properties.

9. Let R = (Π∞i=1Z2) / (⊕∞i=1Z2) . It is obvious that R is a Boolean ring, thus, SR1,
hence Tn(R) is SR1 for any n ∈ N but not left generalized morphic for some n ≥ 1

(See [81, Example 3.13]). Furthermore, S =

[
D D
0 D

]
is SR1 but not left pseudo-

morphic.7

6In [91, Figure 1], relations between well-known large classes of rings (e.g. {reduced} , {symmetric} ,
{reversible} , {semi-commutative}, {Guassian},{Armendariz}) have been studied. It is illustrated that
all of prementioned classes of rings are Abelian. Moreover, the classes of duo rings, and left duo rings
are known to be semi-commutative [24], thus, Abelian. As an extra piece of information, every reduced
ring is Armendariz and the following two inclusion chains are known to be irreversible:

{reduced} ⊆ {symmetric} ⊆ {reversible} ⊆ {semi-commutative} ⊆ {Abelian}

{commutative} ⊆ {duo} ⊆ {one-sided duo} ⊆ {semi-commutative}

7In fact[23, Proposition 2.6] asserts that no upper triangular matrix ring is left or right pseudo
morphic.
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10. R =

[
D D
0 D

]
is SR1 but not left fusible.8. Alternatively, for any prime integer p

and n ≥ 2, Zpn is is SR1 but not fusible.9 (See [51, Example 2.3])

11. R =

[
Z2 Z2

0 Z2

]
is SR1 but not left G-morphic. (See [65, Example 2.10]).

12. There exists a local ring, thus, SR1 ring which is not eversible (See [50, Example
2.3]).

13. If R =

[
Z3 Z3

0 Z3

]
, then R is SR1 (hence IC) and e =

[
1 1
0 0

]
and f =

[
1 0
1 0

]
are idempotents, thus, regular but their product ef =

[
0 −1
0 0

]
is not regular, as

ef 6∈ (ef)R(ef) = 0, hence not unit-regular and so R is not SSP. (See [29, Example
2.11])

14. Z6 is SR1 being �nite; but the idempotent 4 = 0 + 4 = 1 + 3 = 2 + 2 is not �ne.
Also, Z4 is SR1 being �nite; but the nilpotent 2 = 2 + 0 = 1 + 1 is not �ne.

15. The ring R = H(Z(3))/J(H(Z(3))) ∼= M(Z3) is clearly SR1, and also clearly not
Abelian. Moreover, it is not J-Abelian because J(R) = 0. (See [56, Example
2.9]).10

16. The ring R =


a b c

0 a 0
0 0 d

 |a, b, c, d ∈ D
 where D is a division ring, is semilocal,

thus, SR1 but not right soclin. With same reasoning, there exists SR1 rings that
are not left soclin. (See [64, Example 4.9] for more details).

17. The existence of Example 1.2.52 adapts.

De�nition 3.1.31. ([62]) Two left idealtorsM and N will be called equivalent (written
M≡ N ) ifM and N a�ord the same class of rings, that is if {M-stable} = {N -stable}.

As the name suggests, it is obvious that �≡� in De�nition 3.1.31 is an equivalence
relation on the class of left idealtors. The following example is familiar.

Example 3.1.32. A list

1. The class {SR1} is a�orded by both of the left idealtors B and P . Therefore, B ≡ P .

2. The class {DF} is a�orded by each of the left idealtors J ,J1,J2,J3,J4 and T .
Therefore, J ≡ J1 ≡ J2 ≡ J3 ≡ J4 ≡ T .

8[51, Corollary 2.14] tells that if R is a ring and n ≥ 2, then ring of upper triangular matrices Tn(R)
is never a left fusible ring.

9In fact, Zn is fusible if and only if n is square free
10In fact, the statements [56, Lemma 2.3, Lemma 2.4, Proposition 2.5, Lemma 2.8, Theorem 2.11])

assert that if R is J-Armendariz, J-clean or J-quasipolar ring, then R is J-Abelian. Also, J-Abelian
rings are DF. Furthermore, J-Abelian exhachange rings are clean. For more on these rings, see [56].
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Example 3.1.33. ([62]) Each of the following �ve classes of rings is a�orded by the
corresponding left idealtor

1. The class of all rings is a�orded by C(R) = {R}.

2. The class of SR1 rings is a�orded by B(R) = {L | L is a left ideal of R} and
P(R) = {Ra : a ∈ R}.

3. The class of left UG rings is a�orded by K(R) = {l(a) : a ∈ R}.

4. The class of IC rings is a�orded by E(R) = {Re : e2 = e ∈ R}.

5. The DF rings are a�orded by the following equivalent left idealtors:

(a) J (R) = {L | L ⊆ J(R)}.
(b) J1(R) = {J(R)}.
(c) J2(R) = {L | L is a nil left ideal of R}.
(d) J3(R) = {L | L is a nilpotent ideal of R}.
(e) J4(R) = {L | L is a left quasi-regular ideal of R}.
(f) T (R) = {0}.

De�nition 3.1.34. ([63] If M and L are left idealtors, we say that M covers L and
write M ≥c L if for each ring R : b ∈ L ⊆ L(R) implies that b ∈ M ⊆ L for some
M ∈M(R).

Proposition 3.1.35. ([63]) LetM and L be any left idealtors, and let R denote a ring.
Then

1. IfM(R) ⊇ L(R) for each ring R, thenM≥c L.

2. IfM≥c L, then {M− stable} ⊆ {Lstable}.

Proof. 1. Assume that M(R) ⊇ L(R) for each ring R. If b ∈ L ∈ L(R), then b ∈
M ⊆ L where M = L ∈M(R). This proves thatM≥c L.

2. Let R be aM-stable ring. If Ra+L = R where a ∈ R and L ∈ L(R), thenra+b = 1
for some r ∈ R and b ∈ L. BecauseM ≥c L, we have b ∈ M ⊆ L for some M ∈
M(R). Hence, 1 = ra+b ∈ Ra+M , and so Ra+M = R. Now, as R isM-stable, we
have a− u ∈M for some u ∈ U(R). Since M ⊆ L, it follows that a is left L-stable,
and hence R is an L-stable ring. Therefore, we have {M− stable} ⊆ {L− stable},
as required.

Recall that for a left idealtor L, an element a in a ring R is L-stable if Ra + L = R,
L ∈ L(R), implies that a−u ∈ L for some unit u. We now investigate the situation where
u is only required to be left invertible, that is Ru = R. Our starting point is Vaserstein's
proof [103, Theorem 2.6] that left units in an SR1 ring are right units, i.e., SR1 rings are
DF.

De�nition 3.1.36. ([63]) For a ring R and a left idealtor L, an element a ∈ R will be
called L-Vaserstein if axa = a, x ∈ R implies R(1− xa) ∈ L(R).

70



Here's a characterization for L-Vaserstein elements.

Theorem 3.1.37. ([63]) Fix a left idealtor L and a ring R. If a ∈ R, the following
conditions are equivalent:

1. a is L-Vaserstein.

2. If f 2 = f ∈ r(a) and 1− f ∈ Ra, then Rf ∈ L(R).

Proof. (1) =⇒ (2). If f 2 = f ∈ r(a) and 1 − f ∈ Ra, write 1 − f = xa, x ∈ R. Then
axa = a, so (1) applies.

(2) =⇒ (1) If axa = a write f = 1−xa. Then the hypotheses in (2) are satis�ed.

De�nition 3.1.38. ([63]) If L is a left idealtor call a ∈ R left L-stable if Ra+ L = R,
L ∈ L(R), implies a− x ∈ R for some x ∈ R with Rx = R.

Theorem 3.1.39. ([63]) Let a ∈ R be L-Vaserstein, and let L be any left idealtor. If a
is left L-stable, then ab = 1, b ∈ R implies ba = 1.

Proof. If ab = 1, write f = 1− ba. Then f = f 2, 1− f = ba ∈ Ra and af = a− aba = 0.
As a is L-Vaserstein, Rf ∈ L(R). But ba+ f = 1 so Ra+Rf = R. As a is left L-stable,
let a−x ∈ Rf where Rx = R. Now observe that fb = b−bab = 0, so (a−x)b ∈ Rfb = 0.
Thus xb = ab = 1, so x is right invertible too, and hence is a unit. But then b is also a
unit (because xb = 1), whence a is a unit (because ab = 1). It follows that ba = 1, as
required. Moreover, a = b−1 = x.

Theorem 3.1.40. ([63]) Let L be a left idealtor, and let R be an L-Vaserstein ring.
Then:

1. If R is left L-stable then R is Dedekind �nite.

2. R is L-stable if and only if R is left L-stable.

Proof. Each a ∈ R is L-Vaserstein by hypothesis, so (1) holds by Theorem 3.1.39. But
then Rx = R implies x is a unit, and (2) follows.

3.2 Morphisms and Basic Properties

In this section we study various interesting results involving elements in L-stable rings.

We begin this section with the following lemma

Lemma 3.2.1. ([63]) Let L be a left idealtor, and let θ : R 7→ S be an onto ring
morphism. Then for any element a ∈ R we have:

1. If θ is L-�t, then θ(a) is L-stable in S, then a is L-stable in R provided either

(a) ker θ ⊆ J(R) or (b) units lift modulo ker θ and ker θ ⊆ L for all L ∈ L(R).

2. If θ is L-full, then a is L-stable in R, then θ(a) is L-stable in S provided either

(a) ker θ ⊆ J(R) or (c) L+ ker θ ∈ L(R) for all L ∈ L(R).

Proof. For ease of use, write θ(r) = r.
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(1) Assume a is L-stable in S = R. Let Ra + L = R, L ∈ L(R), say ra + l = 1 where
r ∈ R and l ∈ L. Then ra+ l = 1, so Ra+L = R. Here L ∈ L(S) because is L-�t,
and a is L-stable in S by hypothesis. So we have a = u ∈ L for some u ∈ U(S).
Hence,

a− u ∈ L+ ker θ where u ∈ U(S) . . . (?)

(a) By (?) let a − u − l ∈ A where l ∈ L. Writing c = a − u − l we have
a − (u + c) = l ∈ L. Moreover, u + c ∈ U(R) because c ∈ A ⊆ J(R) by (a).
Hence a is L-stable, proving (1) in this case.

(b) Now (?) gives a− u ∈ L+A = L and, as u ∈ U(S), we may assume u ∈ U(R)
again by (b). This proves (1) in this case.

(2) Assume a is L-stable in R: Let Sa+X = S, X ∈ L(S). As θ is L-full write X = L
where L ∈ L(R). Then Sa+L = S, say ra+ l−1 ∈ A, r ∈ R, l ∈ L. It follows that
Ra+L+A = R. This implies Ra+L = R in both cases (a) and (c). But then, as
a is L-stable in R, we have a− u ∈ L where u ∈ U(R). Hence a− u ∈ L = X and
u ∈ U(S), proving (2).

As Theorem 3.2.1 deals with elements. The result for rings follows.

Corollary 3.2.2. ([63]) Let θ : R 7→ S be an onto ring morphism and let L be a left
idealtor.

1. If S is L-stable; then R is L-stable if θ is L-�t and either ker(θ) ⊆ J(R) or units
lift modulo ker(θ), and ker(θ) ⊆ L for all L ∈ L(R).

2. If R is L-stable, then S is L-stable if θ is L-full and either ker(θ) ⊆ J(R) or
L+ ker(θ) ⊆ L(R) for all L ∈ L(R).

For SR1 rings it is clear that every onto ring morphism θ : R 7→ S is B-�t and B-full.
So if R is SR1 then S is SR1 by Corollary 3.2.2 (2). However, the converse can fail
(consider Z 7→ Z2).

Lemma 3.2.3. ([63]) If L is any left idealtor, the following hold for each ring R.

1. u−1Lu ∈ L(R) for any L ∈ L(R) and any unit u of R.

2. Lu ∈ L(R) for any L ∈ L(R) and any unit u of R.

Proof. If u ∈ U(R), consider the conjugation isomorphism σu : R 7→ R where σu(r) =
uru−1 for all r ∈ R: Since L is natural, σu is L-�t, which proves (1). Then (2) follows
because vL = L for any unit v and any left ideal L.

Next theorem says that the subset of all left L-stable elements of a ring R admits an
algebraic structute, more procisely, a multiplicative submonoid of R as long as L(R) is
left idealtor.

Let SL(R) denote the set of all left L-stable elements of a ring R. We have the
following nice result.
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Theorem 3.2.4. ([63])(Product Theorem) For any left idealtor L, SL(R) is closed
under multiplication.

Proof. If a and d are L-stable we show that da is also L-stable. So let Rda + L = R,
L ∈ L(R), say rda + b = 1, r ∈ R, b ∈ L. Thus Ra + L = R so (as a is L-stable)
let a − u ∈ L, for some unit u. Write c = a − u ∈ L. Then 1 = rd(c + u) + b, so
rdu + (rdc + b) = 1. Thus rdu + g = 1, where g = rdc + b ∈ L (because c, b ∈ L).
Multiply on the left by u, and then on the right by u−1, to obtain urd+ ugu−1 = 1, from
which Rd + uLu = 1 = R. But uLu−1 ∈ L(R) by Lemma 3.2.3. So, as d is L-stable, let
d − v ∈ uLu−1 where v ∈ U(R), say d − v = uhu−1 where h ∈ L. Thus du − vu = uh
so (since u = a − c) we obtain da − vu = d(c + u) − (du − uh) = dc + uh ∈ L because
c, h ∈ L. As vu is a unit, this shows da is L-stable, as required.

Example 3.2.5. For the left idealtor B, if a and b are in SB(R), is their sum a+ b need
not be in SB(R) in general.11

Proof. Considering 1 ∈ Z, then 1 is clearly SR1 being a unit. While 1 + 1 = 2 is not SR1
(already explained in Example 2.1.10).

However, it is not futile to think about the algebraic structute SL(R); because

Lemma 3.2.6. ([63]) If L is a left idealtor, then SL(R) + J(R) ⊆ SL(R).

Proof. Let R(r+ c) +L = R, where r ∈ R is L-stable, c ∈ J(R) and L ∈ L(R). It follows
that Rr + J(R) + L = R, whence Rr + L = R. By hypothesis, let r − u ∈ L where
u ∈ U(R). Thus (r + c)− (u+ c) ∈ L, and u+ c ∈ U(R) because c ∈ J(R).

Example 3.2.7. ([62]) For the ring of integers Z, we have SB(Z) = {−1, 0, 1}.

Proof. Obviously, we have SB(Z) ⊇ {−1, 0, 1}. Suppose k ∈ SB(Z) \ {−1, 0, 1}. If p is
any prime with p - k, then Zk+Zp = Z. As k ∈ SB(Z), we have p | (k− 1) or p | (k+ 1).
It follows that p | (k2− 1), a contradiction because there are in�nitely many such primes
p. Hence, SB(Z) = {−1, 0, 1}.

Which motivates the following generalization

Theorem 3.2.8. ([63]) Let R be a PID with in�nitely many primes but having a �nite
unit group. Then SB(R) = {0} ∪ U(R)

Proof. Clearly SB(R) ⊇ {0} ∪ U(R). Suppose a ∈ SB(R) \ ({0} ∪ U(R)). Let p be any
prime not dividing a. Then Ra+Rp = R as Rp is maximal. As a ∈ SB(R), a−u ∈ Rp for
some u ∈ U(R), that is p | (a−u) for some u ∈ U(R). If we write U(R) = {u1, u2, . . . , un}
this means that p | Πn

i=1(a − ui), a contradiction as there are in�nitely many primes p
not dividing a.

The fact that every image of an SR1 ring is again SR1 is a special case of the following
theorem.

Theorem 3.2.9. ([63]) Let L be any left idealtor, let θ : R 7→ S be an onto ring
morphism, and assume θ−1(X) + ker(θ) ∈ L(R) for all X ∈ L(S). Then S is L-stable if
R is L-stable.

11The case �when is SL(R) closed under addition?� remains an open question. Note that it is the case
whenever R is left L-stable in sense that a ring R is L-stable if and only if SL(R) = R.
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Proof. As before write θ(r) = r ∈ R = S . Suppose Ra + X = R , X ∈ L(S). As θ is
onto, we have X = θ[θ−1(X)] = θ−1(X). It follows that Ra + θ−1(X) + ker(θ) = R. By
hypothesis, there exists u ∈ U(R) where a− u ∈ θ−1(X) + ker(θ). Thus a− u ∈ X and
u ∈ U(S), as required.

Lemma 3.2.10. ([62])(Full Lemma). Let θ : R 7→ S be an onto ring morphism. For a
left idealtor L.

1. If θ−1(X) ∈ L(R) for every X ∈ L(S), then θ is L-full.

2. The converse of (1) holds if ker(θ) ⊆ L for all L ∈ L(R).

Proof. 1. As θ is onto, we have θ[θ−1(X)] = X for any left ideal X of S.

2. Assume θ is L-full. If X ∈ L(S), write X = θ(L) for some L ∈ L(R). If r ∈ θ−1(X)
then θ(r) ∈ X = θ(L), say θ(r) = θ(l) for some l ∈ L. This means that r − l ∈
ker(θ), and it follows that θ−1(X) ⊆ L+ker(θ). But ker(θ) ⊆ θ−1(X) always holds,
and L ⊆ θ−1(X) because X ⊆ θ(L), proving that θ−1(X) = L+ker(θ) = L ∈ L(R)
by hypothesis, as promised.

Let Zr(R) = {z ∈ R : r(z) ⊆ess RR} denote the right singular ideal of R.

Proposition 3.2.11. ([63]) Let L be a left idealtor. The following hold for any ring R.

1. J(R) ⊆ SL(R).

2. ureg(R) ⊆ SL(R).

3. Zr(R) ⊆ SL(R). provided r(L) 6= 0 whenever R 6= L ∈ L(R) (say R is left Kasch).

Proof. 1. Let Ra+ L = R where L ∈ L(R) and a ∈ J(R). Then L = R so a− 1 ∈ L.

2. is clear.

3. Suppose Rz+L = R where z ∈ Zr(R) and L ∈ L(R). Taking right annihilators we
obtain r(z) ∩ r(L) = r(R) = 0, so r(L) = 0 as z ∈ Zr(R). By hypothesis L = R,
so a− u ∈ L for any u ∈ U(R).

Lemma 3.2.12. ([62]) Let L be any left idealtor.

1. Let R
ρ7→ S

τ7→ R be ring morphisms with τ ◦ ρ = 1R. Then, we have:

(a) ρ is L-�t implies τ is L-full.
(b) ρ is L-full implies τ is L-�t.

2. If R
σ7→ S is a ring isomorphism, then the following statements hold:

(a) σ is L-�t if and only if σ−1 is L-full.
(b) σ is L-full if and only if σ−1 is L-�t.

74



Proof. 1. Assume that L ∈ L(R). Then, we have L = τ [ρ(L)], and ρ(L) ∈ L(S)
because ρ is L-�t, proving (a). For (b), let X ∈ L(S). As ρ is L-full we have
X = ρ(L) for some L ∈ L(R).Then, we have τ(X) = τ [ρ(L)] = L ∈ L(R), as
required.

2. First, we notice that (a) implies (b) by σ 7→ σ−1. But, (a) follows using (1) because:

σ is L-�t 1(a)
=⇒ σ−1 is L-full 1(b)

=⇒ σ is L-�t.

3.3 Closed Left Idealtors

In this last section, we shall discuss one last proerty of left idealtors, which is, the
�closedness�. Also, we mention the left-max idealtor which is de�ned in respect of the
maximal left ideals for an arbitrary ring R.

We go straightforward with the following de�nition

De�nition 3.3.1. The closure of the left idealtor L for any ring R, is denoted and
de�ned as follows

L(R) = {M |M is a left ideal of R andM ∼= L for some L ∈ L(R)}.

And L is said to be closed if L = L.

The notion of closedness of left idealtors meet with the notion of closedness of sets in
topology in sense following lemma

Lemma 3.3.2. ([62]) The following statements are true for any left idealtor L:

1. L(R) ⊆ L(R) for any ring R.

2. L = L .

Proof. (1). For any L ∈ L(R), we have L ∼= L and so L ∈ L(R), proving (1).

(2). Applying (1) to L implies L(R) ⊆ L(R) for each ring R. Now, let X ∈ L(R),
so there exists M ∈ L(R) such that X ∼= M . Then, in turn, let M ∼= L ∈ L(R). Thus,

X ∼= M ∼= L ∈ L(R) which implies X ∈ L(R). Therefore, we also have L(R) ⊆ L(R), so

L(R) = L(R) for each ring R.

Obviously, some left idealtors have the closedness property.

Example 3.3.3. ([62]) Each of the following left idealtors is closed:

1. B(R) = {L | L is a left ideal of R}.

2. P(R) = {Rb : b ∈ R}.

3. T (R) = {0}
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Proof. 1. Is trivial.

2. If N is any left ideal of R such that N ∼= Rb for some b ∈ R, then N = Rφ(b) where
φ : Rb 7→ N is an isomorphism.

3. Let N be any left ideal of a ring R such that N ∼= L ∈ T (R). Then, we have N ∼= 0,
and so N = 0 ∈ T (R) which implies that T is closed, as desired.

And of course, some do not have it

Example 3.3.4. ([62]) None of the following left idealtors is closed:

1. K(R) = {l(a) : a ∈ R}

2. E(R) = {Re : e2 = e ∈ R}

Proof. Let R = Z and M = 2Z. Then:

1. M ∼= Z = l(0) ∈ K(Z), but M 6= l(k) for all k ∈ Z, so K is not closed.

2. M ∼= Z = R1 ∈ E(Z), but M 6= Re for all e2 = e ∈ Z, so E is not closed.

De�nition 3.3.5. ([89]) A ring R is called left C2 ring if every left ideal isomorphic to
a summand of RR is itself a summand.

Under some certain �non-trivial� conditions, the non-closed left idealtor E(R) becomes
closed. In fact, we have

Theorem 3.3.6. ([63]) If R is a ring, then E(R) is closed if and only if R is left C2 ring.

Proof. Note that E(R) = {L ≤ R | L ∼= Re for some e = e2 ∈ R}. Assume E(R) = E(R).
If L is a left ideal of R and L ∼= Re, e2 = e, then L ∈ E(R) = E(R), so L = Rf for some
f 2 = f . This shows that R is left C2. The converse is proved in similar manner.

As another example of a non-a�ordable class of rings we have

Example 3.3.7. ([63]) The class of left C2 rings is not a�ordable.

Proof. The triangular matrix ring R = T2(D) is an SR1 ring. Now, since J(R) =[
0 D
0 0

]
∼=
[
1 0
0 0

]
, hence the ideal J(R) is not a direct summand of RR. It follows that

R is not left C2. Therefore, the class of left C2 rings is not a�ordable.

The following lemma is key to de�ne a new left idealtor.

Lemma 3.3.8. ([62]) Let L be left maximal ideal of R. Write K = R/L, and abbreviate
U = U(R), K? = K \ {0} . Then, the following statements are equivalent:

1. Ra+ L = R with a ∈ R, implies that a− u ∈ L for some u ∈ U .

2. If a, b ∈ R \ L, then u−1a = v−1b for some u, v ∈ U .

3. K? = Ua for any a ∈ K?.
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Proof. (1) =⇒ (2). If a ∈ R \ L, then Ra + L = R because L is a maximal left ideal
of R. So, using (1), let a− u−1 ∈ L with u ∈ U . Hence, ua− 1 ∈ L, which implies that
ua = 1. Similarly, if b ∈ R \ L, then vb = 1. Therefore, ua = vb for some u, v ∈ U , as
required.

(2) =⇒ (3). We always have Ua ⊆ K? for any a 6= 0. Now, if b ∈ K?, (2) gives
ua = vb for some u, v ∈ U . Hence, b = (v−1u)a ∈ Ua, proving (3).

(3) =⇒ (1). If Ra + L = R with a ∈ R, then a ∈ L. Hence, K? = Ua using (3).
Thus, ua = 1, which implies that ua− 1 ∈ L. Therefore, a− u−1 ∈ L, proving (1).

Which enables us to state the following

De�nition 3.3.9. ([62]) The left idealtor X de�ned by

X (R) = {L | L is a maximal ideal of R}

for each ring R will be called the left-max idealtor. Moreover, a maximal left ideal
L of a ring R is said to be a left-max stable ideal if the conditions in Lemma 3.3.8.
Furthermore, call a ring R left-max stable if it is left X -stable.

As a prototypical example, we have.

Example 3.3.10. ([62]) Any SR1 ring is left-max stable ring.

Proof. Immeditate consequence of Theorem 3.1.25.

On the other hand, there exists rings which are not left-max stable as the following
example exhibits.

Example 3.3.11. ([62]) The (left) max stable ideals of the ring of integers Z are 2Z and
3Z. Hence, Z is not a (left) max stable ring.

Proof. Observe �rst that the maximal (left) ideals of Z are of the form pZ where p is
a prime number. Now, if 0 6= a ∈ Z = pZ ∼= Zp, then Ua = {a,−a}. Hence, pZ is a
left-max stable if Z?p = Ua = {a,−a}, and so Zp =

{
0, a,−a

}
. But, |Zp| = p, so we must

have p = 2 if a = −a, and p = 3 if a 6= −a, as required. The last statement is clear.

Finally, we enclose this chapter by the following unfortunate fact.

Proposition 3.3.12. ([62]) The left-max idealtor X is not a closed left idealtor.

Proof. Consider the ring of integers Z. Then, clearly 4Z 6∼= 2Z. But, we have 2Z ∈ X (Z)
and 4Z 6∈ X (Z) by Example 3.3.11. Therefore, X is not a closed left idealtor.
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Chapter 4

Related Ring-theoretic Constructions

This chapter is set in order to discuss when the constructions of an L-stable ring
attain L-stability and vice versa. The constructions we shall discuss are: Corners, direct
products, factor rings, ideal extensions, polynomial rings and matrix rings.

4.1 Corners

We go ahead and begin with the following result.

Theorem 4.1.1. ([62]) Let L be any left idealtor, and let e ∈ I(R). If R is left L-stable,
then so is eRe provided the following conditions hold:

1. If X ∈ L(eRe), then RX ∈ L(R).

2. One of the following two statements holds:

(a) Every left L-stable ring is DF.

(b) The map θ : R 7→ eRe de�ned by θ(r) = ere is a ring morphism.1

Proof. Let R be left L-stable, write S = eRe, and let Sa + X = S where a ∈ S and
X ∈ L(S), we want a − w ∈ X for some unit w of S. Write sa + x = e, s ∈ S, x ∈ X.
Then,

(s+ 1− e)(a+ 1− e) + x = (sa+ 1− e) + x = 1

Hence, R(a+ 1− e) +RX = R. Using (1), we have (a+ 1− e)− v := b ∈ RX for some
v ∈ U(R) because R is left L-stable by assumption. Thus, we have:

(a+ 1− e− b)u = 1 where u := v−1 ∈ U(R) (4.1)

Multiply both sides by e to get (a− eb)ue = e. But, we have eb ∈ e(RX) = eR(eX) ⊆ X
because X is a left ideal of S. In particular, b = be and it follows that

(a− eb)eue = e, eb ∈ X (4.2)

Write w = a− eb, so w has a right inverse in S. If (a) holds, it follows that w is a unit in
S because S is DF whenever R is. But, as we have a−w = eb ∈ X, then a is left L-stable

1This is equivalent to saying that the idempotent e ∈ R is quasi-normal, that is, eR(1− e)Re = 0.
(See [107])
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in S, as required. Now assume (b). We show that eue ∈ U(S), and hence a− eb ∈ U(S)
by 4.2. As in 4.1 we have u(a + 1 − e − b) = 1, whence eu(a − be) = e. Now condition
(b) shows that eue(a− be) = e. This with 4.2 shows that eue is a unit in S, and we are
done as before.

Recall that Abelian rings are quasinormal, with this in mind, we have

Corollary 4.1.2. ([63]) Let L be any left idealtor. If R is L-stable then eRe is L-stable
if e2 = e ∈ R is central and L(eRe) ⊆ L(R).

Proof. Clearly (b2) holds. For (a): If X ∈ L(eRe) then RX = R(eX) = eReX = X. It
follows by hypothesis that RX ∈ L(eRe) ⊆ L(R).

Finally, we enclose this section by the following well-known result.

Corollary 4.1.3. ([63]) Each of the ring properties SR1, left UG, IC and DF passes to
corners.

Proof. First consider SR1, IC and DF. Then (b1) holds. To verify (a) use, respectively,
the left idealtors B(R), E(R), T (R). Then (a) is clear for B and T , and it holds for E
because RSf = Rf whenever f 2 = f ∈ S = eRe. The fact that left UG passes to
corners comes from [86, Theorem 30] where it is shown that if the Morita context ring

C =

[
R V
W S

]
is left UG, then R is left UG.

4.2 Direct Products

As a start, we have the following result.

Theorem 4.2.1. ([63]) Let R = Πi∈IRi denote a direct product of rings Ri with canonical
projections πk : R 7→ Rk for each k ∈ I. Let L denote a left idealtor. Then

1. R is L-stable =⇒ each Ri is L-stable provided Li ∈ L(Ri) for each i implies
Πi∈ILi ∈ L(R).

2. Each Ri is L-stable =⇒ R is L-stable provided L ∈ L(R) implies L = Πi∈ILi for
Li ∈ L(Ri).

Proof. 1. Assume that R is left L-stable. Suppose Riai + Li = Ri with Li ∈ L(Ri)
and ai ∈ Ri, say riai + xi = 1Ri

where xi ∈ Li. Then, 〈ri〉〈ai〉 + 〈xi〉 = 1R, and
〈xi〉 ∈ Πi∈ILi ∈ L(R) by the proviso. By hypothesis 〈ai〉 − 〈ui〉 ∈ 〈xi〉 where 〈ui〉 is
a unit in R. Thus ai − ui = xi ∈ Li for each i, and each ui is a unit in Ri.

2. Now assume that each Ri is L-stable. Suppose R〈ai〉+L = R where L ∈ L(R). By
the proviso, L = Πi∈ILi where Li ∈ L(Ri) for each i. Hence 〈ri〉〈ai〉+ 〈xi〉 = 〈1Ri

〉
where ri ∈ Ri and xi ∈ Li for each i. It follows that Riai+Li = Ri so, by hypothesis,
ai − ui ∈ Li for some unit ui in Ri. Finally 〈ai〉 − 〈ui〉 ∈ Πi∈ILi = L where 〈ui〉 is
a unit in R.

From which it follows that
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Corollary 4.2.2. ([63]) Let R = Πi∈IRi denote a direct product of rings Ri. Then, R is
SR1, left UG, IC or DF if and only if the same is true for each Ri.2

We conclude this Section with a result about a �nite direct product R, viewed inter-
nally: R = S1 ⊕ · · · ⊕ Sn where Si C R for each i. Then Si = eiRei where e2i = ei is
central for each i, the ei are orthogonal, and 1 = e1 + · · ·+ en.

Theorem 4.2.3. ([63]) Let L be any left idealtor and let R = S1⊕· · ·⊕Sn where SiCR
for each i. Then

1. R is L-stable =⇒ every Si is L-stable provided L(Si) ⊆ L(R) for each i.

2. Every Si is L-stable =⇒ R is L-stable provided {Si ∩ L | L ∈ L(R)} ⊆ L(Si) for
each i.

Proof. Write Si = eiRei where e2i = ei is central, e1 + · · · + en = 1, and {e1, · · · , en} is
orthogonal.

1. This follows from Theorem 4.1.1. Condition (b2) is satis�ed because ei is central;
and condition (a) holds because if X ∈ L(Si) then RX = R(eiX) = SiX = X ∈
L(R) by the proviso.

2. Let Ra + L = R, a ∈ R, L ∈ L(R). Multiplying by ei gives Siaei + Lei = Si.
Observe that Lei = Si ∩ L ∈ L(Si) by the proviso. Since Si is L-stable, there
exists ui ∈ U(Si) such that aei − ui ∈ Lei: Write u =

∑n
i=1 ui so u is a unit in

R (with inverse
∑n

i=1 vi where uivi = ei = viui for each i). Finally, we obtain
a− u =

∑n
i=1(aei − ui) ∈

∑n
i=1 Lei =

∑n
i=1 eiL ⊆ L, as required.

Corollary 4.2.4. ([63]) Let R = S1 ⊕ · · · ⊕ Sn where Si C R for each i. Then R enjoys
each of the ring properties SR1, left UG, IC and DF if and only if the same is true of
each Si.

Proof. As in Theorem 4.2.3, write Si = eiRei where e2i = ei is central in R. Each property
passes to every Si by Corollary 4.1.3 because Si = eiRei is a corner of R. So it remains
to check proviso (2) of Theorem 4.2.3 in each case. It is clear that it holds for SR1 and
DF using the left idealtors B(R) and T (R). For left UG, using K(R), the proviso in (2)
also holds because Si∩lR(b) = lSi

(b). Finally for IC, using E(R) the proviso in (2) holds
because Rei ∩Rf = Reif for any idempotent f ∈ R (ei is central in R).

4.3 Factor Rings

The left UG, IC and DF properties do not pass to factor rings (equivalently, homo-
morphic images) in general.

Example 4.3.1. ([62]) The free algebra R = Q〈x, y〉.[73] Then, R is a left UG ring being
a domain, and so it is an IC ring and a DF. But, the factor ring of R obtained by using
the relation xy = 1 is not a DF ring, and so it is neither IC nor left UG.

2The fact that the ring Πi∈IRi is SR1 if and only if so is each Ri is a straightforward result of [102,
Lemma 2] which asserts that sr(R) = max

i∈I
sr(Ri).
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Since left UG, IC and DF properties do not pass to factor rings in general, we conclude
that also L-stability does not pass to factor rings in general. Of course, this is not the case
for the SR1 condition as Theorem 2.1.24 asserts since by Proposition 1.1.5, homomorphic
images and quotients of a ring are the same up to isomorphism.

4.4 Subrings and Ideal Extensions

In this section, we show that L-stability does not pass to subrings in general. However,
in special cases we prove that L-stability passes to subrings assuming certain conditions.
We also get some results for the particular classes of rings: SR1 rings, left UG rings, IC
rings and DF rings.

Remember that

De�nition 4.4.1. ([63]) If S is a (unital) subring of a ring R, then R is said to be
an extension of S. A ring R is called an ideal extension3 of a (unital) subring S if
R = S ⊕ A where A C R and A ⊆ J(R). If the requirement that A ⊆ J(R) is dropped
then R is called a Dorroh extension4 of R.

Example 4.4.2. An example of some extensions:

1. The formal power series ring R = S[[x]] is an ideal extension of S.

2. The polynomial ring R = S[x] is a Dorroh extension of S.

Proof. 1. Let R = S[[x]] denote the ring of formal power series over a ring S. As
usual, we identify S with the subring of constant series, and write 〈x〉 for the ideal
of series with zero constant term. It is well known that U(R) = U(S), and that
J(R) = J(S)⊕ 〈x〉. Hence R = S ⊕ 〈x〉 is an ideal extension.

2. Same reasoning.

Theorem 4.4.3. ([63]) Let R = S⊕A be an ideal extension, and let L be a left idealtor.
De�ne θ : R 7→ S by θ(s+ a) = s for all s ∈ S and a ∈ A. Then

1. If R is L-stable then S is L-stable provided θ is L-full.

2. If S is L-stable then R is L-stable provided θ is L-�t.

Proof. For clarity write r = θ(r) and L = θ(L) for any r ∈ R and any left ideal L ⊆ R.
Note that θ is an onto ring morphism with kernel A. and that s = s for all s ∈ S: Clearly
U(S) ⊆ U(R), in fact U(R) = U(S)⊕ A because A ⊆ J(R).

1. If R is L-stable, let Sb+X = S, b ∈ S, X ∈ L(S), say 1 = sb+x; s ∈ S, x2X. As θ
is L-full, X = L where L ∈ L(R). Write x = l, l ∈ L. Then x = x because x ∈ S, so
1− sb− l = x− l = x− l = x− l = 0. Hence 1−sb− l ∈ A, so Rb+L+A = R. As
A ⊆ J(R) we obtain Rb+ L = R. Since L ∈ L(R) and R is L-stable, let b− u ∈ L
where u ∈ U(R). But b = b so it follows that b− u = b− u = b− u ∈ L = X. Since
u ∈ U(S), this proves (1).

3If S is any ring and A is a general ring (no unity) with J(A) = A, then the abelian group S ⊕ A
becomes an ideal extension if we de�ne multiplication by (s, a)(t, b) = (st, sb+ at+ ab).

4The Dorroh extension is also known as the unitization.
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2. Assume that S is L-stable and let r ∈ R, we must show r is L-stable in R. Write
r = s+ a, s ∈ S, a ∈ A. Since A ⊆ (R), it su�ces (by Lemma 3.2.6) to show that
s is L-stable in R. To that end, let Rs+ L = R, L ∈ L(R), say ps+ l = 1, p ∈ R,
l ∈ L. Then 1 = 1 = ps + l, so S = Ss + L. Moreover L ∈ L(S) because θ is
L-�t, so s − u ∈ L for some u ∈ U(S) ⊆ U(R). If s − u = x where x ∈ L, then
s− u− x ∈ ker(θ) = A, say s− u− x = a ∈ A. Finally s− (u + a) = x ∈ L, and
we are done because u+ a is a unit of R.

Lemma 4.4.4. ([63]) Let R = S ⊕ A be an ideal extension. De�ne θ : R 7→ S by
θ(s+a) = s for all s ∈ S and a ∈ A. Then for any c ∈ S, lS(c) = θ[lR(c)]. (In particular,
θ is K-full).

Proof. For convenience, write θ(r) = r for all r ∈ R. and recall that s = s for all s ∈ S.
lS(c) ⊆ [lR(c)]. If s ∈ lS(c) then s = θ(s) ∈ θ[lR(c)].

Next, lS(c) ⊇ [lR(c)]. If b ∈ lR(c) then bc = 0 so θ(b)c = bc = bc = bc = 0 = 0, that is
θ(b) ∈ lS(c).

Corollary 4.4.5. ([63]) Let R = S ⊕ A be an ideal extension. Then

1. R has SR1, IC or DF if and only if S has the same property.

2. If R is left UG, then S is left UG. The converse holds if for each b ∈ R, θ[lR(b)] =
lS(s) for some s ∈ S.

Proof. De�ne θ : R 7→ S by θ(s + a) = s for all s ∈ S and a ∈ A. Observe that
ker θ = A ⊆ J(R).

� SR1. If B(R) = {L | L is a left ideal of R}, then θ is both B-�t and B-full and
Theorem 4.4.3 adapts.

� IC. Use E(R) = {Re | e2 = e ∈ R}. Then θ is E-full because θ(Re) = Se for all
e2 = e ∈ S, and θ is E-�t because θ(Rf) = S(f) for all f 2 = f ∈ R. Hence we are
done by Theorem 4.4.3.

� DF. Using T (R) = {0}, again θ is both T -�t and T -full, so Theorem 4.4.3 applies.

� Left UG. Use K(R) = {l(a) : a ∈ R}: Then θ is K-full because of the result of
Lemma 4.4.4, R is left UG implies S is left UG by Theorem 4.4.3. By the same
theorem, the converse holds if θ is K-�t (for each b ∈ R, θ[lR(b)] = lS(s) for some
s ∈ S).

4.5 Polynomial Rings

This section consists of the following one and only result.

Theorem 4.5.1. ([62]) Let L be any left idealtor. For the polynomial ring R = S[x]
over the ring S, we have the following:

1. If R is SR1, then so is S. The converse need not be true in general.
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2. If R is left UG, then so is the ring S.

3. If R is IC, then so is the ring S. The converse need not to be true in general.

4. R is DF if and only if S is DF.

5. If S is left L-stable, then R is not left L-stable in general.

Proof. 1. Since R is a homomorphic image of R[x]. The converse fails because R[x] is
SR1 while R is SR1.

2. By Theorem 2.2.20, every left UG ring is left AS ring and vice versa. And so
Theorem 2.2.26 �nishes the proof.

3. Theorem 2.3.16 adapts. The converse is denied by Example 2.3.11.

4. Theorem 2.4.31 gives more than required.

5. This follows because the SR1 and the IC conditions do not pass to polynomial rings
by (1) and (3)

4.6 Matrix Rings

Consider the Morita context ring R =

[
R1 V
W R2

]
where R1 and R2 are rings with

bimodules V =R1 VR2 and W =R2 WR1 . If VW = 0 and WV = 0 then R is called the
context-null extension of R1 and R2 by the bimodules V andW , and the multiplication
takes the form [

a v
w b

] [
a′ v′

w′ b′

]
=

[
aa′ av′ + vb′

wa′ + bw′ bb′

]
Note that the diagonals multiply �directly� as in a direct product. With this in mind,

write S =

[
R1 0
0 R2

]
and A =

[
0 V
W 0

]
. Then the context-null extension R takes the

form R = S⊕A and so is an ideal extension (A ⊆ J(R) because A2 = 0). Hence Theorem
4.4.3 can be applied. Rather than state the details here, we are going to generalize this
to the n× n case.

Let R1, . . . , Rn be rings and, whenever i 6= j, let Vij be an Ri-Rj-bimodule. Assume
that there exist multiplications VijVji ⊆ Ri for each i, j, and VijVjk ⊆ Vik when i 6= k,
such that

R = Mn[Ri, Vij] =


R1 V12 · · · V1n
V21 R2 · · · V2n
...

...
. . .

...
Vn1 Vn2 · · · Rn


is an associative ring using matrix operations, called a generalized n×n matrix ring over
the rings Ri. The prototype example is R = End(RM) where M = M1 ⊕ · · · ⊕ Mn,
Ri = End(RMi) for each i, and Vij = HomR(Mi,Mj) when i 6= j.
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De�nition 4.6.1. ([63]) A generalized matrix ring R = Mn[Ri, Vij] over the rings
R1, . . . , Rn is called a context-null extension of the ringsRi, denoted byR = CNn[Ri, Vij],
if VpjVjq = 0 whenever j 6= p or j 6= q.

Thus the case n = 2 is described above. For n = 4 the multiplication in CN4[Ri, Vij]
becomes


a v12 v13 v14
v21 b v23 v24
v31 v32 c v34
v41 v42 v43 d



p u12 u13 u14
u21 q u23 u24
u31 u32 r u34
u41 u42 u43 s

 =


ap au12 + v12q au13 + v13r au14 + v14s

v21p+ bu21 bq bu23 + v23r bu24 + v24s
v31p+ cu31 v32q + cu32 cr cu34 + v34s
v41p+ du41 v42q + du42 v43r + du43 ds


where the diagonals multiply �directly� as in the 2 × 2 case above. Furthermore, by

deleting pairs of columns and the corresponding rows, each of the 2×2 rings CN2[Ri, Vij]
arises as a corner of CN4[Ri, Vij].

In the general n × n case, write R = CNn[Ri, Vij]. If R =


R1 V12 · · · V1n
V21 R2 · · · V2n
...

...
. . .

...
Vn1 Vn2 · · · Rn

,

let S =


R1 0 · · · 0
0 R2 · · · 0
...

...
. . .

...
0 0 · · · Rn

 and A =


0 V12 · · · V1n
V21 0 · · · V2n
...

...
. . .

...
Vn1 Vn2 · · · 0

. Then S is a subring of R,

ACR, and A ⊆ J(R) because A2 = 0. That is, R = S ⊕ A is an ideal extension. Hence
we obtain.

Corollary 4.6.2. ([63]) The ring CNn[Ri, Vij] has SR1, IC or DF if and only if each
factor ring Ri has the same property.

Proof. Since R = S ⊕A is an ideal extension and S ∼= R1 × · · · ×Rn as rings, the result
follows using Theorem 3.1.10, Corollary 4.2.4 and Corollary 4.4.5.

Theorem 4.6.3. ([63]) Let R1, · · · , Rn be rings and let R = CNn[Ri, Vij] be a generalized
context-null extension. Then (with the notation above) we have:

R = S ⊕ A is an ideal extension and A ⊆ J(R) because A2 = 0.

De�ne θ : R 7→ S by θ(s+ a) = s where s ∈ S and a ∈ A. If L is a left idealtor then

1. R is L-stable. Each Ri is L-stable provided

(a) X ∈ L(S) implies X = θ(L) for some L ∈ L)(R).

(b) Li ∈ Ri for each i implies Πn
i=1Li ∈ L(S).

2. Each Ri is L-stable implies R is L-stable provided:

(c) L ∈ L(S) implies L = Πn
i=1Li for Li ∈ L(Ri).

(d) L ∈ L(R) implies θ(L) ∈ L(S).
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Proof. We have R
θ7→ S

σ7→ Πn
i=1Li where σ[diag(r1, . . . , rn)] = (r1, . . . , rn) where ri ∈ Ri

for each i. Since σ is an isomorphism we have (by Lemma 2.9) that θ is L-�t/L-full if
and only if σ ◦ θ is L-�t/L-full. Hence, for determining whether θ is L-�t/L-full we may
assume that S = Πn

i=1Ri, and apply Theorem 4.2.1.

1. Assume R is L-stable. Then S is L-stable by Theorem 4.4.3 using (a). Now, with
(b), each Ri is L-stable by Theorem 4.2.1.

2. Assume each Ri is L-stable. Then S = Πn
i=1Ri is L-stable by (c) and Theorem

4.2.1. Hence, because of (d), S ⊕ A is L-stable by Theorem 4.4.3.

If Vij = 0 whenever i > j then the generalized matrix ring Mn[Ri, Vij] becomes upper
triangular, and is called an n× n generalized upper triangular matrix ring over the
rings Ri, and denoted by Tn[Ri, Vij]. The case n = 2 is the usual split-null extension[
R1 V12
0 R2

]
.

The following theorem is the analogue of Theorem 4.6.3 for general context-null ex-
tensions. The routine proof is omitted.

Theorem 4.6.4. ([63]) Let R1, . . . , Rn be rings and let R = Tn[Ri, Vij] be a generalized
upper triangular matrix ring over the Ri. Let S ⊆ R be the subring of diagonal matrices,
and let AC R denote the ideal of matrices with zero diagonal. Then all the conclusions
of Theorem 4.6.3 are valid.
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Related Open Questions

In this last chapter, we leave some open questions:

Question 4.6.5. ([63]) Is the left UG condition left-right symmetric? If not, then when
exactly?

Question 4.6.6. ([63]) When the monoid SL(R) becomes ring?

Question 4.6.7. Can the condition �exchange� be weakened so that

SR1 ⇐⇒ Left UG ⇐⇒ IC?

Question 4.6.8. Can the condition �π-regular� be weakened to �Zorn� so that

SR1 ⇐⇒ Left UG ⇐⇒ IC?

Question 4.6.9. Can the ring-theoretic condition �right self-injective� be weakened so
that

SR1 ⇐⇒ Left UG ⇐⇒ IC ⇐⇒ DF?

Question 4.6.10. Are the ring classes {stably IC} , {stably DF} and {perspective} af-
fordable? (Note that they all lie strictly between {SR1} and {DF}).

Question 4.6.11. Does there exist a closed left idealtor a�ording the left UG rings? The
IC rings?

Question 4.6.12. Does there exists an a�ordable class of rings with unique corresponding
idealtor? If so, must it be closed?

Question 4.6.13. Is there a module-theoretic characterization for left UG rings? Is there
a weaker condition than �exchange� so that any left UG ring is right UG and conversely?

Question 4.6.14. We know that the known four a�ordable classes {SR1} ⊆ {left UG} ⊆
{IC} ⊆ {DF} form a chain. So we ask: Do all a�ordable classes form a chain?

Question 4.6.15. Can the module-theoretic condition in Theorem 2.4.50 be further
weakened?

Question 4.6.16. Is it true that {left UG} ⊆ {right UG}? If so, then is {left L-stable} ⊆
{right L-stable}? If not, then when exactly? That is, when the notion of L-stability be-
comes left-right symmetric?
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