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Abstract

In this work, we study algebraic, geometrical, and topological properties of cone

metric spaces. Also, we introduce �xed point theorems in cone metric spaces.

In fact, our work is a survey of the main results on cone metric spaces.
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Introduction

Cone metric spaces was �rstly introduced in 2007 by Huang and Zhang by means

of partially ordering real Banach spaces, where they also proved some �xed point

theorems for mappings satisfying di�erent contractive conditions. The normality

property of a cone was an important ingredient in their results, and they believe

that their results generalized some �xed point theorems in metric spaces. Their

work gave a base for more research. In 2008 authors of [26] analyze the existence

of �xed points for a self-map de�ned on a complete, (sequentially compact) cone

metric space (X, d) satisfying the T-contraction and T-contractive condition.

Later, in [30] authors improved some results in [13], by considering (X, d) complete

and omitting the normality assumption of the cone P . After that the regularity

condition of the cone P was omitted in sequentially compact cone metric space and

considered the weaker condition of normality on the cone P . see [25]. Many studies

appears during 2008 and 2009 about �xed point in cone metrics and coupled �xed

point theorems.

In 2010 M.A.Khamsi [19] gives a memorable result, he claims that; most of the cone

�xed point results are merely copies of the classical ones, and that any extension of

known �xed point results to cone metric spaces is redundant and that underlying

Banach spaces and the associated cone subsets are not necessary.

This approach included a small class of results and is very limited since it is requires

only normal cones.

The classical contraction mapping principle of Banach is one of the most power-

ful theorems in �xed point theory because of its simplicity and usefulness.[18]

In recent times, �xed point theory has developed rapidly in partially ordered metric

spaces, because of the importance of its applications in diverse disciplines of mathe-

matics, statistics, chemistry, biology, computer science, engineering and economics,

and also in dealing with problems arising in approximation theory, potential theory,

game theory, mathematical economics, theory of di�erential equations,theory of in-

tegral equations, etc.(see [37]).

Weak contraction principle is a generalization of Banach's contraction principle

which was �rst given by Albert et al. see [4].

Fixed point problems involving weak contractions and mappings satisfying weak
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contraction type inequalities have been considered in the work of many researchers

see the introduction of [9]. Authors of [9] show that certain functions will have �xed

points if they satisfy certain weak contractive inequalities.

In 2013, there were many results and generalizations of some �xed point theorems,

as in [10, 17]

Also, there were many attempts and studies a bout topological cone metric

spaces, as in [38], where the authors proved that cone metric spaces are topological

spaces. Moreover, compactness, boundedness, �rst countability were discussed there.

This thesis is mainly concern ed with providing some substantial results that came

into view while mathematicians attempts to prove that cone metric spaces general-

izes metric spaces. Even the results that have been established in 2017, which proved

that cone metric spaces is a real generalization of metric spaces.

Chapter(I) consists of four sections, where we introduced, some de�nitions and basic

theorems about cones, normal cones, regular cones, minihedral cones, strong mini-

hedral cones, solid cones, some examples of cones, cone metric spaces, convergent

sequences, T-contractive mappings and cone normed spaces. Also some properties

of Metrizability of cone metric spaces.

Chapter(II) there are six sections, where we discussed TV S-cone metric spaces, and

basic theorems on TV S-cone metric spaces, in addition to complete metric spaces,

and TV S-cone normed spaces. Finally, we talk about Minkowski functional on solid

vector spaces and TV S-cone metrics.

In the last chapter, chapter(III), we tried to trace some important results of �xed

point theory, some examples, common �xed point theorems in cone metric spaces,

and �nally some coupled �xed point theorems in cone metric spaces.
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Chapter 1

Cone metric spaces

In this chapter, we will introduce some de�nitions and basic theorems about cones,

normal cones, regular cones, minihedral cones, strongly minihedral cones, solid

cones, cone metric spaces, convergent sequences, T-contractive mappings and cone

normed spaces. Also this chapter contains some properties of metrizability of cone

metric spaces.

1.1 Preliminaries

De�nition 1.1. A set A in X is said to be convex if, for all x, y ∈ A and t ∈ (0, 1),

then the line segment (1− t)x+ ty ∈ A.

De�nition 1.2. A set A is called closed set if it contains its own boundary.

De�nition 1.3. Banach space is a complete normed linear space.

De�nition 1.4. l∞ is the set of all bounded sequences of real numbers or complex

numbers. That is, all sequences x = {xi}∞1 such that supi(xi) <∞.

De�nition 1.5. For 1 ≤ p <∞, lp denotes the set of all sequences of real numbers

or complex numbers, such that
∑∞

i=1 | xi |p<∞.

1.2 Cones

De�nition 1.6. :[13] Let E be a real Banach space. A nonempty subset P ⊂ E is

called a cone in E if it satis�es :
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i: P is closed, convex, and P ̸= 0, ( where 0 is the zero vector of P ) .

ii: 0 ≤ a, b ∈ IR and x, y ∈ P , imply that ax+ by ∈ P .

iii: x ∈ P and −x ∈ P imply that x = 0

Given a cone P ⊂ E, we de�ne a Partial ordering relation ≼ with respect to P

by x ≼ y if and only if y − x ∈ P .

We write x ≼ y (x is away-behind y ) if y − x ∈ P o, where P o denotes the interior

of P . The relation away-behind is transitive and antisymmetric but not in general

re�exive [21]. We write x ≺ y when x ≼ y and x ̸= y.

Examples of cones:

Example 1.7. : Let E = IRn, then P = {(x1, x2, ..., xn) ∈ E; xi ≥ 0; ∀i = 1, 2, ..., n}
is a cone.

Example 1.8. : In ℓp spaces including ℓ∞, the set P = {xn ∈ ℓp : xn ≥ 0}
is a cone

Example 1.9. :If E = C[0, 1] with the supremum norm, (∥ f ∥= supx∈E | f(x) |)
the set P = {f ∈ E : f ≥ 0} is a cone.

Next, we introduce de�nitions of types of cones.
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De�nition 1.10. :[40] A cone P in (E, ∥.∥) is called :

i: Normal (N): If there exist a constant k > 0 such that if 0 ≤ x ≤ y then

∥ x ∥≤ k ∥ y ∥,
the least positive number satisfying the above inequality is called the normal

constant of P .

ii: Minihedral (M): If sup {x, y} exists for all x, y ∈ E.

iii: Strongly Minihedral (S): If every subset of E which is bounded above has

a supremum .

iv: Solid: If P o ̸= ∅.

v: Regular (R): If every increasing sequence which is bounded above in E is

convergent. That is, if {xn}n≥1 is a sequence such that x1 ≤ x2 ≤, ...,≤ y for

some y ∈ E, then ∃x ∈ E such that: limn→∞ ∥xn − x∥ = 0.

Equivalently; the cone P is regular if and only if every decreasing sequence which is

bounded below is convergent. [14]

The next propositions give us an idea about the relation between Normal and

Regular cones.

Proposition 1.11. [30] Every regular cone is normal.

Proof. : Let P a regular cone which is not normal. For each n ≥ 1, choose tn, sn ∈ P

such that tn − sn ∈ P and n2 ∥ tn ∥<∥ sn ∥ .
For each n ≥ 1, put yn = tn

∥tn∥ and xn = sn
∥tn∥ . Then, xn, yn ,yn − xn ∈ P , ∥ yn ∥= 1

and n2 <∥ xn ∥, for all n ≥ 1. Since the series
∑∞

n=1
1
n2 ∥ yn ∥ is convergent and P

is closed, there is an element y ∈ P such that
∑∞

n=1
1
n2yn = y. Now, note that:

0 ≤ x1 ≤ x1 +
1

22
x2 ≤ x1 +

1

22
x2 +

1

32x3
≤ ... ≤ y.

Thus,
∑∞

n=1
1
n2xn is convergent because P is regular. Hence,

lim
n→∞

∥ xn ∥
n2

= 0

which is a contradiction.
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The following example shows that the converse of the proposition 1.11 is not

true:

Example 1.12. :[30] Consider the space E = C[0, 1] with the supremum norm, and

let P = {f ∈ E : f ≥ 0}. Then, P is a cone with normal constant k = 1.

Now, consider the following sequence of elements of E x ≥ x2 ≥ x3 ≥, ...,≥ 0. which

is decreasing and bounded from below but it is not convergent in E.

Proposition 1.13. [30] There is no normal cone with normal constant k < 1 .

Proof. Let P a normal cone with normal constant k < 1, choose a nonzero element

x ∈ P and 0 < ε < 1, such that k < (1− ε) then, (1− ε)x ≤ x but

(1−ε)∥x∥ > k∥x∥, this is contradiction. Hence there is no normal cones with normal

constant k < 1 .

Proposition 1.14. [30] For each k > 1, there is a normal cone with normal constant

M > k.

Proof. Let k > 1 be given. Consider:

E = {ax+ b : a, b ∈ IR;x ∈ [1− (
1

k
), 1]}

with supremum norm and the cone

P = {ax+ b : a ≥ 0, b ≤ 0}

in E. First, we will show that P is regular (and hence normal by proposition 1.11).

Let, {anx+ bn}n≥1 be an increasing sequence which is bounded from above, that is,

there is an element cx+ d ∈ E such that :

a1x+ b1 ≤ a2x+ b2 ≤ ... ≤ anx+ bn ≤ ... ≤ cx+ d

for all x ∈ [1− 1
k
, 1]. Then, {an}n≥1 and {bn}n≥1 are two sequences in IR such that:

b1 ≤ b2 ≤ ... ≤ d, a1 ≥ a2 ≥ ... ≥ c

Thus, {an}n≥1 and {bn}n≥1 are convergent.

Let an → a and bn → b. Then, ax + b ∈ E and anx + bn → ax + b. Therefor, P is

regular, and then by proposition 1.11, there is M ≥ 1 such that 0 ≤ g ≤ f implies

that:

∥ g ∥≤ k ∥ f ∥, for all g, f ∈ E.

Now, we show that M > k.
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First, note that f(x) = kx + k ∈ P , g(x) = k ∈ P and f − g ∈ P . So, 0 ≤ g ≤ f .

Therefor,

k =∥ g ∥≤M(∥ f ∥) =M.

On the other hand, if we conceder f(x) = −(k+ 1
k
)x+ k and g(x) = k, then f ∈ P ,

g ∈ P and f − g ∈ P . Also, ∥ g ∥= k and ∥ f ∥= 1− 1
k
+ 1

k2
.

Thus, k =∥ g ∥> k ∥ f ∥= k + 1
k
− 1.

This shows that M > k.

Proposition 1.15. [31] Every strongly minihedral normal cone is regular.

Here are some examples of normal and regular cones :

Example 1.16. [6] E = IR2 and P = {(x, 0) : x ≥ 0} is strongly minihedral but not

minihedral, by de�nition 1.10.

Example 1.17. [30] Let E = C2
IR([0, 1]) with the norm:

∥ f ∥=∥ f ∥∞ + ∥ f ′ ∥∞,

where ∥ f ∥∞= max{f(x) : x ∈ [0, 1]} and,

∥ f ′ ∥∞= max{f ′
(x) : x ∈ [0, 1]}. And consider the cone P = {f ∈ E : f ≥ 0}.

For each k ≥ 1, put f(x) = x and g(x) = x2k. Then 0 ≤ g ≤ f , ∥ f ∥= 2

and ∥ g ∥= 2k + 1, as

(∥ g ∥= max{x2k : x ∈ [0, 1]}+max{2kx2k−1 : x ∈ [0, 1]} = 1 + 1 = 2).

Since k ∥ f ∥<∥ g ∥, k is not normal constant of P . Therefor, P is a non-normal

cone.

This example shows that there are non-normal cones.

1.3 Cone Metric spaces

In this section we will de�ne cone metric spaces, and prove some theorems and

properties about cone metric spaces, also we will discuss the relation between metric

spaces and cone metric spaces.

Consider E to be a real Banach space, and P be a cone of E. We de�ne cone

metric spaces as follows :
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De�nition 1.18. : [13] Let X be a nonempty set. Consider the mapping

d : X ×X −→ E which satis�es :

i: 0 < d(x, y); ∀x, y ∈ X and d(x, y) = 0 ⇔ x = y

ii: d(x, y) = d(y, x); ∀x, y ∈ X

iii: d(x, y) ≤ d(x, z) + d(z, y); ∀x, y, z ∈ X.

Then d is called a cone metric on X, and (X, d) is called a cone metric space.

Note from the de�nition that cone metric spaces generalize metric spaces.

De�nition 1.19. [11] We say that the cone metric space (X, d) is :

Cone rectangular metric space: if we replace (iii) in de�nition 1.18 with:

d(x, y) ≤ d(x,w) + d(w, z) + d(z, y); ∀x, y,∈ X.

And distinct points w, z ∈ X − {x, y}.[7]

Cone pentagonal metric space: if we replace (iii) in de�nition 1.18 with:

d(x, y) ≤ d(x,w) + d(w, u) + d(u, z) + d(z, y); ∀x, y,∈ X. And distinct points

w, z, u ∈ X − {x, y}.[11]

Cone hexagonal metric space: if we replace (iii) in de�nition 1.18 with:

d(x, y) ≤ d(x,w) + d(w, u) + d(u, v) + d(v, z) + d(z, y); ∀x, y,∈ X.

And distinct points w, z, u, v ∈ X − {x, y}.[11]

Here are some familiar examples of cone metric spaces:

Example 1.20. [5] Let E = IRn with

P = {(x1, x2, ..., xn) : xi ≥ 0, ∀i = 1, ..., n} X = IRn, and D = X ×X −→ E such

that:

D(x, y) = {|x− y|, α1|x− y|, ..., αn−1|x− y|}

where αi > 0 for all 1 ≤ i ≤ n− 1. Then (X,D) is a cone metric space.
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Example 1.21. [5] Let E = CIR[0, 1] with the supremum norm and

P = {f ∈ E : f(t) ≥ 0}.

Then, P is a cone with normal constant k = 1. Now, de�ne D = X ×X −→ E by

D(x, y) =| x − y | φ Where φ : [0, 1] → IR+ such that φ(t) = et. Then D is a cone

metric on X.

Example 1.22. [14] Let E = lq, for q > 0, P = {{xn}n≥1 ∈ E : xn ≥ 0; ∀n}.
Let (X, ρ) be a metric space and d : X ×X −→ E de�ned by:

d(x, y) = {(ρ(x, y)
2n

)
1
q }n≥1.

Then, (X, d) is a cone metric space and the normal constant of P is equal to 1.

Moreover, note the last example shows that the category of cone metric spaces

is bigger than the category of metric spaces.

The next example is not a cone metric space.

Example 1.23. [11] Let X = IN , E = IR2 and P = {(x, y) : x, y ≥ 0}.
De�ne d : X×X → E as follows: d(x, y) = (0, 0) if x = y; d(x, y) = (9, 15) if x and

y are in {3, 4}, x ̸= y; d(x, y) = (3, 5) if x and y cannot both at a time in {3, 4},
x ̸= y. Then (X, d) is a cone hexagonal (or pentagonal or rectangular) metric space,

but not a cone metric because it lacks the triangular property: (9, 15) = d(3, 4) >

d(3, 5) + d(5, 4) = (3, 5) + (3, 5) = (6, 10) as (9, 15)− (6, 10) = (3, 6) ∈ P .

De�nition 1.24. [39] Let (X, d) be a cone metric space and A ⊆ X. Then A is

said to be bounded above if ∃e ∈ E; e ≽ 0 such that d(x, y) ≼ e; ∀x, y ∈ A. also, A

is called bounded if, δ(A) = sup{d(x, y) : x, y ∈ A} exists in E.

Thus if P is strongly minihedral, then being bounded is the same as being

bounded above.

Example 1.25. [28] Let X be a nonempty set and let (Y,≼) be a solid Banach

space. Suppose a ∈ Y such that a ≻ 0. De�ne the cone metric d = X ×X → Y by:

d(x, y) =

{
a, x ̸= y;

0, x=y.

Then, (X, d) is a cone metric space over Y . This space is called (discrete cone

metric space).
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1.4 Convergence in Cone Metric Spaces

Below, we present the notion of convergence of sequences in cone metric spaces.

De�nition 1.26. :[13] Let (X, d) be a cone metric space, x ∈ X and {xn}n≥1

a sequence in X. Then :

i: {xn}n≥1 converges to x whenever ∀c ∈ E with 0 ≼ c, there is a natural number

N such that d(xn, x) ≼ c,∀n ≥ N . We denote this by limn→∞ xn = x or

xn → x.

ii: {xn}n≥1 is Cauchy sequence whenever for every c ∈ E with 0 ≼ c

there is a natural number N such that d(xn, xm) ≼ c,∀n,m ≥ N .

iii: (X, d) is complete cone metric space if every Cauchy sequence is convergent in

X.

Lemma 1.27. :[13] Let (X, d) be a cone metric space, P a normal cone with normal

constant k and {xn} is a sequence in X, then

i: {xn} converge to x ⇔ limn→∞ d(xn, x) = 0 .

ii: If {xn} is convergent, then it is Cauchy sequence.

iii: {xn} is a Cauchy sequence if and only if

lim
n,m→∞

d(xn, xm) = 0

.

iv: If {xn} → x and {xn} → y, (n→ ∞) then x = y .

v: If {xn} → x and {yn} is another sequence in X such that {yn} → y , then

d(xn, yn) → d(x, y).

Proof. i: Suppose that {xn} converges to x. For every real ϵ > 0 ; choose c ∈ E

with 0 ≪ c and k ∥ c ∥< ϵ. Then there is N , such that for all n > N ,

d(xn, x) ≼ c, so when n > N ,

∥ d(xn, x) ∥≤ k ∥ c ∥< ϵ. This means that d(xn, x) → 0 as (n→ ∞).
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ii: For any c ∈ E with 0 ≼ c, there is N such that for all n,m > N , d(xn, x) ≼ c
2

and d(xm, x) ≼ c
2
.

Hence d(xn, xm) ≤ d(xn, x)+d(xm, x) ≼ c. Therefor {xn} is a Cauchy sequence.

iii: Suppose that {xn} is a Cauchy sequence. For every ϵ > 0,

choose c ∈ E with 0 ≼ c and k ∥ c ∥< ϵ. Then there is N , for all n,m > N ,

d(xn, xm) ≼ c. So that when n,m > N , ∥ d(xn, xm) ∥≤ k ∥ c ∥< ϵ. This means

that d(xn, xm) → 0 as (n,m→ ∞).

Conversely, suppose that d(xn, xm) → 0 as (n,m→ ∞). For c ∈ E with

0 ≼ c, there is δ > 0, s.t ∥ x ∥< δ ⇒ c − x ∈ P 0. For this δ there is N , such

that for all n,m > N , ∥ d(xn, xm) ∥< δ So c − d(xn, xm) ∈ P 0. This means

d(xn, xm) ≼ c. Hence {xn} is a Cauchy sequence.

iv: For any c ∈ E with 0 ≼ c, there is N such that for all n > N , d(xn, x) ≪ c

and d(xn, y) ≼ c . We have

d(x, y) ≤ d(xn, x) + d(xn, y) ≤ 2c.

Hence,

∥ d(x, y) ∥≤ 2k ∥ c ∥ .

Since c is arbitrary d(x, y) = 0 therefor x = y.

v: For every ϵ > 0 , choose c ∈ E and ∥ c ∥< ϵ
4k+2

. From xn → x and yn → y ,

there is N such that for all n > N , d(xn, x) ≪ c, and d(yn, y) ≼ c . We have

d(xn, yn) ≤ d(xn, x) + d(x, y) + d(yn, y) ≤ d(x, y) + 2c

Hence,

0 ≤ d(x, y) + 2c− d(xn, yn) ≤ 4c

and

∥ d(xn, yn)− d(x, y) ∥≤∥ d(x, y)+2c− d(xn, yn) ∥ + ∥ 2c ∥≤ (4k+2) ∥ c ∥< ϵ.

Therefor, d(xn, yn) → d(x, y) as (n→ ∞).

10



Proposition 1.28. [39] Every Cauchy sequence in a cone metric space over a

strongly minihedral cone is bounded.

Proof. Let {xn} be Cauchy sequence in cone P . Fix c ≪ 0, choose n0 ∈ IN such

that m,n ≥ n0 ⇒ d(xm, xn) ≪ c.

Let c
′
= sup{c, d(xm, xn) : m,n < n0}, note that c

′
exists since P is strongly

minihedral. Hence, d(xm, xn) ≼ c
′
; ∀m,n. So, {xn} is bounded.

De�nition 1.29. :[26] Let (X, d) be a cone metric space, P a normal cone with

normal constant k and T : X → X. Then T is said to be continuous if limn→∞ xn =

x, implies that limn→∞ Txn = Tx, ∀{xn} in X.

T is said to be sequentially convergent if we have, for every sequence {yn}, when
{T (yn)} is convergent , then (yn) is also convergent.

De�nition 1.30. [13] Let (X, d) be a cone metric space, if for any sequence {xn}
in X, there is a subsequence {xni

} of {xn} such that,

{xni
} is convergent in X. Then X is called a sequentially compact cone metric space.

Lemma 1.31. :[13] If (X, d) be a sequentially compact cone metric space, then every

function T : X → X is subsequentially convergent and every continuous function

T : X → X is sequentially convergent .

Proposition 1.32. [39] The cone metric d induced by a cone norm on a cone

normed space satis�es lemma of translation invariance:

d(x+ a, y + a) = d(x, y)

d(ax, ay) =| a | d(x, y)

for all x, y ∈ X and every scalar a.

Proof. We have d(x + a, y + a) =∥ (x + a) − (y + a) ∥c=∥ x − y ∥c= d(x, y) and

d(ax, ay) =∥ ax− ay ∥c=| a |∥ x− y ∥c=| a | d(x, y).
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1.5 Metrizability of cone metric space

The history of metrizability of cone metric spaces starts with the initial paper of

Huang and Zhang in 2007 [13], after that there were many papers that deals with

the theory of cone metric spaces, a basic question has been raised, that whether

cone metric spaces is a real generalization of metric spaces? This question has been

investigated in many papers as [6, 21].

Many authors showed that the cone metric spaces are metrizable and de�ned the

equivalent metric using di�erent approaches, and so, consequently due to those ap-

proaches every cone metric space is really a metric one, and every theorem in metric

space is valid for cone metric spaces automatically.

Now, we will review some of those approaches. Firstly in [6] the authors showed that

by renorming an ordered Banach space, every cone P can be converted to a normal

cone with constant k = 1.

Theorem 1.33. [6] Let (E, ∥ . ∥) be a real Banach space with a positive cone P .

Then there exists a norm on E such that P is a normal cone with constant k = 1,

with respect to this norm.

Proof. De�ne ∥| . |∥:= E → [0,∞) by :

∥| x |∥:= inf{∥ u ∥: x ≼ u}+ inf{∥ v ∥: v ≼ x}+ ∥ x ∥,

for all x ∈ E .

Let us show that ∥| . |∥ is a norm on E. Firstly, by de�nition of ∥| . |∥ it is clear

that, ∥| x |∥= 0 if and only if x = 0 for all x ∈ E. Also

∥| −x |∥= inf{∥ u ∥: −x ≼ u}+ inf{∥ v ∥: v ≼ −x}+ ∥ −x ∥
= inf{∥ u ∥: −u ≼ x}+ inf{∥ v ∥: x ≼ −v}+ ∥ x ∥
= inf{∥ v′ ∥: v′ ≼ x}+ inf{∥ u′ ∥: x ≼ u

′}+ ∥ x ∥
= ∥| x |∥ .

For λ > 0 ,

∥| λx |∥ = inf{∥ u ∥: λx ≼ u}+ inf{∥ v ∥: v ≼ λx}+ ∥ λx ∥

= inf{λ ∥ 1

λ
u ∥: x ≼ 1

λ
u}+ inf{λ ∥ 1

λ
v ∥: 1

λ
v ≼ x}+ λ ∥ x ∥

= λ ∥| x |∥
Therefor, ∥| λx |∥ = | λ |∥ x ∥,∀x ∈ E;λ ∈ IR.
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To prove the triangle inequality of ∥| . |∥, let x, y ∈ E,

∀ϵ > 0 ∃u1, v1 : v1 ≼ x ≼ u1; ∥ u1 ∥ + ∥ v1 ∥ + ∥ x ∥ −ϵ <∥| x |∥

∀ϵ > 0 ∃u2, v2 : v2 ≼ y ≼ u2; ∥ u2 ∥ + ∥ v2 ∥ + ∥ y ∥ −ϵ <∥| y |∥ .

Therefor v1 + v2 ≼ x+ y ≼ u1 + u2, hence

∥| x+ y |∥≤∥ v1 + v2 ∥ + ∥ u1 + u2 ∥ + ∥ x+ y ∥≤∥| x |∥ + ∥| y |∥ +2ϵ

Since ϵ > 0 is arbitrary, we obtain

∥| x+ y |∥≤∥| x |∥ + ∥| y |∥ .

So, ∥| . |∥ is a norm on E.

Now, we shall show that P , with the norm ∥| . |∥, is a normal cone with constant

k = 1 , that is for all x, y ∈ E

0 ≼ x ≼ y ⇒∥| x |∥≤∥| y |∥ .

Suppose that 0 ≼ x ≼ y. Then,

0 ≤∥| x |∥≤∥ 0 ∥ + ∥ y ∥ + ∥ x ∥=∥ y ∥ + ∥ x ∥ . (1.1)

if we put A := {∥ v ∥: v ≼ y} then, by 1.1, ∥| x |∥ is a lower bound for A+ ∥ y ∥. So,

∥| x |∥≤ inf(A+ ∥ y ∥) = inf A+ ∥ y ∥≤∥ y ∥ .

13



The next corollary is one of many results and notes that we can observe from

the last theorem.

Corollary 1.34. [6] Every cone metric space (X,D) is metrizable, with metric

de�ned by d(x, y) =∥| D(x, y) |∥ .

But we must mention that this result in [6] has been disproved in [17] and authors

gave the next result as a counter example to show that the main theorem in [6] does

not hold.

Example 1.35. [30] Let E = C2
R([0, 1]) with the norm ∥ f ∥=∥ f ∥∞ + ∥ f ′ ∥∞ and

consider the cone P = {f ∈ E : f ≥ 0} then P is a non-normal cone. Let f(x) = x

and g(x) = x2, ∀x ∈ [0, 1]. Then,

clearly, 0 ≤ g ≤ f . Further ∥ f ∥=∥ f ∥∞ + ∥ f ′ ∥∞= 1 + 1 = 2

and, ∥ g ∥=∥ g ∥∞ + ∥ g′ ∥∞= 1 + 2 = 3 Since f ∈ P ,

|∥ f ∥| = inf{∥ u ∥: f ≤ u}+ inf{∥ v ∥: v ≤ f}+ ∥ f ∥
= inf{∥ u ∥: f ≤ u}+ 0+ ∥ f ∥
= ∥ f ∥∞ +2 = 1 + 2 = 3

Also, g ∈ P

|∥ g ∥| = inf{∥ u ∥: g ≤ u}+ inf{∥ v ∥: v ≤ g}+ ∥ g ∥
= inf{∥ u ∥: g ≤ u}+ 0+ ∥ g ∥
= ∥ g ∥∞ +3 = 1 + 3 = 4

Which contradicts results in [6], as P is normal cone with normal constant K = 1,

but 0 ≤ g ≤ f does not implies that

|∥ g ∥|≤|∥ f ∥| .
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After that there were many attempts to �nd out whether cone metric spaces is

a real generalization of metric spaces or not.

During my research, A.A.Hakawati and H.D.Sarris [14] continue trying to straighten

the path of the renorming process in [6], by converting every strongly minihedral

normal cone to a normal cone with constant k = 1 by giving a new norm to the

Banach space, and using the following lemmas.

Lemma 1.36. [14] Suppose P is strongly minihedral cone in real Banach space E.

Then : for x, y ∈ E; we have:

i: inf{w : w ≥ x+ y} = inf{u : u ≥ x}+ inf{v : v ≥ y}

ii: sup{w : w ≤ x+ y} = sup{u : u ≤ x}+ sup{v : v ≤ y}

for proof see[14].

Lemma 1.37. [14] For 0 ≤ x ≤ y we have:

i: ∥ sup{u : u ≤ x} ∥≤∥ sup{u′ : u′ ≤ y} ∥

ii: ∥ inf{v : x ≤ v} ∥≤∥ inf{v′ : y ≤ v′} ∥

for proof we refer the reader to [14].

Now, the authors of [14] gave their belief in the following theorem

Theorem 1.38. [14] Let (E, ∥ . ∥) be a real Banach space with strongly minihedral

normal cone P . Then there exist a norm [.] on E with respect to P which is a normal

cone with normal constant k = 1.

Proof. De�ne : [.] : E → [0,∞) by:

[x] =∥ inf{u : x ≤ u} ∥ + ∥ sup{v : v ≤ x} ∥, ∀x ∈ E. It is clear that, if x = 0 then

[x] = 0, ∀x ∈ E.

If [x] = 0 ⇒ ∃un, vn ∈ E such that : vn ≤ x ≤ un where un → 0, vn → 0 as n→ ∞.

Since P is a normal cone then we get x = 0. Therefor [x] = 0 ⇔ x = 0.

Now,

[−x] = ∥ inf{u : −x ≤ u} ∥ + ∥ sup{v : v ≤ −x} ∥
= ∥ − sup{−u : −x ≤ u} ∥ + ∥ − inf{−v : v ≤ −x} ∥
= ∥ − sup{u : −u ≤ x} ∥ + ∥ inf{−v : x ≤ −v} ∥
= ∥ sup{u : u ≤ x} ∥ + ∥ inf{v : x ≤ v} ∥= [x]
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For λ > 0,

[λx] = ∥ inf{u : λx ≤ u} ∥ + ∥ sup{v : v ≤ λx} ∥

= ∥ inf{λ( 1
λ
u) : x ≤ 1

λ
u} ∥ + ∥ sup{λ( 1

λ
)v : (

1

λ
)v ≤ x} ∥

= λ ∥ inf{1
λ
u : x ≤ 1

λ
u} ∥ +λ ∥ sup{1

λ
v : (

1

λ
)v ≤ x} ∥= λ[x].

There for [λx] =| λ | [x] ∀x ∈ E, and λ ∈ IR

Now, to prove the triangle inequality using lemma1.36 ,

[x+ y] = ∥ inf{u : x+ y ≤ u} ∥ + ∥ sup{v : v ≤ x+ y} ∥
= ∥ inf{u : x ≤ u} ∥ + ∥ inf{u : u ≤ y} ∥ + ∥ sup{v : v ≤ x}+ ∥ + ∥ sup{v : v ≤ y} ∥
≤ ∥ inf{u : x ≤ u} ∥ + ∥ inf{u : u ≤ y} ∥ + ∥ sup{v : v ≤ x}+ ∥ + ∥ sup{v : v ≤ y ∥
= ∥ inf{u : x ≤ u} ∥ + ∥ sup{v : v ≤ x}+ ∥ + ∥ inf{u : u ≤ y} ∥ + ∥ sup{v : v ≤ y} ∥
= [x] + [y].

Therefor [x+ y] ≤ [x] + [y] and hence, [.] is a norm on E.

Finally, with respect to this norm [.] and by lemma1.37, P is a normal cone with

normal constant k = 1.
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Chapter 2

Topological Cone metric spaces

As one of the results of studding metric spaces was considering certain topological

groups in place of Banach spaces in de�nition of cone metric spaces, many authors

introduced some generalized topological concepts and de�nitions in cone metric

spaces, as well as authors in [38].

In This chapter, we will introduce some of these topological concepts and

de�nitions, and de�ne the distance between two sets in cone metric spaces.

Moreover, we will prove many theorems in topological cone metric space.

2.1 Topological Concepts

De�nition 2.1. [39] Let A ̸= ϕ and B ̸= ϕ be two subsets of cone metric space

(X, d). The distance between A and B, denoted by d(A,B), is de�ned by :

d(A,B) = inf{d(x, y) : x ∈ A, y ∈ B}.

If A = {a}, we write d(a,B) for d(A,B).

De�nition 2.2. [39] Let (X, d) be a cone metric space.A subset U of X is called

bounded above if there exists c ∈ E, c ≽ 0 such that d(x, y) ≤ c for all x, y ∈ U ,

and is called bounded if δ(U) = sup{d(x, y) : x, y ∈ U} exists in E. If the supremum

does not exists, we say that U is unbounded.
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De�nition 2.3. [28] Let Y be vector space:

i: A subset A of Y is said to be (sequentially) open if xn → x and x ∈ A imply

xn ∈ A for all but �nitely many n.

ii: A subset A of Y is said to be (sequentially) closed if xn → x and xn ∈ A for

all n imply x ∈ A.

Lemma 2.4. [28] Let Y be a vector space. Suppose U and V are nonempty subsets

of Y . Then:

i: If U is open and λ > 0, then (λU = {λu : u ∈ U}) is open.

ii: If U or V is open, then (U + V = {x+ y : x ∈ U, y ∈ V }) is open.

De�nition 2.5. [28] Let A be a subset of a vector space Y . The interior of A (A0)

is called the biggest open subset contained in A, that is, A0 = ∪U where ∪ ranges

through the family of all open subsets of Y contained in A.

De�nition 2.6. Given a vector space V over a �eld IR, and the partial order (≤)

over V , the pair (V,≤) is called an ordered vector space if, for all x, y, z ∈ V and

0 ≤ λ in IR the following axioms hold:

i: x ≤ y ⇒ x+ z ≤ y + z.

ii: y ≤ x⇒ λy ≤ λx.

De�nition 2.7. [28] An ordered topological space E over a �led IF is a topological

vector space, and ordered vector space over the �eld IF , such that the positive cone E+

is a closed subset of E, the last statement means that, if a sequence of non-negative

elements xi of E converges to an element x, then x is non-negative.

De�nition 2.8. [28] Let(X, d) be a cone metric space over an ordered vector space

(Y,≼). For a point x0 ∈ X and a vector r ∈ Y with r ≽ 0, the set

Ū(x0, r) = {x ∈ X : d(x, x0) ≼ r}

is called a closed ball with center x0 and radius r.

De�nition 2.9. [28] Let(X, d) be a cone metric space over an ordered vector space

(Y,≼). For a point x0 ∈ X and a vector r ∈ Y with r ≽ 0, the set

U(x0, r) = {x ∈ X : d(x, x0) ≺ r}

is called an open ball with center x0 and radius r.

18



De�nition 2.10. [28] Let X be a cone metric space.

a: A subset A of X is called bounded if it is contained in some closed ball.

b: A sequence {xn} is called bounded if the set of its terms is bounded.

Lemma 2.11. [38] Let (X, d) be a cone metric space with cone P and a real Banach

space E.

Then for each c ∈ E with c ≽ 0 there is a real number ϵ > 0 such that for any x ∈ E

with ∥ x ∥< ϵ, we have x ≼ c.

Proof. Since c ≽ 0 and c ∈ P 0. Then, we can �nd ϵ > 0 such that:

{x ∈ E :∥ x− c ∥< ϵ} ⊂ P 0.

Now, if ∥ x ∥< ϵ. Then

∥ (c− x)− c ∥=∥ −x ∥=∥ x ∥< ϵ,

and then (c− x) ∈ P 0.

Lemma 2.12. [38] Let (X, d) be a cone metric space. Then for each c1 ≽ 0 and

c2 ≽ 0, there is c ≽ 0 such that c ≽ c1 and c ≽ c2.

Proof. Since c2 ≽ 0 , then by lemma 2.11, we can �nd ϵ > 0 such that ∥ x ∥< ϵ

this implies that x ≼ c2. Choose n0 such that 1
n0
< ϵ

∥c1∥ . Take c =
c1
n0
. Then

∥ c ∥=∥ c1
n0

∥= ∥ c1 ∥
n0

< ϵ.

Therefor, c ≼ c2. But also it is clear that c ≽ 0 and c ≼ c1

Lemma 2.13. [23] Let (E,P ) be an ordered topological vector space. Then the fol-

lowing hold.

1: If α ≽ θ, then rα ≽ θ for each r ∈ IR+.

2: If α ≽ θ, then α ≽ α
2
≽ ... ≽ α

n
≽ ... ≽ θ .

3: If α1 ≽ β1, and α2 ≽ β2, then α1 + α2 ≽ β1 + β2.

4: If α ≽ β ≽ γ or α ≥ β ≥ γ, then α ≽ γ.
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5: If α ≽ θ and β ∈ E, then there is n ∈ IN such that β
n
≼ α.

6: If α ≽ θ and β ≽ θ, then there is γ ≽ θ such that γ ≼ α and γ ≼ β.

7: If ϵ ≽ θ and θ ≼ α ≼ ϵ
n
for each n ∈ IN , then α = θ.

For proof see [23]

De�nition 2.14. A topological space X is said to be compact if for each open cov-

ering {Uα}α∈I of X there is a �nite subcovering {Uβ}β∈I .

De�nition 2.15. [13] Let (X, d) be a cone metric space. If for any sequence {xn ∈
X, there is a subsequence {xnj

} of {xn} such that {xn} is convergent in X. Then

X is called a sequentially compact cone metric space.

De�nition 2.16. A topological space X is Hausdor� (i.e T2-space) if for any

x, y ∈ X, with x ̸= y, there exist open sets U containing x and V containing y such

that U ∩ V = ϕ.

De�nition 2.17. A �rst countable space is a topological space in which there exist

a countable local base at each of its points.

De�nition 2.18. A subset E of a topological space X is said to be second category

in X if E cannot be written as the countable union of subsets which are nowhere

dense (i.e Int(U i = ϕ) in X.

De�nition 2.19. An isomorphism is a one-to-one correspondence between two sets,

especially: a homomorphism that is one-to-one.

2.2 TVS-Cone Metric Spaces

De�nition 2.20. [12] Let E be a topological vector space with its zero vector θ. A

subset P of E is called a TVS-cone in E if the following are satis�ed:

i: P is closed in E with a nonempty interior P 0.

ii: α, β ∈ P and a, b ∈ IR∗ ⇒ aα + bβ ∈ P .(where IR∗ is the nonnegative real

numbers).

iii: α, −α ∈ P ⇒ α = θ.
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Remark 2.21. [12] It is clear from de�nition 2.20 that θ ∈ P , but θ does not belong

to P 0.

In fact, pick α ∈ E − {θ}. Then, { 1
n
α} → θ and {− 1

n
α} → θ

when n→ ∞. If θ ∈ P 0, then there is n ∈ IN such that { 1
n
α,−( 1

n
α)} ⊆ P 0 ⊆ P .

By de�nition 2.20 (iii), we have ( 1
n
)α = θ. This contradicts that α ̸= θ. So, θ does

not belong to P 0.[12]

Now, we de�ne some partial orderings as follows.

De�nition 2.22. [23] Let P be a TVS-cone in a topological vector space E.

Some partial orderings ≤, <, and ≼ on E with respect to P are de�ned as follows.

For each α, β ∈ E,

i: α ≤ β if β − α ∈ P .

ii: α < β if α ≤ β and α ̸= β.

iii: α ≼ β if β − α ∈ P 0.

Then, a pair (E,P ) is called an ordered topological vector space.

For an ordered topological vector space (E,P ), unless otherwise speci�ed,

we always suppose that E is a topological vector space with the zero vector θ and

P is a TVS-cone in E with nonempty interior P 0.
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De�nition 2.23. [27] Let X be a nonempty set. And d : X ×X → E be a mapping

that satis�es :

i: d(x, y) ≽ θ for all x, y ∈ X and d(x, y) = θ if and only if x = y.

ii: d(x, y) = d(y, x) for all x, y ∈ X.

iii: d(x, y) ≼ d(x, z) + d(z, y) for all x, y, z ∈ X.

Then, d is called a topological vector space valued cone metric (TVS-cone metric for

short)on X, and (X, d) is said to be a topological vector space valued cone metric

space.

Note E in de�nition 2.23 considered as usual a real Banach space. Thus, a cone

metric space in sense of Huang and Zhang [13] is a special case of TVS-cone metric

space.[2]

Now, we discuss the relation between cone metric spaces and topological spaces.

Theorem 2.24. [23] Let(X, d) be a TVS-cone metric space.

Put β = {B(x, ϵ) : x ∈ X; ϵ ≽ 0} then β is a base for some topology on X.

Proof. It is clear that X = ∪ β. Let B(x, α), B(y, β) ∈ β and z ∈ B(x, α)∩B(y, β).

Since z ∈ B(x, α), d(x, z) ≼ α.

Put γ1 = α− d(x, z); then γ1 ≽ 0. We claim that B(z, γ1) ⊆ B(x, α).

In fact, if u ∈ B(z, γ1), then d(z, u) ≼ γ1, hence

d(x, u) ≤ d(x, z) + d(z, u) ≼ d(x, z) + γ1 = α,

and so u ∈ B(x, α). Using the same way, we can obtain that there is γ2 ≽ 0 such

that B(z, γ2) ⊆ B(y, β). By lemma 2.13(6), there is γ ≽ 0 such that γ ≼ γ1 and

γ ≼ γ2. Let v ∈ B(z, γ); then d(z, v) ≼ γ ≼ γ1 and d(z, v) ≼ γ ≼ γ2, so

v ∈ B(z, γ1) ∩B(z, γ2) ⊆ B(x, α) ∩B(y, β).

This proves that B(z, γ) ⊆ B(x, α) ∩B(y, β). Note that x ∈ B(z, γ) ∈β.
Consequently,β is a base for topology on X. In fact, put τ = {U ⊆ X : ∃β′⊆ β}

:U = ∪β′; then τ is a topology on X and β is a base for τ .
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Theorem 2.25. [38] Every cone metric space (X, d) is a topological space.

Proof. For c ∈ E, c ≽ 0, let B(x, c) = {y ∈ X : d(x, y) ≼ c} and β = {B(x, c) : x ∈
X, c ≽ 0} so,Tc = {U ⊂ X : ∀x ∈ U, ∃B ∈ β, x ∈ B ⊂ U} is a topology on X. In

fact, we have:

i: ϕ, X ∈ Tc.

ii: Let U, V ∈ Tc and let x ∈ U ∩ V . Then, x ∈ U and x ∈ V , �nd c1 ≽ 0, c2 ≽ 0

such that x ∈ B(x, c1) ⊂ U and x ∈ B(x, c2) ⊂ V , by lemma 2.12 �nd c ≽ 0

such that c ≼ c1 and c ≼ c2. Then, clearly

x ∈ B(x, c) ⊂ B(x, c1) ∩B(x, c2) ⊂ U ∩ V.

Hence, U ∩ V ∈ Tc.

iii: Let Uα ∈ Tc for each α ∈ Γ and let x ∈ ∪α∈ΓUα. Then, ∃α0 ∈ Γ such that

X ∈ Uα0 . Hence, �nd c ≽ 0 such that x ∈ B(x, c) ⊂ Uα ⊂ ∪α∈ΓUα.

That is, ∪α∈ΓUα ∈ Tc.
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2.3 Some Theorems on TVS-Cone Metric Spaces

Here some theorems that have been proved ,and some de�nitions about TVS-cone

spaces are presented.

Theorem 2.26. [3] Every cone metric space (X, d) is a Hausdor� space.

(i.e T2 space).

Proof. Let x, y ∈ X such that x ̸= y. Then, d(x, y) = c where c ≽ 0, so that

[B(x, c
2
) ∩B(y, c

2
)] ∈ Tc and B(x, c

2
) ∩B(y, c

2
) = ϕ.

Theorem 2.27. [6] Every cone metric space (X, d) is a �rst countable.

Proof. Let q ∈ X and �x c ≽ 0 where c ∈ E. We see that

βq = {B(q,
c

n
) : n ∈ IN}

is local base at q. Let U be open with q ∈ U .

Find c1 ≽ 0 such that q ∈ B(q, c1) ⊂ U , also by 2.13(2) , �nd n0 ∈ IN such that
c
n0

≼ c1. Therefor,

B(q,
c

n0

) ⊂ B(q, c1) ⊂ U.

Corollary 2.28. [2] A mapping from TVS-cone metric space to an arbitrary topo-

logical space is continuous if and only if it is sequentially continuous.

Corollary 2.29. [2] Every TV S-cone metric space (X,P ) is topologically

isomorphic to its correspondent metric space (X, dp)

Note that corollary 2.29 explains many topological properties of TVS-cone met-

rics, such as:

Corollary 2.30. [2] A TV S-cone metric space is compact if and only if it is se-

quentially compact.

As compactness and sequentially compactness are topological properties .

Corollary 2.31. [2] Every TV S-cone metric is second category.

Also, second category is topological property.
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Theorem 2.32. [39] Let (X, d) be a cone metric space and A(̸= ϕ) a subset of X.

Then, x ∈ Ā if and only if d(x,A) = 0.

Proof. Suppose x ∈ Ā. Then, for �xed c ≽ 0 and each n ∈ IN , we have

B(x, c
n
) ∩ A ̸= ϕ. Therefor, for each n ∈ IN there exist an ∈ A such that

0 ≤ d(x,A) ≤ d(x, an) <
c

n
.

Hence, ∥ d(x,A) ∥≤ k(∥c∥
n
), for all n ∈ IN . Our conclusion then is that d(x,A) = 0 .

Conversely, let U ∈ τc be open in (X, d) such that x ∈ U , then �nd c ≽ 0 such that

B(x, c) ⊂ U . But, since 0 = d(x,A) < c, �nd a ∈ A such that d(x, a) < c. That is

a ∈ A ∩B(x, c) ⊂ A ∩ U .

Lemma 2.33. [39] Let c1, c2 ∈ P such that c1 < c2 + s for all s ≽ 0. Then, c1 ≤ c2.

Theorem 2.34. [39] Every cone metric space is a T4-space.

Proof. We �rst show that (X, d) is a Hausdor� space and hence is a T1-space. Let

x ̸= y be two points in X. Then d(x, y) = c > 0 so that B(x, c
2
) ∩ B(y, c

2
) = ϕ,

implying (X, d) is Hausdor� space. To show that X is normal, let A and B be two

closed disjoint subsets of X and de�ne:

U = {x ∈ X : d(x,A) < d(x,B)} and V = {x ∈ X : d(x,A) > d(x,B)}.
From the de�nition of U and V , U ∩V = ϕ. Furthermore, if a ∈ A, then d(a,A) = 0,

a ∈ B and since B is closed, d(a,B) > 0. According to 2.32, 0 = d(a,A) < d(a,B),

so that a ∈ U , It follows that A ⊂ U . Similarly, B ⊂ V .

Now, if we can show that U and V are open we will done. To show that U is open,

let x0 ∈ U then c1 = d(x0, A) < d(x0, B) = c2.

Since, (c2 − c1) > 0 (i.e(c2 − c1) ∈ P, c2 ̸= c1),

we may de�ne c = 1
2
(c2 − c1) and consider the basic open B(x0,

c
2
).

Let x ∈ B(x0,
c
2
). Then, for each s ≽ 0, by the de�nition of d(x0, A),

there exists a ∈ A such that d(x0, a) < c1 + s. Therefor,

d(x,A) ≤ d(x, a) ≤ d(x, x0) + d(x0, a) <
c

2
+ c1 + s = (

c

2
+ c1) + s.

Then, by 2.33, it follows that d(x,A) ≤ c
2
+ c1 =

1
4
(c2 + 3c1). Also, for every b ∈ B,

we have d(b, x0) ≤ d(b, x) + d(x, x0) and, since d(b, x0) ≥ d(x0, B) and d(x, x0) <
c
2
,

we may write d(b, x) + c
2
> d(x0, B) = c2. Thus, d(b, x) > c2 − c

2
= 1

4
(3c2 + c1).

Then, by noting that c2 + 3c1 < 3c2 + c1 we conclude that d(x,A) < d(x,B). That

is, x ∈ U and hence U is open. The same reasoning shows V is also an open subset

of X.
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2.4 TVS-Cone Normed Spaces

It is clear that each cone normed space is a cone metric space. With the cone metric

is given by d(x, y) =∥ x− y ∥c.

De�nition 2.35. [27] Let X be a linear space over a �eld IF , a norm on X is a

function:

∥ . ∥: X → IR, s.t ∀x, y ∈ X and a ∈ IF , we have:

i: ∥ x ∥≥ 0and ∥ x ∥= 0 ⇔ x = 0.

ii: ∥ ax ∥=| a |∥ x ∥ .

iii: ∥ x+ y ∥≤∥ x ∥ + ∥ y ∥ .

(X, ∥ . ∥) is called normed linear space.

De�nition 2.36. A cone normed space (X, ∥ . ∥c) is called cone Banach space if

every Cauchy sequence in X convergent in X.

Proposition 2.37. [22]

i: A norm is a real valued continuous function .

ii: Every normed space is a metric space with respect to the metric

d(x, y) =∥ x− y ∥ , and is called metric induced by the norm.

iii: For any two elements x and y of a normed space we have,

|∥ x ∥ − ∥ y ∥|≤∥ x− y ∥

For the proof we curious the readers to [22].

De�nition 2.38. [27] Let X be a vector space, where ∥ . ∥c1 : X → E

and ∥ . ∥c2 : X → E be two TVS- cone norms on X.

then ∥ . ∥c1 is said to be equivalent to ∥ . ∥c2 if there exist α, β > 0 such that :

α ∥ x ∥c1≼∥ x ∥c2≼ β ∥ x ∥c1

for each x ∈ X.
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Theorem 2.39. [27] Let X be a vector space. if ∥ . ∥c1 and ∥ . ∥c2 are two equiv-

alent TVS-cone norms on X. Then τc1 = τc2. Moreover, the converse is valid if all

elements of P are comparable. (i.e for all c1, c2 ∈ P, c1 ≼ c2 or c2 ≼ c1).

Proof. Fixe ∈ P 0 and suppose that ∥ . ∥i= ξe(∥ . ∥ci), i = 1, 2. We know there exist

α, β > 0 (where ξe is nonlinear scalarization function de�ned as

ξe(y) = inf{e ∈ IR : y ∈ re− P}, ∀y ∈ E such that α ∥ x ∥c1≤∥ x ∥c2≤ β ∥ x ∥c1 ,
for each x ∈ X, also as ( If x ∈ y + P , then ξy ≤ ξx) (see lemma 1.2 [27]), ξe is an

increasing function on E, thus:

α ∥ x ∥1≼∥ x ∥2≼ β ∥ x ∥1

for each x ∈ X. Hence ∥ . ∥1 and ∥ . ∥2 are equivalent norms on X, so they induce

same topology on X. On the other hand, ∥ . ∥i induces τci , i = 1, 2. Therefor,

τc1 = τc2 .

Conversely, let τc1 = τc2 , then ∥ . ∥1 and ∥, ∥2 are equivalent norms on X. Therefor,

there exist scalers α, β > 0 such that :

α ∥ x ∥1≤∥ x ∥2≤ β ∥ x ∥1,

for each x ∈ X. So we have:

αξe(∥ x ∥1) ≤ ξe(∥ x ∥2) ≤ βξe(∥ x ∥1)

for each x ∈ X. On the other hand, the elements of P are comparable with each

other and ξe is increasing on E, hence:

α ∥ x ∥c1≼∥ x ∥c2≼ β ∥ x ∥c1

for each x ∈ X.

De�nition 2.40. [27] Let (X, ∥ . ∥c) and (Y, ∥ . ∥c) be two TVS-cone normed spaces

and T be a linear map from X into Y . T is called a cone bounded linear map, if

there exists M > 0 such that

∥ Tx ∥c≼M ∥ x ∥c for all x ∈ X. We denote by |∥ T ∥| the in�mum of such M , i.e,

|∥ T ∥|= inf{M > 0 :∥ Tx ∥c≼M ∥ x ∥c}.
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Example 2.41. [27] Let E = ℓ1 and P = {{xn} ∈ ℓ1 : xn ≥ 0, ∀n}. Then P is a

cone in E. Put X = C1[0, 1] and Y = C[0, 1]. Moreover, de�ne ∥ . ∥c1 : X → E and

∥ . ∥c2 : Y → E as follows:

∥ f ∥c1= {∥f∥1
2n

}∞n=1 and ∥ g ∥c2= {∥g∥2
2n

}∞n=1

where ∥ f ∥1=∥ f ∥∞ + ∥ f ′ ∥∞ and ∥ g ∥2=∥ g ∥∞ for all f ∈ X and g ∈ Y .

Obviously, ∥ . ∥c1 and ∥ . ∥c2 are two cone norms on X and Y respectively. Now

de�ne T : (X, ∥ . ∥c1) → (Y, ∥ . ∥c2) by Tf = f
′
. Therefor, ∥ Tf ∥c2≼∥ f ∥c1 implies

that T is a cone bounded linear map.

Theorem 2.42. [27] (Open mapping theorem) Let (X, ∥ . ∥c1) and (Y, ∥ . ∥c2) be

two complete TVS-cone normed spaces and Y : X → Y be a surjective cone-bounded

linear map, then T is open mapping (i.e T (G) is an open set in (Y, τc) whenever G

is an open set in (X, τc))

For proof we refer the reader to [20]

Theorem 2.43. [27] (The inverse mapping theorem) If X and Y are two cone

Banach spaces and T : X → Y is a bijective cone-bounded linear map, then

T−1 : Y → X is continuous.

For proof see [20]

Theorem 2.44. [27] (The closed graph theorem) If X and Y are two complete

TVS-cone normed spaces and T : X → Y is a linear map such that the graph of T

is

Gr(T ) = {(x, Tx) ∈ X × Y : x ∈ X}

is closed, then T is continuous.

For proof [20]

Theorem 2.45. [27] Suppose that (X, ∥ . ∥c) is a cone normed space and τc is

the cone topology on X. De�ne f : X → E by f(x) =∥ x ∥c, then f is (τc, ∥ . ∥)
continuous.

Proof. Let {xn} ⊆ X, x ∈ X and ∥ xn − x ∥c→ θ as n → ∞. Then by the triangle

inequality we have:

− ∥ xn − x ∥c≼∥ xn ∥c − ∥ x ∥c≼∥ xn − xn ∥c .

It follows from the sandwich theorem that limn→∞ ∥ xn ∥c=∥ x ∥c in E.
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2.5 Minkowski functional on solid vector space and

TVS-cone metrics

We will continue with properties of TVS-cone metric spaces, with functional view.

De�nition 2.46. [28] Let X be a real vector space and A ⊂ X such that for all

x ∈ X : there exist λ > 0 such that x ∈ λA (called absorbing). Then the functional

∥ . ∥: X → IR de�ned by:

∥ x ∥= inf{λ ≥ 0 : x ∈ λA}, is called Minkowski functional of A.

Lemma 2.47. [28] Let X be a solid vector space (X0 ̸= ϕ). Let ∥ . ∥: X → IR be

the Minkowski functional of [−b, b] for some vector b ∈ X with b ≻ 0. Then:

i: ∥ . ∥ is a monotone norm on X which can be de�ned as:

∥ x ∥= min{λ ≥ 0 : −λb ≤ x ≤ λb}.

ii: For x ∈ X and ϵ > 0,

∥ x ∥< ϵ⇔ −ϵb < x < ϵb.

For proof we refer the reader to [28].

Theorem 2.48. [28] Let (X, d) be a cone metric space over a solid vector space

(Y,≼). Suppose ∥ . ∥: Y → IR is the Minkowski functional of [−b, b] for some b ∈ Y

with b > 0. Then :

i: The metric ρ : X ×X → IR de�ned by ρ(x, y) =∥ d(x, y) ∥ generates the cone

metric topology on X.

ii The cone metric space (X, d) is complete if and only if the metric space (X, ρ)

is complete.

iii For xi, yi ∈ X and λi ∈ IR (i = 0, 1, ..., n),

d(x0, y0) ≼ λ0 + (
∑

i=1)
nλid(xi, yi) implies

ρ(x0, y0) ≤∥ λ0 ∥ +(
∑

i=1)
nλiρ(xi, yi).

Proof. i: It follows from (lemma 2.47 (i), and the de�nition of cone metric spaces)

that ρ is a metric on X. Denoting by B(x, ϵ) an open ball in (X, ρ) and by
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U(x, c) an open ball in (X, d), we shall prove that each B(x, ϵ) contains some

U(x, c) and vice versa. First, we shall show that

B(x, ϵ) = U(x, ϵb),∀x ∈ X, ϵ > 0 (2.1)

B(x, ϵ) = U(x, ϵb), for all x ∈ X and ϵ > 0.

According to 2.47(ii), for all x, y ∈ X and ϵ > 0,

∥ d(x, y) ∥< ϵ⇔ d(x, y) ≺ ϵb,

that is,

ρ(x, y) < ϵ⇔ d(x, y) ≺ ϵb (2.2)

which proves 2.1. Note that identity 2.1 means that every open ball in the

metric space (X, ρ) is an open ball in the cone metric space (X, d).

Now, let U(x, c) be an arbitrary open ball in (X, d). Choosing ϵ > 0 such that

ϵb ≺ c, we conclude by 2.1 that B(x, ϵ) ⊂ U(x, c).

ii: Let {xn} be a sequence in X. We have to prove that {xn} is a d-Cauchy if and
only if it is a ρ-Cauchy.

First note that 2.2 implies that for each ϵ > 0 and all m,n > N .

ρ(xn, xm) < ϵ⇔ d(xn, xm) ≺ ϵb.

Let {xn} be a d-Cauchy and ϵ > 0 be �xed.Then there is an integer N such

that d(xn, xm) ≺ ϵb for all m,n > N . Hence, ρ(xn, xm) < ϵ for all m,n > N

which means that {xn} is a ρ-Cauchy.

Now, let {xn} be a ρ-Cauchy and c ≻ 0 be �xed, Choose ϵ > o such that

ϵb ≺ c. Then there is an integer N such that d(xn, xm) < ϵ for all m,n > N .

Therefor, for these n and m we get d(xn, xm) ≺ ϵb ≺ c which means that {xn}
is a d-Cauchy.

iii: Follows from the monotony of the norm ∥ . ∥ and the de�nition of the metric

ρ.

Note that 2.1 holds also for closed ball in the spaces (X, ρ) and (X, d). The main

idea of theorem 2.48 formulated in the next theorem.
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Theorem 2.49. [28] Let (X, d) be a cone metric space over a solid vector space

(Y,≼). Then there exist a metric ρ on X such that the following statements hold

true:

i: The metric ρ generates the cone metric topology on X.

ii The cone metric space (X, d) is complete if and only if the metric space (X, ρ)

is complete.

iii For xi, yi ∈ X and λi ∈ IR (i = 0, 1, ..., n),

d(x0, y0) ≼ (
∑

i=1)
nλid(xi, yi) implies ρ(x0, y0) ≤ (

∑
i=1)

nλiρ(xi, yi).

We proved that every cone metric space is T2 space and �rst countable space,

and as every �rst countable space is sequential space( see [35]), that leads to, every

cone metric space is sequential space. The following corollary is a consequence of

2.49 :

Corollary 2.50. [28] Let (X, d) be a cone metric space over a solid vector space Y .

Then the following statements hold true.

i: A subset of X is open if and only if it is sequentially open.

ii: A subset of X closed if and only if it is sequentially closed.

iii: A function f : D ⊂ X × X is continuous if and only if it is sequentially

continuous.
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Chapter 3

Fixed Point Theorems in Cone

Metric Spaces

Fixed point theory occupies major place in cone metric space studies. Huang and

Zhang in [13] obtained various �xed point theorems for contractive single-valued

maps in cone metric spaces, also they studied the existence and uniqueness of the

�xed point. Subsequently, many mathematicians investigate more results about

�xed point theory.

In this chapter we will present some important results of �xed point theory, some

examples, common �xed point theorems in cone metric spaces, and �nally some

coupled �xed point theorems in cone metric spaces.

3.1 Some Concepts of Fixed Point Theory

De�nition 3.1. [10] Let (X, d) be a cone metric space and T, S : X → X two

functions. The mapping S is said to be T -contractive if for each x, y ∈ X such that

Tx ̸= Ty then: d(TSx, TSy) < d(x, y).

It is clear from the last de�nition that every T -contraction function is T -contractive,

and its clear from the next example that the converse is not true.

Example 3.2. : [10]

1: Let E = (C[0,1], IR), P = {γ ∈ E : γ ≥ 0} ⊂ E, X = [1,+∞),

and d : X × X → E de�ned by d(x, y) =| x − y | et, where et ∈ E. Then

(X, d) is a cone metric space. Let T, S : X → X be two functions de�ned by

Sx =
√
x and Tx = x. Then:
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i: S is a T -contractive function.

ii: S is not a T -contraction mapping.

2: Let E = (C[0,1], IR), P = {γ ∈ E : γ ≥ 0} ⊂ E, X = [0, 1
2
], and d : X×X → E

de�ned by d(x, y) =| x−y | et, where et ∈ E. Obviously (X, d) is a cone metric

space and the function S : X → X is de�ned by Sx = x2
√
2
is not contractive.

If T : X → X is de�ned by Tx = x2, then S is a T -contractive, because

d(TSx, TSy) =| TSx− TSy | et =| x
4

2
− y4

2
| et

1

2
| x2 + y2 || Tx− Ty | et

<| Tx− Ty | et = d(Tx, Ty).

De�nition 3.3. A vector valued function is a function where the domain is the set

of real numbers and the range is a set of vectors.

De�nition 3.4. f is said to be an alternating function if it changes the sign when-

ever two arguments are changed.

3.2 Fixed Point Theorems of Contractive Mappings

in Cone Metric Spaces

In this section we will study some �xed point theorems of contractive mappings in

cone metric spaces.

First, here is some de�nitions that we need in this section.

De�nition 3.5. [10] Let (X, d) be a cone metric space and T, S : X → X two

functions. A mapping S is said to be a T -contraction if there is a constant α ∈ [0, 1)

such that:

d(TSx, TSy) ≤ αd(Tx, Ty), for all x, y ∈ X.

One of the very popular tools of a �xed point theory is the Banach contraction

principle which �rst appeared in 1922 see [37]. It states that: if (X, d) is a complete

metric space and T : X → X is a contraction mapping, then T has a unique

�xed point.

Now, we will start with the �rst theorems that generalized some �xed point

theorems in metric spaces.
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Theorem 3.6. [13] Let (X, d) be a complete cone metric space, P be a normal cone

with normal constant k. Suppose the mapping T : X → X satis�es the contractive

condition:

d(Tx, Ty) ≤ kd(x, y), for all x, y ∈ X, where k ∈ [0, 1) is a constant. Then T has a

unique �xed point in X. And for any x ∈ X iterative sequence {T nx}∞n=1 converges

to the �xed point.

Proof. Choose x0 ∈ X. Set x1 = Tx0, x2 = Tx1 = T 2x0, ..., xn+1 = Txn = T n+1x0, ...

We have,

d(xn+1, xn) = d(Txn, Tn−1) ≤ kd(xn, xn−1) ≤ k2d(xn−1, xn−2) ≤ ... ≤ knd(x1, x0).

So, for n > m

d(xn, xm) ≤ d(xn, xn−1) + d(xn−1, xn−2) + ...+ d(xm+1, xm)

≤ (kn−1 + kn−2 + ...+ km)d(x1, x0) ≤
km

1− k
d(x1, x0).

We get ∥ d(xn, xm) ∥≤ km

1−k
K ∥ d(x1, x0) ∥ .

This implies d(xn, xm) → 0 as (n,m → ∞. Hence {xn} is a Cauchy sequence. By

the compactness of X, there is x∗ ∈ X such that xn → x∗ as n→ ∞. Since

d(Tx∗, x∗) ≤ d(Txn, Tx
∗) + d(Txn, x

∗) ≤ kd(xn, x
∗) + d(xn+1, x

∗).

∥ d(Tx∗, x∗) ∥≤ K(k ∥ d(xn, x∗) ∥ + ∥ d(xn+1, x
∗) ∥) → ∞.

Hence, d(Tx∗, x∗) = 0. This implies Tx∗ = x∗. So x∗ is a �xed point of T .

Now, for uniqueness, if y∗ is another �xed point of T , then

d(x∗, y∗) = d(Tx∗, T y∗) ≤ kd(x∗, y∗). Hence ∥ d(x∗, y∗) ∥= 0 and x∗ = y∗. Therefor

the �xed point of T is unique.

Corollary 3.7. [13] Let (X, d) be a complete cone metric space, P be a normal cone

with normal constant K. For c ∈ E with 0 ≪ c and x0 ∈ X,

set B(x0, c) = {x ∈ X : d(x0, x) ≤ c}.
Suppose the mapping T : X → X satis�es the contractive condition

d(Tx, Ty) ≤ kd(x, y), for all x, y ∈ B(x0, c) where k ∈ [0, 1)

and d(Tx0, x0) ≤ (1− k)c. Then T has a unique �xed point.
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Proof. For proof we only need to prove that B(x0, c) is complete and Tx ∈ B(x0, c)

for all x ∈ B(x0, c). Suppose {xn} is a Cauchy sequence in B(x0, c). Then {xn} is

also a Cauchy sequence in X. By the completeness of X, there is x ∈ X such that

xn → x as n→ ∞. We have

d(x0, x) ≤ d(xn, x0) + d(xn, x) ≤ d(xn, x) + c.

Since xn → x, d(xn, x) → 0. Hence d(x0, x) ≤ c, and x ∈ B(x0, c). Therefor B(x0, c)

is complete.

For every x ∈ B(x0, c)

d(x0, Tx) ≤ d(Tx0, x0) + d(Tx0, Tx) ≤ (1− k)c+ kd(x0, x) ≤ (1− k)c+ kc = c.

Hence Tx ∈ B(x0, c).
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The next two theorems also generalized another �xed point theorem of metric

spaces.

Theorem 3.8. [13] Let (X, d) be a sequentially compact cone metric space, P be a

regular cone. Suppose the mapping T : X → X satis�es the contractive condition

d(Tx, Ty) < d(x, y), for all x, y ∈ X and x ̸= y.

Then T has a unique �xed point in X.

For proof see [13]

Theorem 3.9. [13] Let (X, d) be a complete cone metric space , P a normal cone

with normal constant K. Suppose the mapping T : X → X satis�es the contractive

condition d(Tx, Ty) ≤ k(d(Tx, x) + d(Ty, y)), for all x, y ∈ X, where k ∈ [0, 1
2
) is

constant. Then T has a unique �xed point in X. And for any x ∈ X, the iterative

sequence {T nx}∞n=1 converges to the �xed point.

For proof see [13].

Theorem 3.10. [13] Let (X, d) be a complete cone metric space , P a normal cone

with normal constant K. Suppose the mapping T : X → X satis�es the contractive

condition d(Tx, Ty) ≤ k(d(Tx, y) + d(x, Ty)), for all x, y ∈ X, where k ∈ [0, 1
2
) is

constant. Then T has a unique �xed point in X. And for any x ∈ X, the iterative

sequence {T nx} converges to the �xed point.

For proof see [13].

Example 3.11. : [13] Let E = IR2, the Euclidean plane, and

P = {(x, y) ∈ IR2 : x, y ≥ 0} a normal cone.

Let X{(x, 0) ∈ IR2 : 0 ≤ x ≤ 1} ∪ {(0, x) ∈ IR2 : 0 ≤ x ≤ 1}.
The mapping d : X ×X → E is de�ned by :

d((x, 0), (y, 0)) = (
4

3
| x− y |, | x− y |),

d((0, x), (0, y)) = (| x− y |, 2
3
| x− y |),

d((x, 0), (0, y)) = d((0, y), (x, 0)) = (
4

3
x+ y, x+

2

3
y).

Then (X, d) is a complete cone metric space.

Let mapping T : X → X with T ((x, 0)) = (0, x) and T ((0, x)) = (1
2
x, 0). Then T
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satis�es the contractive condition:

d(T ((x1, x2)), T ((y1, y2))) ≤ kd((x1, x2), (y1, y2)), for all (x1, x2), (y1, y2) ∈ X, with

the constant k = 3
4
∈ [0, 1). It is obvious that T has a unique �xed point (0, 0) ∈ X.

On the other hand, we see that T is not a contractive mapping in the Euclidean

metric on X.

Theorem 3.12. [30] Let (X, d) be a complete cone metric space and the mapping

T : X → X satisfy the contractive condition

d(Tx, Ty) ≤ kd(x, y) + ld(y, Tx), for all x, y ∈ X, where k, l ∈ [0, 1) are constants.

Then T has a �xed point in X. Also, the �xed point of T is unique whenever k+l < 1.

Proof. For each x0 ∈ X and n ≥ 1, set x1 = Tx0 and xn+1 = Txn = T n+1x0. Then,

d(xn+1, xn) = d(Txn, Txn−1) ≤ k(d(xn, xn−1) + d(Txn−1, xn)) = kd(xn, xn−1) ≤
knd(x1, x0).

Thus for n > m, we have :

d(xn, xm) ≤ d(xn, xn−1) + d(xn−1, xn−2) + ... + d(xm+1, xm) ≤ (kn−1 + kn−2 + ... +

km)d(x1, x0) ≤ km

1−k
d(x1, x0). Let 0 ≪ c be given. Choose a natural number N1 such

that km

1−k
d(x1, x0) ≪ c for all m ≥ N1.

Thus ,d(xn, xm) ≪ c for n > m. Therefor, {xn}n≥1 is a Cauchy sequence in (X, d).

Since (X, d) is complete cone metric space, there exists x∗ ∈ X such that xn → x∗.

Choose a natural number N2 such that d(xn, x
∗) ≪ c

3
, for all n ≥ N2 we have :

d(Tx∗, x∗) ≤ d(xn, Tx
∗) + d(xn, x

∗) = d(Txn−1, Tx
∗) + d(xn, x

∗) ≤ kd(xn−1, x
∗) +

ld(Txn−1, x
∗) + d(xn, x

∗)

≤ d(xn−1, x
∗) + d(xn, x

∗) + d(xn, x
∗).

so,

d(Tx∗, x∗) ≪ c
3
+ c

3
+ c

3
= c.

Thus, d(Tx∗, x∗) ≪ c
m
, for all m ≥ 1. Hence, c

m
− d(Tx∗, x∗) ∈ P , for all m ≥ 1.

Since c
m

→ 0 as m → ∞ and P is closed, −d(Tx∗, x∗) ∈ P . But, d(Tx∗, x∗) ∈ P .

Therefor, d(Tx∗, x∗) = 0, and so Tx∗ = x∗.

Now, if y∗ is another �xed point of T and k + l < 1, then:

d(x∗, y∗) = d(Tx∗, y∗) ≤ kd(x∗, y∗) + ld(Tx∗, y∗) = (k + l)d(x∗, y∗).

Hence, d(x∗, y∗) = 0 and so x∗ = y∗. Therefor, the �xed point of T is unique

whenever k + l < 1.

In 2010 M.A.Khamsi [19] discuss the �xed point existence results of contractive

mappings, and shows that most of the new results that he got are merely copies of

the classical ones in metric spaces.
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One of the extensions for 3.6 was in [26] in 2008, after that in 2013 authors of [10]

made another extension and improvement for the same result.

Theorem 3.13. [10] Let (X, d) be a complete cone metric space, P be a normal cone

with normal constant K, in addition let T : X → X be an one to one and continuous

function, and R,S : X → X be pair of T -contraction continuous functions. Then:

i: For every x0 ∈ X, limn→∞ d(TR2n+1x0, TR
2n+2x0) = 0

and limn→∞ d(TS2n+2x0, TS
2n+3x0) = 0.

ii: There is α ∈ X such that limn→∞ TR2n+1x0 = α = limn→∞ TS2n+2x0.

iii: If T is subsequentially convergent, then {R2n+1x0} and {S2n+2x0} have a con-

vergent subsequences.

iv: There is a unique common �xed point u ∈ X such that Ru = uSu.(we will talk

about common �xed points in the next section)

v: If T is sequentially convergent, then for each x0 ∈ X the iterate sequences

{R2n+1x0} and {S2n+2x0} converges to u.

Proof. For every x1, x2 ∈ X,we have

d(Tx1, Tx2) ≤ d(Tx1, TRx1) + d(TRx1, TEx2) + d(TRx2, Tx2)

≤ d(Tx1, TRx1) + ad(Tx1, Tx2) + d(TRx2, Tx2).

so,

d(Tx1, Tx2) ≤
1

1− a
[d(Tx1, TRx1) + d(TRx2, Tx2)]. (3.1)

Now, choose x0 ∈ X and de�ne the picard iteration associated to R, {x2n+1} given

by :

x2n+2 = Rx2n+1 = R2n+1x0, n = 0, 1, 2, ... .

Similarly, associated to S, {x2n+2} is given by:

x2n+3 = Sx2n+2 = S2n+2x0, n = 0, 1, 2, ... .

Now, d(Tx2n+1, Tx2n+2) = d(TR2n+1x0, TR
2n+2x0) ≤ ad(TR2nx0, TR

2n+1x0),

hence,

d(TRn+1x0, TR
2n+2x0) ≤ a2n+1d(Tx0, TRx0). (3.2)

Similarly,

d(TS2n+2x0) ≤ b2n+2d(Tx0, TSx0).
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Since P is a normal constant K, from 3.2 we get

∥ d(TR2n+1x0, TR
2n+2x0) ∥≤ a2n+1K ∥ d(Tx0, TRx0) ∥

which implies: limn→∞ d(TR2n+1x0, TR
2n+2x0) = 0.

Therefor, for m,n ∈ IN with m > n, by 3.1 and 3.2 we have

d(Tx2n+1, Tx2m+1) = d(TR2n+1x0, TR
2m+1x0)

≤ 1

1− a
[d(TR2n+1x0, TR

2n+2x0) + d(TR2m+2x0, TR
2m+1x0)]

≤ 1

1− a
[a2n+1d(Tx0, TRx0) + a2m+1d(Tx0, TRx0)].

Hence, d(TR2n+1x0, TR
2m+1) ≤ a2n+1+a2m+1

1−a
d(Tx0, TR0).

Taking norm to inequality above, we obtain that

∥ d(TR2n+1x0, TR
2m+1) ∥≤ a2n+1 + a2m+1

1− a
K ∥ d(Tx0, TR0) ∥

Consequently

lim
n,m→∞

d(TR2n+1x0, TR
2m+1x0) = 0. (3.3)

which prove(i).On the other hand, 3.3 implies that {TR2n+1x0} is a Cauchy sequence
in X. By the completeness of X, there is α ∈ X such that

lim
n→∞

TR2n+1x0 = α (3.4)

Proving in this way assertion (ii). Now, if T is subsequentially convergent, then

{R2n+1x0} has a convergent subsequence. So, there exist u ∈ X and {(2n + 1)i}∞i=1

such that

lim
i→∞

R(2n+1)ix0 = u (3.5)

Since T is continuous we have limi→∞ TR(2n+1)ix0 = Tu From 3.4 we conclude that

Tu = α. Since R is continuous, and also by 3.5 then, limi→∞R(2n+1)i+1x0 = Ru as

well as limi→∞ TR(2n+1)i+1x0 = TRu. Again by 3.4, the following equality holds

limi→∞ TR(2n+1)i+1x0 = α. Hence, TRu = α = Tu. Since T is injective, then Ru = u.

So, R has �xed point. Therefor assertion (iii), is proved.

On the other hand, since T is one to one and R is a T -contraction, R has a unique

�xed point, i.e conclusion (iv).

Finally, if T is sequentially convergent, {R2n+1x0} is convergent to u,

that is limn→∞R2n+1x0 = u. Proving in this way conclusion (v). Similarly, it can be

proved that all �ve assertion for T -contraction function S.

Hence, u is a unique �xed common point of R and S.
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Theorem 3.14. [26] Let (X, d) be a compact cone metric space, P be a normal

cone with normal constant K, and T, S : X → X functions such that T is injective,

continuous and S is a T -contractive mapping. Then,

i: S has a unique �xed point.

ii: For any x0 ∈ X the sequence iterates {Snx0} converges to the �xed point of S.

Proof. We �rst are going to show that S is continuous function. Let limn→∞ xn = x,

we want to prove that limn→∞ Sxn = Sx. Since S is T -contractive, we get

d(TSxn, TSx) ≤ d(xn, x), so, ∥ d(TSxn, TSx) ∥≤ K ∥ d(Txn, Tx) ∥ .
Now, since T is continuous, we have limn→∞ ∥ d(TSxn, TSx) ∥= 0,

also limn→∞ d(TSxn, TSx) = 0, therefor,

lim
n→∞

TSxn = TSx. (3.6)

Let {Sxn} be an arbitrary convergent subsequence of {xn}. There is a y ∈ X such

that limn→∞ Sxni
= y.

By continuity of T we infer,

lim
n→∞

TSxni
= Ty. (3.7)

By 3.6 and 3.7 we conclude that TSx = Ty. Since T is one to one then, Sx = y.

Hence, every convergent subsequence of {Sxn} converges to Sx. From the fact that

X is a compact cone metric space, we arrive to the conclusion that S is a continuous

function.

Now, because of T and S are continuous functions, then the function φ : X → P

de�ned by φ(y) = d(TSy, Ty), for all y ∈ X, is continuous on X and from compact-

ness of X, the function φ attains its minimum, say at x ∈ X.

If Sx ̸= x, then φ(Sx) = d(TS2x, TSx) < d(TSx, Tx) = φ(x), which is a contradic-

tion, So Sx = x proving in this part (i).

Choose x0 ∈ X and set an = d(TSnx0, Tx). Since

an+1 = d(TSn+1x0, Tx) = d(TSn+1x0, TSx) ≤ d(TSnx0, Tx) = an.

Then {an} is non increasing sequence of non negative real numbers, and so it has a

limit, say a, that is

a = limn→∞ an or limn→∞ d(TSn+1x0, Tx) = a.

By compactness, {TSnx0} has a convergent subsequence {TSnix0} i.e

lim
n→∞

TSnix0 = z (3.8)
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From the sequentially convergent of T , there exists w ∈ X such that

limn→∞ Snix0 = w so,

lim
n→∞

TSnix0 = Tw (3.9)

By 3.8 and 3.9, tw = z. Then d(Tw, Tx) = a. Now we will show that Sw = x. If

Sw ̸= x, then

a lim
n→∞

d(TSnx0, Tx) = lim
n→∞

d(TSnix0, Tx) = d(TSw, Tx)

= d(TSw, TSx) < d(Tw, Tx) = a

which is a contradiction. In this way, we get that Sw = x and hence,

a = limn→∞ d(TSni+1x0, Tx) = d(TSw, Tx) = 0 Therefor, limn→∞ TSnix0 = Tx.

Finally condition T sequentially convergent implies limn→∞ Snx0 = x, which implies

the proof.

3.2.1 Examples

In this short section we will introduce some examples in cone metric spaces of func-

tions have �xed point, and functions that have not �xed points.

Example 3.15. [26] Let E = (C[0,1], IR), P = {φ ∈ E : φ ≥ 0} ⊂ E,X = [1,+∞)

and d : X ×X → E de�ned by d(x, y) =| x− y | et, where φ(t) = et ∈ E.

Then (X, d) is a complete cone metric space. Now we will consider the following

functions,

T, S : X → X de�ned by Tx = 1 + lnx and Sx =
√
x. It is clear that S is not a

contraction mapping, but it is a T -contraction because,

d(TSx, TSy) =| TSx− TSy | et = 1

2
| lnx− ln y | et

=| Tx− Ty | et ≤ 1

2
d(Tx, Ty).

Also, T is one to one, continuous and subsequentially convergent. Therefor, by the-

orem 3.13 T has a unique �xed point,y.

Example 3.16. [26] Let E = (C[0,1], IR), P = {φ ∈ E : φ ≥ 0} ⊂ E, X = IR and

d : X × X → E de�ned by d(x, y) =| x − y | et, where et ∈ E. Then (X, d) is a

complete cone metric space.

Let T, S : X → X be two functions de�ned by Tx = e−x and Sx = 2x+ 1.
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It is clear that S is a T -contraction, but T is not subsequentially convergent, because

Tn → 0 as n → ∞ but the sequence {n} has not any convergent subsequence and S

has not a �xed point.

This example shows that we can not omit the sequentially convergence of the

function T in the theorem 3.13 (v).

Example 3.17. [26] Let E = (C[0,1], IR), P = {φ ∈ E : φ ≥ 0} ⊂ E, X = [0, 1] and

d : X ×X → E de�ned by d(x, y) =| x − y | et, where et ∈ E. It clear that X is a

compact cone metric space.

Let T, S : X → X be two functions de�ned by Tx = x2 and Sx = x2
√
2
.

Satisfy that T is injective and continuous, whereas S is a T -contractive. So by the-

orem 3.14 we have that S has a unique �xed point, x = 0.

3.3 Common Fixed Point Theorem in Cone Metric

spaces

The study of common �xed points of mappings satisfying certain contractive con-

ditions has been at the center of vigorous research activity. For more about �rst

appearance of common �xed point theorems untill 2008 we refer the reader to in-

troduction of [1], the authors of [1] presented and obtained several coincidence and

common �xed point theorems for mappings de�ned on a cone metric space. After

that authors of [15] made a generalization of preceding �xed point theorems on

complete cone metric spaces. After that many mathematicians introduced di�erent

functions and prove �xed and common �xed point theorems, as MS-altering function

in [24, 9], weakly compati/ble see [1, 16].

In this section we will give de�nitions of coincidence point, weakly compatible, and

altering function. And we will introduce some important common �xed point theo-

rems.

De�nition 3.18. [16] Let f and g be self mappings of a set X. If w = fx = gx for

some x ∈ X, then x is called a coincidence point of f and g, and w is called a point

of coincidence of f and g.

De�nition 3.19. [24] A function f : P → P is called subadditive if for all x, y ∈ P ,

f(x+ y) ≤ f(x) + f(y).
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De�nition 3.20. [24] If Y be any partially ordered set with relation ≤ and

ψ : Y → Y , we say that ψ is non decreasing if

x, y ∈ Y , x ≤ y ⇒ ψ(x) ≤ ψ(y).

De�nition 3.21. [16] Two self mappings f and g of a set X are said to be weakly

compatible if they commute at their coincidence points; that is, if fu = gu for some

u ∈ X, then fgu = gfu.

Proposition 3.22. [1] Let f and g be weakly compatible self mappings of a set X.

If f and g have a unique point of coincidence w = fx = gx, then w is the unique

�xed common �xed point of f and g.

Proof. Since w = fx = gx and f and g are weakly compatible, we have fw = fgx =

gfx = gw: i.e,fw = gw is a point of coincidence of f and g. But w is the only point

of coincidence of f and g, so w = fw = gw. Moreover if z = fz = gz, then z is

a point of coincidence of f and g, and therefor z = w by uniqueness. Thus w is a

unique common �xed point of f and g.

Theorem 3.23. [16] Let (X, d) be a cone metric space, and P be a normal cone with

normal constant K. Suppose that the mappings f, g : X → X satisfy the contractive

condition:

d(fx, fy) ≤ r[d(fx, gy) + d(fy, gx) + d(fx, gx) + d(fy, gy)]

where r ∈ [0, 1
4
) is a constant. If the range of g contains the range of f , and g(X)

is complete subspace of X, then f and g have a unique coincidence point in X.

Moreover, if f and g are weakly compatible, then f and g have a unique common

�xed point.

Proof. Let x0 be an arbitrary point in X. Then, since fX ⊂ gX, we choose a point

x1 ∈ X such that f(x0) = g(x1). Continuing in this process , having chosen xn ∈ X,

we obtain xn+1 ∈ X such that f(xn) = g(xn+1). Then, d(gn+1, gxn) = d(fxn, fxn−1)

≤ r[d(fxn, gxn−1) + d(fxn−1, gxn) + d(fxn, gxn) + d(fxn−1, gxn−1)]

≤ 2r[d(gxn+1, gxn) + d(gxn, gxn−1)].

So, we have d(gxn+1, gxn) ≤ hd(gxn, gxn−1), with h = 2r
1−2r

.

Now, for n > m, we get

d(gxn, gxm) ≤ d(gxn, gxn−1) + d(gxn−1, gxn−2) + ...+ d(gxm+1, gxm)
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≤ (hn−1 + hn−2 + ...+ hm)d(gx1, gx0)

≤ hm

1− h
d(gx1, gx0),

using the normality of cone P , implies that

∥ d(gxn, gxm) ∥≤
hm

1− h
K ∥ d(gx1, gx0) ∥ .

Then, d(gxn, gxm) → 0 as n,m → ∞, and so, {gxn} is a Cauchy sequence in X.

Since g(X) is a complete subspace of X, so there exists q ∈ g(X) such that gxn → q,

as n→ ∞. Consequently, we can �nd p ∈ X such that g(p) = q. Thus,

d(gxn, fp) = d(fxn−1, fp) ≤ r[d(fxn−1, gp) + d(fp, gxn−1) + d(fxn−1, gxn−1) +

d(fp, gp)] Using the normality of cone P , implies that

∥ d(gxn, fp) ∥≤ Kr ∥ d(gxn−1, gp) ∥= 0, as n→ ∞.

Hence, d(gxn, fp) → 0 as n → ∞. Also, we have d(gxn, gp) → 0 as n → ∞. The

uniqueness of limit in a cone metric space implies that f(p) = g(p). Again, we show

that f and g have a unique point of coincidence.

For this possible, assume that there exists an another point t ∈ X such that

f(t) = g(t). Then, we have

d(gt, gp) = d(ft, fp) ≤ r[d(ft, fp) + d(fp.gt) + d(ft, gt) + d(fp, gp).

Now, using the normality of cone P , implies that ∥ d(gt, gp) ∥= 0, and so, we have

gt = gp. Finally, using 3.22, we conclude that f and g have a unique common �xed

point.

Example 3.24. [16] Let E = I2, for I = [0, 1], P = {(x, y) ∈ E : x, y ≥ 0} ⊂ I2,

d : I × I → E

such that d(x, y) = (| x − y |, α | x − y |), where α > 0 is a constant. De�ne

fx = αx
1+αx

, for all x ∈ I and gx = αx for all x ∈ I. Then, for α = 1, both

the mappings f and g are weakly compatible and satisfy all conditions of the above

theorem with x = 0 as a unique common �xed pint.

De�nition 3.25. [24] Let ψ : P → P be a vector valued function then ψ is called

MS-Altering function if

i: ψ is non decreasing, subadditive, continuous and sequentially convergent.

ii: ψ(a) = 0 if and only if a = 0.
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By replacing conditions (i) and (ii) by weaker conditions, de�ne cone altering

function as :

De�nition 3.26. [24] Let P be a normal cone and ψ : P → P be a vector valued

function then ψ is called cone altering function if

i: ψ is non decreasing and subadditive.

ii: ψ(an) → 0 if and only if an → 0, for any sequence {an} ∈ P .

Note that as for such ψ on normal cone P , ψ(a) = 0 ⇔ a = 0. For the main

theorem in cone metric space by altering distances we need the following lemmas

and proposition, for there proves see [24].

Lemma 3.27. [24] Let (X, d) be a cone metric space and P be a normal cone in a

real Banach space E, ψ is a cone altering function, and k1, k2, k3 > 0. If xn → x,

yn → y in X and ka ≤ k1ψ[d(xn, x)] + k2ψ[d(yn, y)], then a = 0.

Lemma 3.28. [24] Let (X, d) be a cone metric space with normal cone P , and

f, g : X → X be mappings such that, for all x, y ∈ X

ψ[d(fx, fy)] ≤ a1ψ[d(gx, gy)]+a2ψ[d(fx, gx)]+a3ψ[d(fy, gy)]+a4ψ[d(fx, gy)]+a5ψ[d(fy, gx)]

(3.10)

where ai, i = 1, 2, 3, 4, 5 are nonnegative constants such that a1+a2+a3+a4+a5 < 1

and ψ is a cone altering function. If f and g have a point of coincidence then it is

unique.

Theorem 3.29. [24] Let (X, d) be a cone metric space with normal cone P , and

f, g : X → X be mappings, ψ : P → P is a cone altering function such that,

f(X) ⊂ g(X), for all x, y ∈ X, 3.10 is satis�ed and f(X) or g(X) is complete,

then f and g have a unique point of coincidence. Furthermore, if (f, g) is weakly

compatible pair then f, g have a unique common �xed point.

Proof. Let x0 ∈ X be arbitrary, we de�ne sequence {yn} such that yn = fxn = gxn+1

for all n ≥ 0.

If yn = yn+1 for any n, then yn = ym for all m > n, hence {yn} is Cauchy sequence.

If yn ̸= yn+1 for all n, then from 3.10 we have

ψ[d(fxn+1, fxn)] ≤ a1ψ[d(gxn+1, gxn)]+a2ψ[d(fxn+1, gxn+1)]+a3ψ[d(fxn, gxn)]+a4ψ[d(fxn+1, gxn)]+a5ψ[d(fxn, gxn+1)]ψ[d(yn+1, yn)] ≤ a1ψ[d(yn, yn−1)]+a2ψ[d(yn+1, yn)]+a3ψ[d(yn, yn−1)]+a4ψ[d(yn+1, yn−1
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writing dn = d(yn, yn+1) we have

ψ[dn] ≤ a1ψ[dn−1] + a2ψ[dn] + a3ψ[dn−1] + a4ψ[dn] + a4ψ[dn−1] (3.11)

(1− a2 − a4)ψ[dn] ≤ (a1 + a3 + a4)ψ[dn−1] (3.12)

using symmetry of 3.10 in x, y we have

(1− a3 − a5)ψ[dn] ≤ (a1 + a2 + a5)ψ[dn−1] (3.13)

Combining (3.12) and (3.13)

ψ[dn] ≤
2a1 + a2 + a3 + a4 + a5
2− (a2 + a3 + a4 + a5

ψ[dn−1] = λψ[dn−1]

and so, ψ[dn] ≤ λnψ[d0], where λ = 2a1+a2+a3+a4+a5
2−(a2+a3+a4+a5

< 1.

If m > n, we have

ψ[d(yn, ym)] ≤ ψ[d(yn, yn+1)] + ψ[d(yn+1, yn+2)] + ...+ ψ[d(ym−1, ym)]

≤ ψ[dn] + ψ[dn+1] + ...+ ψ[dm−1]

≤ λnψ[d0] + λn+1ψ[d0] + ...+ λm−1ψ[d0]

≤ λn

1− λ
ψ[d0]

Since 0 ≤ λ < 1 hence by normality of the cone P ,

∥ ψ[d(yn, ym)] ∥≤ Kλn

1−λ
∥ ψ[d0] ∥→ 0, therefor, ψ[d(yn, ym)] → 0 and so, d(yn, ym) →

0 hence {yn} is a Cauchy sequence. Let f(X) is complete then since yn = fxn =

gxn+1 and {yn} is Cauchy in f(X), so it must be convergent in f(X). Let yn →
u ∈ f(X) ( note that it is also true if g(X) is complete with u ∈ g(X) ). Since

u ∈ f(X) ⊂ g(X), let u ∈ g(v) for some v ∈ X.

We show that gv = fv. Now by 3.10

ψ[d(fv, u)] ≤ ψ[d(fv, fxn)] + ψ[d(fxn, u)]

≤ a1ψ[d(gv, gxn)]+a2ψ[d(fv, gv)]+a3ψ[d(fxn, gxn)]a4ψ[d(fv, gxn)]+a5ψ[d(fxn, gv)]+ψ[d(fxn, u)]

= a1ψ[d(u, yn−1)]+a2ψ[d(fv, u)]+a3ψ[d(yn, yn−1)]+a4ψ[d(fv, yn−1)]+a5ψ[d(yn, u)]+ψ[d(yn, u)]

(1− a2 − a4)ψ[d(fv, u)] ≤ (a1 + a3 + a4)ψ[d(u, yn−1)] + (a3 + a5 + 1)ψ[d(yn, u)]
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Hence by lemma 2.1, ψ[d(fv, u)] = 0 and so d(fv, u) = 0 i.e. fv = u = gv. Thus

u is point of coincidence of f and g, hence by lemma 2.2it is unique. Furthermore,

if pair f, g) is weakly compatible then by 3.22, u is unique common �xed point of f

and g.

There were an extension in [10] for theorem 3.14 in section 3.2, the following

theorem shows that

Theorem 3.30. [10] Let (X, d) be a compact cone metric space, P be a normal cone

with normal constant K, in addition let T : X → X is injective and continuous

function and R, S : X → X be a pair of T -contractive mappings, then:

i: R and S have a unique common �xed point.

ii: For any x0 ∈ X the iterate sequences {R2n+1x0} and {S2n+2x0} converges to

the common �xed point of R and S.

Proof. First, we are going to show that R and S are continuous functions. Let

limn→∞ x2n+1 = x. We want to prove that limn→∞Rx2n+1 = Rx. Since R is T -

contractive, we get d(TRx2n+1, TRx) ≤ d(Tx2n+1, Tx)

so, ∥ d(TRx2n+1, TRx) ∥≤ K ∥ d(Tx2n+1, Tx) ∥ .
Now, since T is continuous, we have limn→∞ ∥ d(TRx2n+1, TRx) ∥= 0

also limn→∞ d(TRx2n+1, TRx) = 0. Therefor,

lim
n→∞

TRx2n+1 = TRx.

Let {Rx(2n+1)i} be an arbitrary convergent subsequence of {x2n+1}. There is a

y ∈ X such that limn→∞RX(2n+1)i = y.

By the continuity of T we have;

lim
n→∞

TRX(2n+1)i = Ty (3.14)

By 3.3 and 3.14 we conclude that TRx = Ty. Since T is one to one then, Rx = y.

Hence, every convergent subsequence of {Rx2n+1} converge to Rx. From the fact

that X is compact cone metric space, we get the conclusion that R is a continuous

function. Similarly we can show that S is also a continuous function.

Now, because of T and R are continuous functions, then the function γ : X → P ,
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de�ned by γ(y) = d(TRy, Ty), for all y ∈ X, is continuous on X and from the

compactness of X, the function γ attains its minimum, say at x ∈ X.

If Rx ̸= x, then γ(Rx) = d(TR3x, TRx) < d(TRx, Tx) = γ(x) which is a contradic-

tion. So Rx = x. Similarly we have Sx = x, proving part (i).

Choose x0 ∈ X and set a2n+1 = d(TR2n+1x0, Tx).

Since a2n+2 = d(TR2n+2x0, Tx) = d(TR2n+2x0, TRx) ≤ d(TR2n+1x0, Tx) = a2n+1,

then {a2n+1} is a non increasing sequence of non negative real numbers and so it

has a limit, say a, that is

a = limn→∞ a2n+1 or limn→∞ d(TR2n+1x0, Tx) = a.

By compactness, {TR2n+1x0} has a convergent subsequence {TR(2n+1)ix0} i.e.

lim
n→∞

TR(2n+1)ix0 = Z (3.15)

from the sequentially convergent of T , there exists w ∈ X such that limn→∞R(2n+1)ix0 =

w. So,

lim
n→∞

TR(2n+1)ix0 = Tw. (3.16)

By 3.15 and 3.16, Tw = Z. Then d(Tw, Tx) = a.

Now, we are going to show that Rw = x. If Rw ̸= x, then

a = lim
n→∞

d(TR2n+1x0, Tx)

= lim
n→∞

d(TR(2n+1)ix0, Tx)

= d(TRw, TRx)

< d(Tw, Tx) = a

which is a contradiction. In this way, we get that Rw = x and hence

a = limn→∞ d(TR(2n+1)i+1x0, Tx) = d(TRw, Tx) = 0.

Therefor, limn→∞ TR2n+1x0 = Tx. Finally condition T sequentially convergent

implies limn→∞R2n+1x0 = x. Similarly it can be established that

limn→∞ S2n+2x0 = x, which means that the iterate sequences {R2n+1x0} and {S2n+2x0}
converges to the common �xed point of R and S.
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3.4 Some Coupled Fixed Point Theorems in Cone

Metric Spaces

In 1987 Guo and Lakshmikantham introduced the concept of coupled �xed point

for partially ordered set. By using the concept of mixed monotone property (Gnana

Bhaskar and Lakshmikantham 2006 studied the existence and uniqueness of a cou-

pled �xed point result in partially ordered metric space, and introduced the concept

of a mixed monotone property for the �rst time and gave their classical coupled �xed

point theorems for mappings which satisfy the mixed monotone property, see[18].

After that many researchers studied the coupled �xed point and discussed its appli-

cation. See introduction of [33].

In this section we will introduce some coupled �xed point theorems in ordered metric

spaces (which is play a major role to prove the existence and uniqueness of solutions

for some di�erential and integral equations) see introduction of [29], some coupled

�xed point theorems for mappings satisfy some contractive conditions on complete

cone metric spaces, and coupled �xed point theorems for weak contractions under

F -Invariant.

De�nition 3.31. [36] Let (X,⊑) be a partial ordered set. A mapping F : X×X →
X is said to have a mixed monotone property if F is monotone non-decreasing in

its �rst argument and is monotone non-increasing in its second argument, that is,

for any x, y ∈ X

x1, x2 ∈ X, x1 ⊑ x2 ⇒ F (x1, y) ⊑ F (x2, y),

y1, y2 ∈ X, y1 ⊑ y2 ⇒ F (x, y1) ⊒ F (x, y2).

De�nition 3.32. [36] Let (X, d) be a cone metric space, then a function q : X×X →
E is called a c-distance on X if:

i: q(x, y) ≽ θ.∀x, y ∈ X.

ii: q(x, y) ≼ q(x, z) + q(z, y).

iii: ∀x ∈ X, ∃u = ux ∈ P such that q(x, yn) ≼ u for each n ∈ IN then, q(x, y) ≼ u

whenever {yn} is a sequence in X converging to y ∈ X.

iv: ∀c ∈ E with θ ≼ c ∃e ∈ E with θ ≼ e such that q(z, x) ≼ e and q(z, y) ≼ c

⇒ d(x, y) ≼ c.
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De�nition 3.33. [32]Let (X, d) be a cone metric space. An element (x, y) ∈ X×X

is said to be a coupled �xed point of the mapping F : X × X → X if F (x, y) = x

and F (y, x) = y.

Example 3.34. [37] Let X = [0,∞) and F : X ×X → X be de�ned by

F (x, y) = x+ y for all x, y ∈ X. Then, F has a unique coupled �xed point (0, 0).

De�nition 3.35. [29] Let F : X×X → X and g : X → X. An element (x, y) ∈ X2

is called a coupled coincidence point of F and g

if F (x, y) = gx and F (y, x) = gy.

While (gx, gy) ∈ X2 is said a coupled point of coincidence of mappings F and g.

Moreover, (x, y) is called a coupled common �xed point of F and g if

F (x, y) = gx = x and F (y, x) = gy = y.

3.5 Coupled Fixed Point Under F-Invariant Set

First we will start with some important de�nitions and examples.

De�nition 3.36. [36] Let (X, d) be a cone metric space and F : X × X → X a

given mapping. Let M be a nonempty subset of X4. One says that M is F -invariant

subset of X4 if and only if,

for all x, y, z, w ∈ X, one has

i: (x, y, z, w) ∈M ⇔ (w, z, y, x) ∈M ;

ii: (x, y, z, w) ∈M ⇔ (F (x, y), F (y, x), F (z, w), F (w, z)) ∈M.

From the last de�nition we obtain that the set M = X4 is trivially F -invariant.

Example 3.37. [18] Let (X, d) be a cone metric space endowed with a partially

order ⊑. Let F : X×X → X be a mapping satisfying the mixed monotone property;

that is, for all x, y ∈ X, we have

x1, x2 ∈ X, x1 ⊑ x2 ⇒ F (x1, y) ⊑ F (x2, y)

and

y1, y2 ∈ X, y1 ⊑ y2 ⇒ F (x, y1) ⊒ F (x, y2).

De�ne M = {(a, b, c, d) : c ⊑ a, b ⊑ d} ⊆ X4. Then, M is F -invariant of X4.
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Theorem 3.38. [36] Let (X, d) be a complete cone metric space. Let q be a c-

distance on X, M a nonempty subset of X4, and F : X × X → X a continuous

function such that

q(F (x, y), F (x∗, y∗)) ≼ k

2
(q(x, x∗) + q(y, y∗))

for some k ∈ [0, 1) and all x, y, x∗, y∗ ∈ X with

(x, y, x∗, y∗) ∈M or (x∗, y∗, x, y) ∈M .

If M is F -invariant and there exist x0, y0 ∈ X such that

(F (x0, y0), F (y0, x0), x0, y0) ∈M

Then F has a coupled �xed point (u, v). Moreover, if (u, v, u, v) ∈M , then q(v, v) = θ

and q(u, u) = θ.

For proof see [36].

Authors of [18] show the weakness of theorem 3.38 with an example, and give

an extension of 3.38. We will start with the example.

Example 3.39. [18] Let E = C1
IR[0, 1] with ∥ x ∥E=∥ x ∥∞ + ∥ x′ ∥∞ and

P = {x ∈ E, x(t) ≥ 0, t ∈ [0, 1]}. Let X = [0,∞) (with the usual order⊑), and let

d = X ×X → E be de�ned by:

d(x, y)(t) =| x− y | 2t. Then (X, d) is a complete cone metric space.

Let, further, q : X ×X → E be de�ned by q(x, y)(t) = y2t. It is easy to check that

q is a c-distance. Consider the mapping F : X ×X → X by:

F (x, y) =

{
3
5
(x+ y), ifx ≥ y

0, ifx < y

Let M = X4 and so M is an F -variant subset of X. Now, we show that there is no

k ∈ [0, 1) for which theorem 3.38 holds.

To prove this, suppose the contrary; that is, there is k ∈ [0, 1) such that

q(F (x, y), F (x∗, y∗)) ≼ k

2
(q(x, x∗) + q(y, y∗))

for all x, y, x∗, y∗ ∈ X with (x, y, x∗, y∗) ∈M or (x∗, y∗, x, y) ∈M .

Take x = 0, y = 1, x∗ = 1 and y∗ = 0. Then

q(F (0, 1), F (1, 0))(t) ≼ k

2
(q(0, 1) + q(1, 0))(t)
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This implies F (1, 0)2t = 3
5
2t ≼ k

2
2t.

Hence, k ≥ 6
5
is a contradiction. therefor, there is no k for which theorem 3.38

holds.Moreover, for y1 =
1
3
and y2 =

1
2
,

we have for x = 1, we get y1 = 1
3
⊑ 1

2
= y2 but F (x, y1) =

4
5
⊑ 9

10
= F (x, y2). So,

the mapping F does not satisfy the mixed monotone property.

Lemma 3.40. [18] Let (X, d) be a cone metric space and q be a c-distance on X. Let

{xn} and {yn} be sequences in X and x, y, z ∈ X. Suppose that {un} is a sequence

in P converging to θ. Then the following holds:

i: If q(xn, y) and q(xn, z) ≼ un, then y = z.

ii: If q(xn, yn) and q(xn, z) ≼ un, then {yn} converges to a point z ∈ X.

iii: If q(xn, xm) ≼ un for each m > n, then {xn}is a Cauchy sequence in X.

iv: If q(y, xn) ≼ un, then {xn} is a Cauchy sequence in X.

Now, we will provide the extension of 3.38.

Theorem 3.41. [18] Let (X, d) be a complete cone metric space. Let q be a c-

distance on X, M be a nonempty subset of X4 and F : X×X → X be a continuous

function such that

q(F (x, y), F (x∗, y∗)) + q(F (y, x), F (y∗, x∗)) ≼ k(q(x, x∗) + q(y, y∗))

for some k ∈ [0, 1) and all x, y, x∗, y∗ ∈ X with (x, y, x∗, y∗) ∈M or

(x∗, y∗, x, y) ∈M. If M is F -invariant and there exist x0, y0 ∈ X such that

(F (x0, y0), F (y0, x0), x0, y0) ∈M,

then, F has a coupled �xed point (u, v). Moreover, if (u, v, u, v) ∈M , then q(u, u) = θ

and q(v, v) = θ.

Proof. Since F (X ×X) ⊆ X, we can construct two sequences {xn} and {yn} in X

such that

xn = F (xn−1, yn−1)andyn = F (yn−1, xn−1) (3.17)

for all n ∈ IN . Since (F (x0, y0), F (y0, x0), x0, y0) = (x1, y1, x0, y0) ∈ M and M is

F -invariant set, we get

(F (x1, y1), F (y1, x1), F (x0, y0), F (y0, x0)) = (x2, y2, x1, y1) ∈M.
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Again, using the fact that M is F -invariant set, we have

(F (x2, y2), F (y2, x2), F (x1, y1), F (y1, x1)) = (x3, y3, x2, y2) ∈M.

By repeating the argument similar to the above, we get

(F (xn−1, yn−1), F (yn−1, xn−1), xn−1, yn−1) = (xn, yn, xn−1, yn−1) ∈M

For all n ∈ IN . From theorem 3.41, we have

q(xn, xn+1) + q(yn, yn+1) ≼ q(F (xn−1, yn−1), F (xn, yn)) + q(F (yn−1, xn−1), F (yn, xn))

≼ k(q(xn−1, xn), q(yn−1, yn)).

We repeat the above process for n-times, we get

q(xn, xn+1) + q(yn, yn+1) ≼ kn(q(x0, x1) + q(y0, y1)) (3.18)

From 3.18, we can conclude that

q(xn, xn+1) ≼ kn(q(x0, x1)+ q(y0, y1)) and, q(yn, yn+1) ≼ kn(q(x0, x1)+ q(y0, y1)) Let

m,n ∈ IN with m > n.

Since q(xn, xm) ≼
∑m−1

i=n q(xi, xi+1) q(yn, ym) ≼
∑m−1

i=n q(yi, yi+1) and 0 ≤ k < 1, we

have

q(xn, xm) ≼ kn

1−k
(q(x0, x1) + q(y0, y1)) and

q(yn, ym) ≼ kn

1−k
(q(x0, x1) + q(y0, y1)) Using lemma 3.40, we have {xn} and {yn} are

Cauchy sequences in (X, d).

By completeness of X, we get xn → u and yn → v as n→ ∞ for some u, v ∈ X.

Since F is continuous, taking n→ ∞ in 3.17, we get

lim
n→∞

xn+1 = lim
n→∞

F (xn, yn) = F ( lim
n→∞

xn, lim
n→∞

yn = F (u, v)

and

lim
n→∞

yn+1 = lim
n→∞

F (yn, xn) = F ( lim
n→∞

yn, lim
n→∞

xn = F (v, u)

By the uniqueness of the limits, we get u = F (u, v) and v = Fv, u). Therefor, (u, v)

is a coupled �xed point of F .

Finally, we assume that (u, v, u, v) ∈M . By theorem 3.41, we have

q(u, u) + q(v, v) = q(F, (u, v), F (v, u)) + q(F (v, u), F (u, v)) ≼ k(q(u, u) + q(v, v)).

Since 0 ≤ k < 1, we conclude that q(u, u) + q(v, v) = θ and hence q(u, u) = θ and

q(v, v) = θ.
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Remark 3.42. [18] Refering to example 3.39, we obtain that the mapping F has a

coupled �xed point.

Indeed, for all x, y, x∗, y∗ ∈ X with

(x, y, x∗, y∗) ∈M or (x∗, y∗, x, y) ∈M

we have

q(F (x, y), F (x∗, y∗)) + q(F (y, x), F (y∗, x∗)) ≼ 3

5
(q(x, x∗) + q(y, y∗)).

Also, we note that there exists points 0, 1 ∈ X such that (F (0, 1), F (1, 0), 0, 1) ∈M .

Thus, by theorem 3.41, we have F has a coupled �xed point that is a point (0, 0).

Theorem 3.43. [18] In addition to the hypotheses of theorem 3.41, suppose that for

any two elements x and y in X, we have

(y, x, x, y) ∈M or (x, y, y, x) ∈M .

Then, the coupled �xed point has the form (u, u), where u ∈ X.

Proof. As in the proof of theorem 3.41, there exists a coupled �xed point (u, v) ∈
X ×X. Hence, u = F (u, v) and v = F (v, u).

Moreover, q(u, u) = θ and q(v, v) = θ if (u, v, v, u) ∈M .

From the addition hypothesis, we have (u, v, v, u) ∈ M or (v, u, u, v) ∈ M . By

theorem 3.41 we get:

q(u, v) + q(v, u) = q(F (u, v), F (v, u) + q(F (v, u), F (u, v)) ≼ k(q(u, v) + q(v, u)).

Since 0 ≤ k < 1, we get q(u, v) + q(v, u) = θ. Therefor, q(u, v) = θ and q(v, u) = θ.

Let un = θ and xn = u. Then q(xn, u) ≼ un and q(xn, v) ≼ un.

From example 3.40, we have u = v. Therefor, the coupled �xed point of F has the

form (u, u). This completes the proof.

Theorem 3.44. [18] Let (X, d) be a complete cone metric space. Let q be a c-

distance on X, M be a subset of X4 and

F : X ×X → X be a function such that

q(F (x, y), F (x∗, y∗)) + q(F (y, x), F (y∗, x∗)) ≼ k(q(x, x∗) + q(y, y∗)) (3.19)

for some k ∈ [0, 1) and all x, y, x∗, y∗ ∈ X with (x, y, x∗, y∗) ∈M

or (x∗, y∗, x, y) ∈M. Also, suppose that

i: there exist x0, y0 ∈ X such that (F (x0, y0), F (y0, x0), x0, y0) ∈M.
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ii: Two sequences {xn}, {yn}with (xn+1, yn+1, xn, yn) ∈ M for all n ∈ IN and

{xn} → x, {yn} → y, then (x, y, xn, yn) ∈M for all n ∈ IN .

If M is an F -invariant set, then F has a coupled �xed point. Moreover,

if (u, v, u, v) ∈M , then q(u, u) = θ and q(v, v) = θ.

Proof. As in the proof of theorem 3.41, we have that {xn} and {yn} in X such that

(xn, yn, xn−1, yn−1) ∈M for all n ∈ IN . Moreover, we have that {xn} converges to a

point u ∈ X and {yn} converges to v ∈ X,

q(xn, xm) ≼
kn

1− k
(q(x0, x1) + q(y0, y1))

and

q(yn, ym) ≼
kn

1− k
(q(x0, x1) + q(y0, y1))

for each m > n ≥ 1. Since q is a c-distance, we have

q(xn, u) ≼
kn

1− k
(q(x0, x1) + q(y0, y1))

and

q(yn, v) ≼
kn

1− k
(q(x0, x1) + q(y0, y1))

and so

q(xn, u) + q(yn, v) ≼
2kn

1− k
(q(x0, x1) + q(y0, y1)) (3.20)

By assumption (ii), we have (u, v, xn, yn) ∈M . From 3.19 and 3.20, we have

q(xn, F (u, v))+q(yn, F (v, u)) = q(F (xn−1, yn−1), F (u, v))+q(F (yn−1, xn−1), F (v, u))

≼ k(q(xn−1, u) + q(yn−1, v))

≼ k.
2kn−1

1− k
(q(x0, x1) + q(y0, y1))

=
2kn

1− k
(q(x0, x1) + q(y0, y1)).

Therefor, we have

q(xn, F (u, v)) ≼
2kn

1− k
(q(x0, x1) + q(y0, y1))

and

q(yn, F (v, u)) ≼
2kn

1− k
(q(x0, x1) + q(y0, y1))
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From 3.20, we get

q(xn, u) ≼
2kn

1− k
(q(x0, x1) + q(y0, y1))

and

q(yn, v) ≼
2kn

1− k
(q(x0, x1) + q(y0, y1))

Since 3.5, 3.5, 3.5 and 3.5 hold, by using lemma 3.40, we get u = F (u, v) and

v = F (v, u).

Therefor, (u, v) is a coupled �xed point of F . The proof of q(u, u) = θ and q(v, v) = θ

is the same as the proof in 3.41. This completes the proof.

Theorem 3.45. [18] In addition to the hypothesis of theorem 3.44, suppose that for

any two elements x and y in X, we have

(y, x, x, y) ∈M or (x, y, y, x) ∈M .

Then the coupled �xed point has the form (u, u), where u ∈ X.

The proof the same as proof of theorem 3.43. The next corollary considered as

an direct result from theorem 3.41.

Corollary 3.46. [18] Let (X,⊑) be a partially ordered set and suppose that (X, d)

is a complete cone metric space. Let q be a c-distance on X and F : X ×X → X be

a continuous function having the mixed monotone property such that

q(F (x, y), F (x∗, y∗)) + q(F (x, y), F (x∗, y∗)) ≼ k(q(x, x∗) + q(y, y∗))

for some k ∈ [0, 1) and all x, y, x∗, y∗ ∈ X with

(x ⊑ x∗) ∧ (y ⊒ y∗) or (x ⊒ x∗) ∧ (y ⊑ y∗). If there exist x0, y0 ∈ X such that

x0 ⊑ F (x0, y0) and F (y0, x0) ⊑ y0,

then F has a coupled �xed point (u, v). Moreover, we have q(v, v) = θ and q(u, u) =

θ.

Proof. Let M = {(a, b, c, d) : c ⊑ a, b ⊑ d} ⊆ X4. We obtain that M is an F -

invariant set. By3.46, we have

q(F (x, y), F (x∗, y∗)) + q(F (y, x), F (y∗, x∗)) ≼ k(q(x, x∗) + q(y, y∗))

for some k ∈ [0, 1) and all x, y, x∗, y∗ ∈ X with (x, y, x∗, y∗) ∈ M or (x∗, y∗, x, y) ∈
M . Now, all the hypotheses of theorem 3.41 holds. Thus, F has a coupled �xed

point.
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