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Abstract

The Automorphism group of a linear code is a very useful concept in determining

the structure of the code, computing weight distribution of a code, classifying codes

as well as devising decoding algorithm. In this thesis we study the automorphism

group of Hamming codes, Cyclic codes, Reed-Muller codes, Generalized Reed-Muller

codes, A�ne Invariant codes, and primitive narrow sense BCH codes. In fact, our

work is a survey of the main results of the automorphism groups of these codes.
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 ملخص الرسالة

 

تعد زمر التشاكل الداخمي لمشيفرة الخطية مفهوما مفيدا لمغاية في تحديد 
و حساب توزيعات الوزن لها وكذلك في  هيكل الشيفرة الخطية )الكود (

هذه تصنيف الشيفرات الخطية و أيضا وضع خوارزمية فك التشفير. في 
 الأطروحة تم دراسة زمر التشاكل الداخمي لبعض الشيفرات الخطية المهمة. 
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Introduction

Historical Background

The history of data-transmission codes began in 1948 with the publication of a fa-

mous paper by Claude Shannon 'A Mathematical Theory of Communication' that

give birth to the twin disciplines of information theory and coding theory. Shannon

showed that associated with any communication channel or storage channel is a

number C (measured in bits per second), called the capacity of the channel, which

has the following signi�cance: Whenever the information transmission rate R (in

bits per second) required of a communication or storage system is less than C then,

by using a data-transmission code, it is possible to design a communication system

for the channel whose probability of output error is as small as desired. Shannon,

however, did not tell us how to �nd suitable codes; his contribution was to prove

that they exist and to de�ne their role.

An interesting concept in coding theory is to �nd explicit codes which reach the

limits predicted by Shannon's original work. From that date of Shanon's paper,

many constructions of 'good codes' have been done using various techniques from a

surprisingly wide range of pure mathematics: linear algebra, the theory of �elds and

algebraic geometry.

Throughout the 1950s, much e�ort was devoted to �nding explicit constructions for

classes of codes. The �rst block codes were introduced in 1950 when Hamming de-

scribed a class of single-error-correcting block codes and he published what is now

known as Hamming code, which remains in use in many applications today.

In 1957, Among the �rst codes used practically were the cyclic codes which were

generated using shift registers. It was quickly noticed by Prange that the cyclic codes

have a rich algebraic structure, the �rst indication that algebra would be a valuable

tool in code design.

In the 1960s, the major advances came in 1960 when Hocquenghem and Bose and

Ray-Chaudhuri found a large class of multiple-error-correcting codes (the BCH

codes). The discovery of BCH codes led to a search for practical methods of de-

signing the hardware or software to implement the encoder and decoder. In the

same year independently, Reed, Solomon and Arimoto found a related class of codes

for nonbinary channels. Concatenated codes were introduced by Forney (1966), later

Justesen used the idea of a concatenated code to devise a completely constructive

class of long block codes with good performance.
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During the 1970s, these two avenues of research began to draw together in some

ways and to diverge further in others. Meanwhile, Goppa (1970) de�ned a class of

codes that is sure to contain good codes, though without saying how to identify the

good ones.

Not only has coding theory helped to solve problems of vital importance in the

world outside mathematics, it also has enriched other branches of mathematics, with

new problems as well as new solutions.

Outline of the Chapters

Chapter 1: This chapter includes important concepts from coding theory and �eld theory

that are crucial to the rest of the thesis. Important concepts such as some

de�nitions related to coding theory like binary codes, generating and parity-

check matrices, some lower and upper bounds on the parameters of codes,

how to construct new codes from old ones, examples of linear codes such as

cyclic codes, Hamming codes and some basic codes, �nally at the rest of this

chapter we study a small portion of �eld theory, which began with the work of

Carl Friedrich Gauss (1777-1855) and Evariste Galois (1811-1832). For a more

complete introduction to �nite �eld, we �nd it in [35].

Chapter 2: This chapter consist of four sections, in the �rst section we explain the con-

cept of automorphism groups of linear codes. We de�ne the concepts of code

equivalence, permutation matrix, the automorphism of the dual code and its

relation with the automorphism of group of the code and examples of auto-

morphism group of some codes. In the second section of this chapter we study

the automorphism groups of binary codes, for example, we notice that the

automorphism group of binary Hamming code of length n = 2m− 1 is isomor-

phic to the general linear group GLm(2). In the third section we concentrate

on the automorphism groups of cyclic codes and we introduce some interesting

theorems which described the automorphism groups of these codes. In the last

section we discuss the permutation automorphism groups of q−ary Hamming

codes and we conclude that its automorphism groups is isomorphic to the

unitriangular group UTm(q).

Chapter 3: This chapter consists of four sections. In the �rst section we introduce the
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concepts of Reed-Muller codes, while in the second section we give the auto-

morphism groups of these codes. Later in the third section we give the de�ni-

tion of Generalized Reed-Muller codes and some of their relatives. Finally in

the fourth section we discuss the automorphism groups of Generalized Reed-

Muller codes, for example we see that the automorphism groups of q − ary

Reed-Muller code of order m(q − 1)− v is the general linear group GL(m, q).

Chapter 4: Here we introduce the concept of a�ne invariant codes of length pm acting

on Fpm . This class of codes includes codes of great interest such as extended

narrow-sense BCH-codes. We give some results that are specially important

when the alphabet is an extension �eld. Finally, in the last section we give the

automorphism groups of extended narrow-sense BCH-codes de�ned over any

extension �eld.

viii
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Chapter 1

Preliminaries

In this chapter, we will introduce the objects which will appear in the thesis,

putting in evidence some useful properties and relations.

1.1 Notions about linear codes

In this section we give basic notions and de�nitions related to linear codes.

De�nition 1.1. [39] let Fq be a �nite �eld and Fnq is an n−dimensional vector space
over Fq. We de�ne a q− ary[n, k] linear code to be a k−dimensional linear subspace
of Fnq . The parameter n is called the length of the code and k the dimension of the

code. The elements of the code are called codewords.

A binary linear code C of length n is a set of binary n−tuples such that the

componentwise modulo 2 sum of any two codewords is contained in C.

Example 1.2. The following are linear codes:

(1) C = {(λ, λ, ..., λ) : λ ∈ Fq}. This code is often called a repetition code

(2) C = {000, 001, 010, 011, 100, 101, 110, 111}.

There are two standard ways to describe a k−dimensional linear subspace: one

by means of k-independent basis vectors, the other uses n− k linearly independent

equations.
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Chapter 1. Preliminaries 3

De�nition 1.3. [3] Let C be an [n, k]linear code over Fq. We de�ne a generator

matrix G of C to be a k × n matrix whose rows form a basis of C. A parity check

matrix H of C is an (n− k)×n matrix over Fq with rank n− k which satis�es: For

every c ∈ Fnq , c ∈ C ⇔ HcT = 0.

The generator matrix of an [n, k] linear code is said to be in the standard (sys-

tematic) form if it is of the form (Ik | A), where A is a k × (n − k) matrix. The

corresponding parity check matrix in the standard form is of the shape (−AT | In−k).

Example 1.4. The matrix G = [I4|A], where

G =


1 0 0 0 0 1 1

0 1 0 0 1 0 1

0 0 1 0 1 1 0

0 0 0 1 1 1 1


is a generator matrix in standard form for a [7, 4] binary code that we denote by H3,

and with a parity check matrix

H =

 0 1 1 1 1 0 0

1 0 1 1 0 1 0

1 1 0 1 0 0 1


This code is called the [7, 4] Hamming code.

Theorem 1.5. [1] Let C ⊂ Fnq be a linear code of type [n, k]q with generator matrix

G and parity check matrix H. Then c ∈ C if and only if cHT = 0.

Any generator matrix can be transformed to standard form by elementary row

operations and column permutation.

Let u = (u1, ..., un) and v = (v1, ..., vn) be vectors inFnq , we de�ne the inner

product as 〈u,v〉 =
∑n

i=1 uivi.

De�nition 1.6. [3] Let C be an [n, k] linear code with parity check matrix H. The

[n, n− k] linear code generated by H is called the dual code of C and denoted C⊥.

The hull of the code is de�ned to be C ∩ C⊥ and denoted by H(C).

Example 1.7. If C is a binary [5, 3] code with generator matrix,

G =

1 0 1 1 0

1 1 0 1 0

0 1 0 0 1


3



Chapter 1. Preliminaries 4

then we can reduce G to standard form as

G =

1 0 0 1 1

0 1 0 0 1

0 0 1 0 1

 .
And the parity-check matrix for C is

H = [AT |Ik] =

[
1 0 0 1 0

1 1 1 0 1

]
.

The elements of the dual code C⊥ are linear combinations of the rows of H,

C⊥ = {00000, 10010, 11101, 01111}.

The code C is called weakly self-dual if C ⊆ C⊥ and is called self-dual if C = C⊥.

Suppose C is an [n, k] self-dual code, then n must be even and it must satisfy n = 2k.

In case of weakly self-dual n > 2k. Note that, in both cases, self-dual and weakly

self-dual, the code is equal to its hull.

De�nition 1.8. [13] Let u = (u1, ..., un) and v = (v1, ..., vn) be vectors in Fnq then

we de�ne the Hamming distance dH between u and v as follows: dH(u,v) = ]{i :

ui 6= vi}. Hamming weight of a vector u is wt(u) = dH(u,0).

Thus the Hamming distance represents the number of coordinates that they

di�er between the two vectors or codeword where Hamming weight is the number

of coordinates that di�er from zero in the vector. Thus dH(u,v) = wt(u− v). Thus

we de�ne the minimum distance d of a code C as follows:

De�nition 1.9. [13] The minimum distance d of a code C is de�ned as follows

d = min{dH(u, v) : u, v ∈ C, u 6= v}.

Theorem 1.10. [3] The minimum distance of a linear code C is equal to the mini-

mum weight of C.

Proof. Since C is linear with x and y in C also x − y is in C. The theorem now

follows from the two observations:

d(x, y) = d(x− y, 0) = wt(x− y),

wt(x) = d(x, 0)

which state that the distance between any two distinct codewords is equal to the

weight of some nonzero codeword and vice versa.

4



Chapter 1. Preliminaries 5

Example 1.11. The binary linear code C = {0000, 1000, 0100, 1100}, then we have

wt(1000) = 1,

wt(0100) = 1,

wt(1100) = 2.

Hence d(C) = 1.

De�nition 1.12. [34] Let C be an [n, k]q code and let Ai be the number of words of

C of weight i. The sequence {Ai}n0 is called the weight distribution of C.

Example 1.13. If C is a binary code with generator matrix

G =

1 1 0 0 0 0

0 0 1 1 0 0

0 0 0 0 1 1

 .
Then the elements of C is are linear combinations of the rows of G

C = {000000, 110000, 111100, 110011, 001100, 001111, 000011, 111111}.

The weight distribution of C is A0 = A6 = 1 and A2 = A4 = 3.

De�nition 1.14. Let C be a linear code of length n over Fq, and let u ∈ Fnq be any

vector of length n; we de�ne the coset of C determined by u to be the set

C + u = {v + u : v ∈ C}(= u+ C).

1.2 Some Bounds On Codes

In this section we introduce some important bounds of a code.

1.2.1 The Singleton Bound

Theorem 1.15. [9] (Singleton Bound) For any [n, k, d]-linear code over Fq we have
d ≤ n− k+ 1. An [n, k, d]-linear code is called Maximum Distance Separable, MDS,

if d = n− k + 1.

5



Chapter 1. Preliminaries 6

1.2.2 The Sphere Packing Bound (Hamming Bound)

Let w be a codeword of an [n, k, d] code de�ned over Fq. A sphere of radius t and

center w in Fnq is the set of words in Fnq at Hamming distance t or less from w. The

number of words in the sphere is given by

Vq(n, t) =
t∑
i=0

(
n

i

)
(q − 1)i

Theorem 1.16. [3] (Sphere-Packing Bound) For any [n, k, d]linear code over Fq we
have:

Vq(n, b
d− 1

2
c) ≤ qn−k

An [n, k, d]linear code is called perfect if it satis�es the upper limit of the in-

equality, i.e., Vq(n, bd−1
2
c) = qn−k.

De�nition 1.17. [9] Let n, d be positive integers with d ≤ n. Then the number

Aq(n, d) denote the maximum number of codewords in a code over Fq of length n

and distance d. This maximum, when restricted to linear code, is denoted by Bq(n, d).

Theorem 1.18. Let q be a prime. q−ary codes which satisfy the sphere packing

bound have dimension qr, r ∈ Z+

1.2.3 The Gilbert- Varshamov Bound

Theorem 1.19. [5] (The Gilbert- Varshamov Bound) Let n, k and d be integer

satisfying 2 ≤ d ≤ n and 1 ≤ k ≤ n. If

d−2∑
i=0

(
n− 1

i

)
(q − 1)i < qn−k,

then there exist an [n, k, d]−linear code over Fq with minimum distance at least d.

1.3 Modifying Codes

Given C an [n, k, d]−linear code we show how to construct other codes from C. The

resulting codes sometimes are great importance in many places.

6



Chapter 1. Preliminaries 7

1.3.1 Punctured Codes

Let C be an [n, k] linear code over Fq. We puncture C in the coordinate i by deleting

the coordinate i in all codewords of C. The resulting code is called the punctured

code of C at coordinate i and denoted C∗. The generator matrix of C∗ is obtained

from the generator matrix of C by deleting column i. Puncturing can be done in

a set of coordinates {i1, ..., it} with t < n. Sometimes puncturing is done in such a

way that we preserve the length of the code. Thus we replace coordinate i by zero

in all codewords instead of deleting the coordinate. The following theorem gives the

length and the minimum distance of the punctured code.

Theorem 1.20. [3] Let C be an [n, k, d] linear code over Fq and let C∗ be the

punctured code at coordinate i then we have two cases

(i) if d > 1, C∗ is an [n−1, k, d∗] linear code where d∗ = d−1 if C has a minimum

weight codeword with a nonzero ith coordinate; otherwise d∗ = d.

(ii) if d = 1, C∗ is an [n−1, k, 1]linear code if C has no codeword of weight 1 whose

nonzero entry in coordinate i; otherwise, if k > 1, C∗ is an [n − 1, k − 1, d∗]

code with d∗ ≥ 1.

Example 1.21. Let C be the [5, 2, 2] binary code with generator matrix

G =

[
1 1 0 0 0

0 0 1 1 1

]

Let C∗1 and C∗5 be the code C punctured on coordinate 1 and 5, respectively. They

have generator matrices

G∗1 =

[
1 0 0 0

0 1 1 1

]
and G∗5 =

[
1 1 0 0

0 0 1 1

]

So C∗1 is [4, 2, 1] code, while C∗5 is a [4, 2, 2] code.

1.3.2 Shortened Codes

Theorem 1.22. [5] (Subcodes) Suppose there is an [n, k, d]linear code over Fq. Then
there exists an [n, k − r, d] linear code over Fq for any 1 ≤ r ≤ k − 1.

7



Chapter 1. Preliminaries 8

Let C be an [n, k, d] code over Fq and let T be any set of t coordinates. Consider

the set C(T ) of codewords which are 0 on T ; this set is a subcode of C. Puncturing

C(T ) on T gives a code over Fq of length n− t called the code shortened on T and

denoted CT .

There is a strong connection between the punctured and shortened codes that is

captured by the following theorem.

Theorem 1.23. [3] Let C be an [n, k, d] code over Fq and let T be a set of t coor-

dinates then we have

(1) (C⊥)T = (C∗)⊥ and (C⊥)∗ = (CT )⊥, and

(2) if t < d, then C∗ and (C⊥)T have dimensions k and n− t− k, respectively;

(3) if t = d and T is the set of coordinates where a minimum weight codeword

is nonzero, then C∗ and (C⊥)T have dimensions k − 1 and n − d − k + 1,

respectively.

Example 1.24. Let C be the [6, 3, 2] binary code with generator matrix

G =

1 0 0 1 1 1

0 1 0 1 1 1

0 0 1 1 1 1


C⊥ is also a [6, 3, 2] code with generator matrix

G⊥ =

1 1 1 1 0 0

1 1 1 0 1 0

1 1 1 0 0 1


If the coordinates are labeled 1, 2, ..., 6, let T = {5, 6}. Generator matrices for the

shortened code CT and punctured code CT are

GT =

[
1 0 1 0

0 1 1 0

]
G∗ =

1 0 0 1

0 1 0 1

0 0 1 1


Shortening and puncturing the dual code gives the code (C⊥)T and (C⊥)T , which

have generator matrices

(G⊥)T =
[
1 1 1 1

]
(G⊥)∗ =

[
1 1 1 1

1 1 1 0

]

8



Chapter 1. Preliminaries 9

From the generator matrices GT and GT , we �nd that the dual of CT and CT have

generator matrices

(GT )⊥ =

[
1 1 1 0

0 0 0 1

]
(G∗)⊥ =

[
1 1 1 1

]
Thus for this example we have shown that (C⊥)T = (C∗)⊥ and (C⊥)∗ = (CT )⊥.

1.3.3 Extended Codes

A linear code C can be extended to other linear codes of bigger length by adding

new coordinates. There are many ways to do that but the most common way is to

add new coordinate in such a way all codewords sum up to zero. We denote the

extended code by Ĉ.

Ĉ = {(c1, c2, ..., cn+1) : (c1, c2, ..., cn) ∈ C,
n+1∑
i=1

ci = 0}.

If C is an [n, k, d] binary code, then the extended code Ĉ contains only even weight

codewords and it has parameters [n + 1, k, d̂] where d̂ = d if d is even and equals

d + 1 if d is odd. The generator matrix of Ĉ can be obtained from the generator

matrix of C by adding extra column to the end so that the sum of each row is zero.

Example 1.25. If we puncture the binary code C with generator matrix

G =

[
1 1 0 0 1

0 0 1 1 0

]
on its last coordinate and then extend (on the right), the resulting code has generator

matrix

G =

[
1 1 0 0 0

0 0 1 1 0

]
In this example, our last step was to extend a binary code with only even weight code-

words. The extended coordinate was always 0. In general, that is precisely happens

when we extend a code that has only even-like codewords.

1.3.4 Direct Sums

For i ∈ {1, 2} let Ci be an [ni, ki, di]code, both over the same �nite �eld Fq. Then
their direct sum is the [n1 + n2, k1 + k2,min{d1, d2}]code.

C1 ⊕ C2 = {(c1, c2)|c1 ∈ C1, c2 ∈ C2}.

9



Chapter 1. Preliminaries 10

It has generator matrix Gi and parity check matrix Hi, where

G1 ⊕G2 =

(
G1 0

0 G2

)
, H1 ⊕H2 =

(
H1 0

0 H2

)
are generator matrix and parity check matrix for C1 ⊕ C2.

Example 1.26. Let

C1 = {000, 110, 101, 011}

be a binary [3, 2, 2]linear code, and let

C2 = {0000, 1111}

be a binary [4, 1, 4]linear code. Then

C1⊕C2 = {0000000, 1100000, 1010000, 0110000, 0001111, 1101111, 1011111, 0111111}

is a binary [7, 3, 2]linear code.

The disadvantage of the direct sum construction is that the distance is not in-

creased at all. In the next construction, this is improved:

1.3.5 The (u|u+ v) Construction

Let Ci be [n, ki, di] linear codes of the same length over Fq, i ∈ {1, 2}, (u|u + v)

construction will give the linear code

C = {(u, u+ v) : u ∈ C1, v ∈ C2}.

The code C is [2n, k1 + k2,min{2d1, d2}] linear code. [3] Its generator and check

matrices are (
G1 G1

0 G2

)
,

(
H1 0

−H1 H2

)
respectively.

Example 1.27. Let

C1 = {000, 110, 101, 011}

be a binary [3, 2, 2] linear code and let

C2 = {000, 111}

be a binary [3, 1, 3] linear code. Then the (u|u+ v) construction is

C = {000000, 110110, 101101, 011011, 000111, 110001, 101010, 011100}

is a binary [6, 3, 3] linear code.

10
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1.4 Important Classes of Linear Codes

In this section we introduce important types of codes that are extensively used in

practice, that is due to their structures, they have very nice properties, very easy

encoding and in principle quite easy decoding.

1.4.1 Some Basic Linear Codes

Recall that a linear code with length n over Fq is a vector subspace of Fnq . We begin

with some simple examples of binary linear codes.

De�nition 1.28. [25]

(i) An [n, 0] code, consisting of just the all-zero codeword, called the no informa-

tion code.

(ii) The repetition code C = {(x, ..., x︸ ︷︷ ︸
n

)|x ∈ Fq} is a linear code. So the binary

repetition code is an [n, 1, n]2 code consisting of the two vectors 0 and 1

(iii) An [n, n−1] code, consisting of all vectors {c0, c1, · · · , cn−1} such that
∑

i ci =

0, called the single parity-check code.

(iv) An [n, n] code, consisting of all vectors of length n, called the no parity code.

De�nition 1.29. [25] A code C is called even if all of its codewords have even

weight: wt(c) ≡ 0 (mod 2) for all c ∈ C.

Proposition 1.30. If d ≥ 2 is an even integer and a linear [n, k, d] code exists, then

there exists an even [n, k, d] linear code.

Proof. If C is a linear [n, k, d] code, the code produced by puncturing C in one

coordinate has parameters [n − 1, k, d or d − 1]. Adding a parity check bit to all

codewords, we obtain an even [n, k, d] code.

Corollary 1.31. If d ≥ 2 is even and even linear [n, k, d] codes do not exist, then

no [n, k, d] code exist.

De�nition 1.32. [25] (The binary parity check code) This is an [n, n− 1, 2]2 code

consists of all vectors in Fn2 of even Hamming weight.

11
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1.4.2 Cyclic codes

An algebraic correspondence

De�nition 1.33. [39] An [n, k, d]q linear code C is cyclic if the cyclic shift of a

word is also a word, i.e.

(c0, ..., cn−1) ∈ C =⇒ (cn−1, c0, ..., cn−2) ∈ C.

To describe algebraic properties of cyclic codes, we need to introduce a new struc-

ture. We consider the univariate polynomial ring Fq[x] and the ideal I = 〈xn − 1〉.
We denote by R the ring Fq[x]/I. We construct a bijective correspondence between

the vectors of (Fq)n and residue classes of polynomials in R:

v = (v0, ..., vn−1)←→ v0 + v1x+ ...+ vn−1x
n−1.

We can view linear codes as subsets of the ring R, thanks to the correspondence

below. The following theorem points out the algebraic structure of cyclic codes.

Theorem 1.34. [9] Let C be an [n, k, d] code, then C is cyclic if and only if C is

an ideal of R.

Proof. Multiplying by x modulo xn − 1 corresponds to a cyclic shift:

(c0, c1, ..., cn−1) → (cn−1, c0, ..., cn−2)

x(c0 + c1x+ ...+ cn−1x
n−1) = cn−1 + c0x+ ...+ cn−2x

n−2.

Since R is a principal ideal ring, if C is not trivial there exists a unique monic

polynomial g(x) that generates C. We call g(x) the generator polynomial of C.

Note that g(x) divides xn − 1 in Fq[x]. If the dimension of the code C is k, the

generator polynomial has degree n − k. A generator matrix can be given by using

the coe�cients of the generator polynomial g(x) =
∑n−k

i=0 gix
i :

G =


g(x)

xg(x)
...

xk−1g(x)

 =


g0 g1 · · · gn−k 0 · · · 0

0 g0 · · · gn−k−1 gn−k · · · 0
...

...
. . . . . .

...
. . .

...

0 · · · 0 g0 g1 · · · gn−k

 (1.1)

12
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Moreover, a polynomial f in R belongs to the code C if and only if there exists q

in R such that qg = f. Since the generator polynomial is a divisor of xn − 1 and is

unique, the parity-check polynomial of C is well de�ned as the polynomial h(x) in

R such that h(x) = (xn − 1)/g(x). The parity-check polynomial provides a simple

way to check if an f(x) in R belongs to C, since

f(x) ∈ C ⇔ f(x) = q(x)g(x)⇔ f(x)h(x) = q(x)(g(x)h(x)) = 0 in R.

Proposition 1.35. [9] Let h(x) and g(x) be, respectively, the parity-check and the

generator polynomial of the cyclic code C. The dual code C⊥ is cyclic with generator

polynomial

g⊥(x) = xdeg(h)h(x−1).

Proof. See [9].

Zeros of cyclic codes

Cyclic codes of length n over Fq are generated by divisors of xn − 1. Let

xn − 1 =
r∏
j=1

fj, fj irreducible over Fq.

Then to any cyclic code of length n over Fq there corresponds a subset of {fj}rj=1.

A very interesting case is when gcd(n, q) = 1. Let F = Fqm be the splitting �eld of

xn−1 over Fq and let α be a primitive nth root of unity over Fq. Then xn−1 factors

completely over Fqm as

xn − 1 =
n−1∏
i=0

(x− αi).

In this case the generator polynomial of C has powers of α as roots. We remember

that, given g ∈ Fq[x], if g(αi) = 0 then g(αqi) = 0.

De�nition 1.36. [39] Let C be an [n, k, d] cyclic code with generator polynomial

gC , with gcd(n, q) = 1. The set

SC,α = SC = {i1, ..., in−k|gC(αij) = 0, j = 1, ..., n− k}

is called the complete defining set of C.

13
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De�nition 1.37. [5] The cyclotomic coset of q modulo n containing i is:

Ci = {(i · qj (mod n)) ∈ Zn : j = 0, 1, ....}.

A subset {i1, ..., it} of Zn is called a complete set of representatives of cyclotomic

cosets of q modulo n.

We can collect the integers modulo n into q−cyclotomic classes Ci :

{0, ..., n− 1} =
⋃

Ci, Ci = {i, qi, ..., qri},

where r is the smallest positive integer such that i ≡ iqr(mod n). So the complete

de�ning set of a cyclic code is collection of q−cyclotomic classes. So we �x a primitive

nth root of unity α and we write SC,α = SC . A cyclic code is de�ned by its complete

de�ning set, since

C = {c ∈ R|c(αi) = 0, i ∈ SC} ⇔ gC =
∏
i∈SC

(x− αi).

By this fact it follows that

H =


1 αi1 α2i1 · · · α(n−1)i1

1 αi2 α2i2 · · · α(n−1)i2

...
...

...
. . .

...

1 αin−k α2in−k · · · α(n−1)in−k


is a parity-check (de�ned over Fqm ) matrix for C, since

HcT =


c(αi1)

c(αi2)
...

c(αin−k)

 = 0⇔ c ∈ C.

Remark 1.38. H maybe de�ned over Fqm , but C is its nullspace over Fq.
We note that, as SC is partitioned into cyclotomic classes, there are some subsets

S ′C of SC any of them su�cient to specify the code unambiguosly and we call any

such S ′C a defining set.

14
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1.4.3 Examples of cyclic codes

Hamming and Simplex Codes

De�nition 1.39. A code which attains the Hamming bound is called a perfect code.

In other words, a code is said to be perfect if for every possible vector v in (Fq)n

there is a unique word c ∈ C such that dH(v, c) ≤ t. Let C be an [n, n−r, d] code with

parity-check matrix H ∈ (Fq)r×n. We denote by {Hi}ni=1 the set of columns of H.

We observe that if two columns Hi, Hj belongs to the same line in (Fq)r (i.e. Hj =

λHi), then the vector

c = (0, ..., 0, −λ︸︷︷︸
i

, 0, ..., 0, 1︸︷︷︸
j

, 0, ..., 0)

belongs to C, since HcT = 0. Then d(C) ≤ 2. On the other hand, if we construct

a parity-check matrix H such that the columns Hi belong to di�erent lines, the

corresponding linear code has distance at least 3.

De�nition 1.40. A Hamming Code is a linear code for which the set of columns

of H ∈ (Fq)r×n contains exactly one element di�erent from zero of every line in

(Fq)r.

By the de�nition above, given two columns Hi, Hj of H, there exists a third

column Hk of H, and λ ∈ Fq such that Hk = λ(Hi +Hj). This fact implies that

c = (0, ..., 0, −λ︸︷︷︸
i

, 0..., −λ︸︷︷︸
j

, 0, ..., 0, 1︸︷︷︸
k

, 0, ..., 0)

is a word, and hence the minimum distance of a Hamming code is 3. In the vector

space (Fq)r there are n = qr−1
q−1

distinct lines, each with q− 1 elements di�erent from

zero. Hence:

De�nition 1.41. [5] Let t be a positive integer. A code C is t-error-correcting if

minimum distance is able to correct t or fewer errors. A code C is exactly t-error-

correcting if it is t-error-correcting but not (t+ 1)-error-correcting.

Example 1.42. Consider the binary code C = {000, 111}. Then we see that:

• if 000 is sent and one error occurs in the transmission, then the received word

(100, 010 or 001) will be decoded to 000;

15
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• if 111 is sent and one error occurs in the transmission, then the received word

(110, 101 or 011) will be decoded to 111.

In all cases, the single error has been corrected. Hence, C is 1-error-correcting. If

at least two errors occur, the decoding rule may produce the wrong codeword. For

instance, if 000 is sent and 011 is received, then 011 will be decoded to 111 using the

minimum distance rule. Hence, C is exactly 1-error-correcting.

Proposition 1.43. A Hamming code of redundancy (r > 2) over the �eld Fq, is a
linear [qr − 1

q − 1
,
qr − 1

q − 1
− r, 3,

]
code and it is a perfect 1-error-correcting code.

Proof. see [42].

Example 1.44. Let C be the [7, 4, 3]2 code with parity-check matrix:

H =

1 0 1 0 1 0 1

0 1 1 0 0 1 1

0 0 0 1 1 1 1

 .
Then C is an [7, 4, 3] Hamming code. Note that the columns of H are exactly the

non-zero vectors of F3
2.

The following theorem state that the Hamming codes are cyclic.

Theorem 1.45. [5] Let n = qr−1
q−1

. If gcd(n, q − 1) = 1, then the cyclic code over Fq
of length n with de�ning set {1} is a [n, n− r, 3] Hamming code.

Proof. By Proposition (1.43) it is su�cient to show that the distance of C is equal

to 3. The Hamming bound applied to C ensures that the distance cannot be greater

than 3; we show that it cannot be 2 (it is obvious that it is not one). Let α be a

primitive n − th root of unity over Fq such that c(α) = 0 for c in C. If c is a word

of weight 2 with nonzero coe�cients ci and cj (i < j), then ciα
i + cjα

j = 0. Then

αj−i = −ci/cj. Since ci/cj ∈ F∗q, α(j−i)(q−1) = 1. Now gcd(n, q − 1) = 1 implies that

αj−i = 1, but this is a contradiction since 0 < j − i < n and the order of α is n.

Example 1.46. The Hamming code of Example (1.44) can be viewed as [7, 4, 3]2

cyclic code with generator polynomial g = 1 + x+ x3.

16
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We have that the dual code of a cyclic code is cyclic itself. This means in par-

ticular that the dual of a Hamming code is cyclic.

De�nition 1.47. [3] The duals of the Hamming codes are called Simplex codes.

The simplex code has the following property:

Proposition 1.48. [3] A simplex code is a [(qr− 1)/(q− 1), r, qr−1] constant weight

code over Fq.

1.5 Finite Fields

Finite �eld, or Galois Field, is a �eld with a �nite number of elements and it is

usually referred to with the symbol GF (q) where q is the number of elements in

it. It is a set on which the operations of addition, subtraction, multiplication and

division are de�ned and satisfy certain basic rules.

Theorem 1.49. [5] A ring of integer numbers Zq, is a �nite �eld if and only if q

is prime.

Proof. Suppose that q is a composite number and let q = ab for two integers 1 <

a, b < q. Thus a 6= 0; b 6= 0. However, 0 = q = a · b in Zq. This is a contradiction,

(in the �eld if ab = 0 implies a = 0 or b = 0). Hence Zq is not a �eld.

Now let q be a prime. For any nonzero element a ∈ Zq, .i.e., 0 < a < q, we know

that a is prime to q. Thus there exist two integers u, v with 0 ≤ u ≤ q− 1 such that

ua+ vm = 1, i.e., ua ≡ 1 (mod q). Hence, u = a−1, so Zq is a �eld.

De�nition 1.50. [5] Let F be a �eld. The smallest natural number n > 0 such that

n · 1 = 1 + 1 + ...+ 1︸ ︷︷ ︸
n−times

= 0,

where 1 is the multiplicative identity of F, is called the characteristic of F denoted

char(F) = n. If no such n exists, we de�ne the characteristic to be 0.

Lemma 1.51. [35]

(1) If the characteristic of F is positive, char(F) is prime.

(2) Finite �elds have char(F) > 0. By the �rst part of this lemma we even have

that a �nite �eld has prime characteristic.

17
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Proof. (1) Assume on the contrary that there exists a nontrivial factorization

char(F) = n = p · q. Then

0 = n · 1 = (p · q) · 1 = p · (q · 1) = (p · 1)(q · 1) = (1 + 1 + ..., 1︸ ︷︷ ︸
p−times

) · (1 + 1 + ..., 1︸ ︷︷ ︸
q−times

).

We have that �elds have no zero divisors, that means that one of the terms in

the product must be zero which contradicts the minimality of the characteris-

tic.

(2) In a �nite �eld not all of 1, 2 · 1, 3 · 1, ... can be distinct, e.g. r · 1 = s · 1 = 0

for some s > r. Then ⇒ (s− r) · 1 = 0 and so char(F)|s− r > 0.

Lemma 1.52. Let F be a �eld. Then there exists a smallest sub�eld of F.

Proof. Let K1, K2 be sub�elds of F, then their intersection K1∩K2 is also a sub�eld

of F. This holds for arbitrary many sub�elds, thus also for the intersection of all

sub�elds of F. Obviously, the resulting intersection is the smallest sub�eld of F.

This smallest sub�eld is an important concept and thus deserves a name.

De�nition 1.53. (Prime subfield) The smallest sub�eld of a �eld F is called the

prime sub�eld or short prime �eld of F.

Lemma 1.54. Let F be a �nite �eld of characteristic p. The prime sub�eld of F is

isomorphic to Fp, the �nite �eld with p elements.

Finite �elds with a prime number of elements are often referred to as prime �elds.

Theorem 1.55. [35] A �nite �eld F of characteristic p contains pn elements for

some integer n ≥ 1.

Proof. Choose an element α1 from F∗p. We claim that 0 · α1, 1 · α1, ..., (p − 1) · α1

are pairwise distinct. Indeed, if i · α1 = j · α1 for some 0 ≤ i ≤ j ≤ (p − 1), then

(j − i) · α1 = 0 and 0 ≤ j − i ≤ p − 1. As the characteristic of F is p, this forces

j − i = 0; i.e., i = j.

If F = {0 · α1, 1 · α1, ..., (p− 1) · α1}. we are done, Otherwise, we choose an element

α2 ∈ F\{0 ·α1, 1 ·α1, ..., (p−1) ·α1}.We claim that a1α1 +a2α2 are pairwise distinct

for all 0 ≤ a1, a2 ≤ p− 1. Indeed, if

a1α1 + a2α2 = b1α1 + b2α2 (1.2)

18



Chapter 1. Preliminaries 19

for some 0 ≤ a1, a2, b1, b2 ≤ p−1, then we must have a2 = b2. Otherwise, we would

have from (1.2) that α2 = (b2 − a2)−1(a1 − b1)−1α1. This is a contradiction to our

choice of α2. Since a2 = b2 it follows immediately from (1.2) that (a1, a2) = (b1, b2).

As F has only �nitely many elements, we can continue in this fashion and obtain

elements α1, ..., αn such that

αi ∈ F \ {a1α1 + · · ·+ ai−1αi−1 : a1, · · · , ai−1 ∈ Zp} for all 2 ≤ i ≤ n,

and

F = {a1α1 + · · ·+ anαn : a1, · · · , an ∈ Zp}.

In the same manner, we can show that a1α1 + · · · + anαn are pairwise distinct for

all ai ∈ Zp, i = 1, · · · , n. This implies that |F | = pn.

So for any �nite �eld the number of elements must be a prime or a prime power.

E.g. there exists no �nite �eld with 6 elements since 6 is not a prime or prime

power. In the following q denotes a prime power q = pn. We also get conditions on

the relative sizes of sub�elds.

Lemma 1.56. [35] Let L be a �nite �eld with |L| = pn and let K be a sub�eld of

L. There exists an integer m > 1 so that |K| = pm and m|n. The extension degree

of L over K is [L : K] = n/m.

We have a necessary condition on the number of elements in a �nite �eld. The

following example studies one �nite �eld which is not a prime �eld.

Example 1.57. The number 4 is a prime power, so there could be a �nite �eld

with 4 elements. What would F4 = F22 look like?

Let 0 be the additive and 1 be the multiplicative neutral element. Let α be one of

the other two elements. Since F4 is closed under addition the other element must

equal α + 1, so F4 = {0, 1, α, α + 1}. We now give the addition table which follows

easily from the fact that the characteristic is 2, thus x+ x = 0 for any x ∈ F4 Since

every element must appear in each row and each column of the table we obtain

α · α = α + 1 and consequently α · (α + 1) = 1.

We were able to �ll the tables completely using just necessary conditions. We

note that a basis of F4 over F2 could be given by {1, α}.
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Table 1.1: Addition table

+ 0 1 α α + 1

0 0 1 α α + 1

1 1 0 α + 1 α

α α α + 1 0 1

α + 1 α + 1 α 1 0

Table 1.2: Multiplication table

· 0 1 α α + 1

0 0 0 0 0

1 0 1 α α + 1

α 0 α α + 1 1

α + 1 0 α + 1 1 α

De�nition 1.58. [5] Let F be a �eld. The set

F[x] :=

{ n∑
i=0

aix
i : ai ∈ F, n ≥ 0

}
is called the polynomial ring over F.

Theorem 1.59. [35] Let f(x) be a polynomial over a �eld F of degree ≥ 1. Then

F[x]/(f(x)), together with addition and multiplication forms a ring. Furthermore,

F[x]/(f(x)) is a �eld if and only if f(x) is irreducible.

De�nition 1.60. [5] An element α in a �nite �eld Fq is called a primitive element

(or generator) of Fq if Fq = {0, α, α2, ..., αq−1}.

De�nition 1.61. [5] The order of a nonzero element α ∈ Fq, denoted by ord(α), is

the smallest positive integer k such that αk = 1.

Proposition 1.62. [5]

(i) A nonzero element of Fq is a primitive element if and only if its order is q−1.

(ii) Every �nite �eld has at least one primitive element.

Lemma 1.63. [35] For every �nite �eld Fq the multiplicative group F∗q of nonzero
elements of Fq is cyclic.
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Example 1.64. p(x) = x3 + x+ 1, is an irreducible polynomial in Z2[x]. (It has no

zero in Z2, ) the eight polynomials of degree less than 3 in Z2[x] form a �eld with 8

elements, usually called GF (23). In GF (23) we multiply two elements by multiplying

the polynomials and then reducing the product modulo p(x).

product mod p(x) 0 1 x x+ 1 x2 x2 + 1 x2 + x x2 + x+ 1

0 0 0 0 0 0 0 0 0

1 0 1 x x+ 1 x2 x2 + 1 x2 + x x2 + x+ 1

x 0 x x2 x2 + x x+ 1 1 x2 + x+ 1 x2 + 1

x+ 1 0 x+ 1 x2 + x x2 + 1 x2 + x+ 1 x2 1 x

x2 0 x2 x+ 1 x2 + x+ 1 x2 + x x x2 + 1 1

x2 + 1 0 x2 + 1 1 x2 x x2 + x+ 1 x+ 1 x2 + x

x2 + x 0 x2 + x x2 + x+ 1 1 x2 + 1 x+ 1 x x2

x2 + x+ 1 0 x2 + x+ 1 x2 + 1 x 1 x2 + x x2 x+ 1

Remark 1.65. For a �nite �eld F, the multiplicative group is cyclic but the additive

group of F is usually not cyclic. When F contains Fp, since p = 0 in Fp every nonzero
element of F has additive order p, so F is not additively cyclic unless |F| is prime.

De�nition 1.66. [25] A minimal polynomial of an element α ∈ Fqm with respect

to Fq is a nonzero monic polynomial f(x) of the least degree in Fq[x] such that

f(α) = 0.

1.5.1 Existence and Uniqueness of Finite Fields

We have now obtained a way of constructing �nite �elds by using irreducible poly-

nomials over prime �elds and mentioned that the same construction can also be used

for an arbitrary base �eld. This raises the need to question whether the constructed

�elds are the same and whether we can always �nd an irreducible polynomial of the

desired degree. This section is rather technical in nature but establishes a major

result towards proving the existence and uniqueness of �nite �elds of prime power

order. The following de�nition and theorems hold in the context of arbitrary �elds.

De�nition 1.67. [35] Let f ∈ K[x] be a polynomial of positive degree and F an

extension �eld of K. Then we say that f splits in F if f can be written as a product

of linear factors in F[x], i.e., if there exist elements α1, ..., αn ∈ F such that

f = a(x− α1)...(x− αn)
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where a is the leading coe�cient of f. The �eld F is called splitting �eld of f over

K if it splits in F.

So a splitting �eld F of a polynomial f over K is an extension �eld containing

all the roots of f, and is smallest possible in the sense that no sub�eld of F contains

all roots of f.

Theorem 1.68. [35] Let Fq be a �nite �eld and Fr is an extension �eld. Then

• Fr is a simple extension of Fq, i.e. Fr = Fq(β) for some β ∈ Fr;

• every primitive element of Fr can serve as a de�ning element β of Fr over Fq.

So, we can express any �nite �eld K with sub�eld F , by adjoining to F a root

β of an appropriate irreducible polynomial f, which of course must have degree

d = [K : F ]

Theorem 1.69. [35] (Existence and uniqueness of �nite �elds)

For any prime p and any natural number n there exists a �nite �eld with pn elements.

Every �eld with pn elements is isomorphic to the splitting �eld of f(x) = xp
n − x

over Fp.

1.5.2 Automorphisms

In this section, we will once again adopt the viewpoint that a �nite extension F =

Fqm of �nite �eld K = Fq is a vector space of dimension m over K.

De�nition 1.70. [35] Let Fqm be an extension of Fq and let α ∈ Fqm . The elements
α, αq, ..., αq

m−1
are called the conjugates of α with respect to Fq.

The conjugates of α ∈ Fqm with respect to Fq are distinct if and only if the

minimal polynomial g of α over Fq has degree m. Otherwise, the degree d of the

minimal polynomial g of α over Fq is a proper divisor of m, and in this case the

conjugates of α with respect to Fq are the distinct elements α, αq, ..., αq
d−1
, each

repeated m/d times.

Theorem 1.71. [35] The conjugates of α ∈ F∗q with respect to any sub�eld of Fq
have the same order in the group F∗q.
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Proof. Since F∗q is a cyclic group by Lemma (1.63), the result follows from that in

a �nite cyclic group 〈a〉 of order m, the element ak generates a subgroup of order

m/gcd(k,m), and the fact that every power of the characteristic of Fq is relatively
prime to the order q − 1 of F∗q.

This immediately implies the following observation.

Corollary 1.72. [35] If α is a primitive element of Fqm , then so are all its conjugates

with respect to Fq.

Example 1.73. (i) Expressing F4 as F2(α) = {0, 1, α, α+1}, where α2+α+1 = 0

we have that α is a primitive element of F4. The conjugates of α ∈ F4 with

respect to F2 are α and α2 and we have that α2 = α + 1 is also a primitive

element.

(ii) Let α ∈ F16 be a root of f = x4 + x+ 1 ∈ F2[x]. Then the conjugates of α with

respect to F2 are α, α
2, α4 = α+1, α8 = α2 +1, and all of these are primitive

elements of F16. The conjugates of α with respect to F4 are α and α4 = α+ 1.

We next explore the relationship between conjugate elements and certain auto-

morphisms of a �nite �eld.

De�nition 1.74. [35] An automorphism of Fqm over Fq is an automorphism σ of

Fqm which �xes the elements of Fq pointwise. Thus, σ is a one− to− one mapping
from Fqm onto itself with

σ(α + β) = σ(α) + σ(β)

and

σ(αβ) = σ(α)σ(β)

for all α, β ∈ Fqm and

σ(a) = a for all a ∈ Fq.

Theorem 1.75. [35] The distinct automorphisms of Fqm over Fq are precisely the

mappings σ0, σ1, ..., σm−1 de�ned by

σj(α) = αq
j

for α ∈ Fqm and 0 ≤ j ≤ m− 1.

Proof. We �rst establish that the mappings σj are automorphisms of Fqm over Fq.
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• For each σj and all α, β ∈ Fqm , we have σj(αβ) = σj(α)σj(β) and σj(α+β) =

σj(α) + σj(β) , so clearly σj is a homomorphism of Fqm .

• Since σj(α) = 0 ⇔ α = 0, σj injective. Since Fqm is a �nite set, σj is also

surjective, and hence is an automorphism of Fqm .

• We have σj(a) = a for all a ∈ Fq and so each σj is an automorphism of Fqm
over Fq.

• The mappings σ1, σ2, ..., σm−1 are distinct as they return distinct values for a

primitive element of Fqm .

Now, suppose σ is an arbitrary automorphism of Fqm over Fq; we show that it is in

fact σj for some 0 ≤ j ≤ m− 1.

Let β be a primitive element of Fqm and let f = xm + am−1x
m−1 + ..., a0 ∈ Fq[x] be

its minimal polynomial over Fq. Then

0 = σ(βm + am−1β
m−1 + ...+ a0)

= σ(β)m + am−1σ(β)m−1 + ...+ a0,

so that σ(β) is a root of f in Fqm . Thus we have σ(β) = βq
j
for some j, 0 ≤ j ≤

m− 1. Since σ is a homomorphism and β primitive, we get that σ(α) = αq
j
for all

α ∈ Fqm .

Hence the conjugates of α ∈ Fqm are obtained by applying all automorphisms of

Fqm over Fq to the element α.

Remark 1.76. The automorphisms of Fqm over Fq form a group under composition

of mappings, called the Galois group of Fqm over Fq and denoted Gal(Fqm/Fq). From
Theorem (1.75) , this group of automorphisms is a cyclic group of order m, generated

by σ1.

De�nition 1.77. [41] (The Frobenius Identity) Let p be a prime and let Fp be a

�nite �eld with characteristic p. Then (a+ b)p = ap + bp, for all a, b ∈ Fp.

De�nition 1.78. [41] Let Fp be a �nite �eld. The Frobenius Automorphism of

Fp is the function φ : Fp → Fp such that φ(a) = ap, φ(ab) = φ(a)φ(b) and

φ(a+ b) = (a+ b)p = ap + bp = φ(a) + φ(b).
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Example 1.79. Frobenius Automorphism in F4 = F22 .

Let F4 = Z2[x]/(x2+x+1) be a �eld with 4 elements and φ : F4 → F4 be the Frobenius

Automorphism φ(a) = ap = a2. Then φ(0) = 0, φ(1) = 1, φ(x) = x2 = x + 1 and

φ(x+ 1) = x2 + 1 = x. Thus φ �xes 0 and 1 while it switches x with x+ 1.

1.6 General Linear Group Over Finite Field

In this section we write some basic facts about the general linear group of order

n over a given �eld Fq that is a �nite �eld with q elements. Let us start with the

de�nitions of some groups of matrices over Fq.

De�nition 1.80. The general linear group consists of all nonsingular n×n matrices

and is denoted by GL(n, q), or GLn(q).

GL(n,Fq) = {An×n : det(An×n) � 0 mod q}.

De�nition 1.81. The set of n × n matrices with units on the main diagonal and

zeros above (under) the diagonal is called the lower (upper) unitriangular group.

Both these groups are isomorphic to each other. The map taking each lower

unitriangular matrix L to the upper unitriangular matrix R = L−T is an isomor-

phism between these two groups. Taking that into account we will further denote

the groups by UTn(q).

De�nition 1.82. The special linear group SL(n, q) is the normal subgroup of GL(n, q)

consisting of matrices of determinant 1.

De�nition 1.83. The projective general linear group PGL(n, q) = SL(n,q)
Z

, where

Z = {λI|λn = 1, λ ∈ GF (q)} is the center of GL(n, q).

De�nition 1.84. The projective special linear group PSL(n, q) is the quotient of

SLn(q) by the normal subgroup Z ∩ SLn(q).

If V is a vector space of dimension n over F, we denote by GL(V ) the group of

invertible linear transformations of V ; thus GL(V ) ∼= GL(n, F ).

Theorem 1.85. [44] Given any two ordered bases for the vector space V, there is a

unique element of GL(V ) carrying the �rst to the second.
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From this theorem it follows that the order of GL(n, q) is equal to the number

of ordered bases of GF (q)n, namely

|GL(n, q)| =
n−1∏
i=0

(qn − qi) = qn(n−1)/2

n−1∏
i=0

(qn−i − 1).

This can be shown by counting the possible columns of the matrix: the �rst

column can be anything but the zero vector; the second column can be anything

but the multiples of the �rst column; and in general, the kth column can be any

vector not in the linear span of the �rst k−1 columns. When p is prime, GL(n, p) is

the outer automorphism group of the group Zn
p and also the automorphism group,

because Zn
p is abelian, so the inner automorphism group is trivial.

Example 1.86. GL(2, 3) has order (8−1)(8−2)(8−4) = 168. It is the automorphism

group of Z3
2 , and is also known as PSL(2, 7).

Note that in the limit as q → 1 the order of GL(n, q) goes to n!, which is the

order of the symmetric group in the philosophy of the �eld with one element, one

thus interprets the symmetric group as the general linear group over the �eld with

one element: Sn ∼= GL(n, 1.)

Theorem 1.87. [28] If A ∈ GLn(q), then the order of A, O(A) ≤ qn − 1.

Proof. see [28].

A polynomial of degree n over GF (q) is the characteristic polynomial of a matrix

in SLn(q) if and only if (−1)nf(0) = 1, where f(x) ∈ GF (q)[x] have the property

that f(0) 6= 0, i.e., f(x) is not divisible by x.

Lemma 1.88. [28] Let 0 6= f(x) ∈ GF (q)[x] with degree n has order qn−1
q−1

, n ≥ 1.

Then f(x) is irreducible over GF (q) and (−1)nf(0) = 1.

Proof. see [28].

Proposition 1.89. [44] The number of elements in SLn(Fq) is

(
n−1∏
i=0

(qn − qi))\(q − 1).

Corollary 1.90. [44] The group SLn(q), n ≥ 1, has an element of order qn−1
q−1

.
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Chapter 2

The Automorphism

Groups of Linear codes

In this chapter we introduce the automorphism group of a linear code which is the

main object of our dissertation.

An action of a group on a set X is the function f : G × X −→ X such that

f(g, x) is denoted by gx and with the following properties.
(
(g1g2)x = g1(g2x)

)
and

(ex = x). If x, y are in X, we say that x ∼ y if there is g in G such that y = gx.

And if x in X, we de�ne Gx = {g | gx = x} is called the isotropy or (stabilizer)

subgroup of G, or subgroup �xing x.

Let Sym(A) denotes the symmetric group acting on the set A, i.e., the group of all

permutations of A. Sn denotes Sym([n]) where [n] = {1, ..., n}. Permutation groups

acting on the permutation domain A are subgroups G ≤ Sym(A). If |A| = n then

G is a permutation group of degree n. For a ∈ A and π ∈ G we use aπ to denote the

image of a under π. The orbit of a ∈ A is the set aG := {aπ : π ∈ G}. The orbits

partition the permutation domain. The length of an orbit is its size.

De�nition 2.1. [33] Two [n,k]-linear codes over Fq are equivalent if one can be

obtained from the other by combination of operations of the following types:

(i) permutation of the n digits of the codewords;

(ii) multiplication of the symbols appearing in a �xed position by a nonzero scalar.

So mixing the coordinates of the code gives a new code, which shares many of

the same properties with C, like the minimum weight and the weight enumerator.

Some of these permutations of coordinates send C into itself: all code words of C
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are mapped to (possibly di�erent) code words in C. These permutations together

form the automorphism group of C, denoted by Aut(C).

Aut(C) = {π ∈ Sn : π(C) = C}

This is a subgroup of Sn, with composition of functions as operation and the identity

function as the identity element [33].

Remark 2.2. It is often convenient to express the permutation between codes in a

permutation matrix P .

De�nition 2.3. [3] A permutation matrix P is a square matrix with exactly one 1

in each row and column and zeros elsewhere.

Another way to see that two codes are permutation equivalents is if there is a

permutation matrix P such that G1 is a generator for C1 if and only if G1P is a

generator for C2. We de�ne:

C1P = {y : y = xP for some x ∈ C1} = C2

One of the most important results stemming from Defnition (2.1) is the following

theorem:

Theorem 2.4. [33] Any (n,k,d)-code on the alphabet of size q is equivalent to an-

other (n,k,d)-code on the same alphabet which contains the zero vector.

Proof. Assume a code of length n where all the codewords are of the form x1x2x3...xn.

Choose a codeword and a xi 6= 0 which appears in the codeword. Perform the map-

ping:

0 7→ xi

xi 7→ 0

j 7→ i

for each nonzero xi in the chosen codeword.

We repeat the permutation choosing di�erent all the nonzero values for xi in our

chosen codeword. Then the codeword has been permuted to be 0 and so the original

code is equivalent to a code which contains 0.

Proposition 2.5. [3] Any linear code is permutationally equivalent to a linear code

in the standard form.
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Proof. This is clear since the generator matrix of the standard form is obtained from

the generator matrix of the code by elementary row operation in addition to column

permutation.

Example 2.6. Let C1 and C2 have generator matrices

G1 =

1 1 0 0 0

0 1 0 1 0

0 0 1 0 1



G2 =

1 0 0 1 0

1 1 1 1 0

0 1 1 1 1


respectively. Note that there is not going to be a permutation matrix P so that G1P =

G2. However, when we write out the codes:

C1 = {00000, 11000, 01010, 00101, 10010, 11101, 01111, 10111}

C2 = {00000, 10001, 00011, 01100, 10010, 11101, 01111, 11110}

We notice that the two codes are in fact permutation equivalent.

2.1 Examples

Example 2.7. Let C be the [n,1] binary repetition code. Then, Aut(C) is the sym-

metric group Sn because all permutations are automorphisms.

Example 2.8. [6]

Let C be a code of length n, with n prime. If Aut(C) contains a 2-cycle τ and

an n-cycle σ, then Aut(C) is equal to Sn.

Proof. By renaming the coe�cients we can say with out loss of generality that

τ = (01). Since n is prime, all powers of σi of σ, with 1 ≤ i ≤ n − 1, are again

n-cycles.

So, there is a power i of σ such that σi = (01...). By renaming the rest of the

coordinates, we can say that σ = (01...n − 1). Since Aut(C) is a group, it also

contains στσ−1 = (12), σ(12)σ−1 = (23), ..., (n − 2, n − 1). These 2-cycles generate

Sn.
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For n not prime this does not necessarily hold. For example, consider the block

repetition code generated by (1 + x4) in F2[x]/(x8 − 1). The automorphism group

of this code contains (04) and (01...7), but not the permutation (01), so it does not

contain all Sn.

Example 2.9. [34] Let us compute the automorphism group Aut(C) of the [4, 2] rep-

etition code C = {0000, 0011, 1100, 1111}. By writing down all possible permutations

of 4 objects that preserve C it is straightforward to see that Aut(C) is a nonabelian

group with 8 elements. One automorphism of C is given by R =

(
1 2 3 4

4 3 1 2

)
.

A simple calculation shows that R2 =

(
1 2 3 4

2 1 4 3

)
, transposes the �rst and the

second, as well as the third and the fourth coe�cients, which implies that R has

order 4, and that R4 = id. This shows that Aut(C) has a cyclic subgroup of order

4. But we also have the transposition S =

(
1 2 3 4

2 1 4 3

)
which is di�erent from

id, R, R2 and R3. Thus Aut(C) contains at least the 8 elements of G = {Sa ◦Rb :

0 ≤ a ≤ 1, 0 ≤ b ≤ 3}. How can we show that there are no others? The �rst

step is proving that G is actually a group. This follows almost immediately from

the fact that R ◦ S = S ◦ R3, which allows us to write any product of elements of

G in the form Sa ◦ Rb. For example, the product (S ◦ R) ◦ S is transformed into

(S ◦ R) ◦ S = S ◦ (R ◦ S) = S ◦ (S ◦ R3) = (S ◦ S) ◦ R3 = id ◦ R3 = R3. Here we

have used associativity, which holds since we are dealing with composition of per-

mutations, and the composition of maps is always associative. So now we know that

G is a group. Why does this help us? Because this implies that G ⊆ Aut(C) ⊆ S4,

where S4 is the full group of permutations on 4 objects. Since S4 has 4! = 24 ele-

ments, and since the order of a subgroup divides the order of a group, we conclude

that 8|]Aut(C)|24. Thus either Aut(C) = G or Aut(C) = S4. But the last possibility

cannot occur: we need only write down a single permutation that does not conserve

codewords, for example the transposition of the middle bits, which turns 0011 into

0101, hence is not an automorphism. Thus Aut(C) = G; in fact, G is isomorphic to

the dihedral group D4 of order 8, because the generators R and S satisfy the relations

R4 = S2 = id, SRS = R3 of the dihedral group. Now D4 is the symmetry group of

a square, and it is actually possible to make this isomorphism concrete.

Here one of the useful properties about the automorphism group:
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Theorem 2.10. [6] Let C be a linear code over Fq. Then Aut(C) = Aut(C⊥)

Proof. Let π ∈ Aut(C). For a codeword b ∈ C⊥ holds < b, a >=
∑n−1

i=0 aibi = 0 for

all a ∈ C, so also

< π(b), π(a) >=
n−1∑
i=0

aπ(i)bπ(i) =
n−1∑
i=0

aibi = 0

for all a ∈ C. Since π(C) = C, this means that π(b) is perpendicular to every a ∈ C.
So π(b) is an element of C⊥, hence

Aut(C) ⊂ Aut(C⊥).

Since C is linear, it holds that (C⊥)⊥ = C, hence Aut(C⊥) ⊂ Aut((C⊥)⊥) = Aut(C).

So,

Aut(C⊥) ⊂ Aut(C).

So, Aut(C) = Aut(C⊥)

Let C be a binary code and H be a subgroup of Aut(C). For a codeword c ∈ C we

know that the number of 1 in the coordinate place of c is the weight of it. Usually,

Ni denotes the number of codewords in C of weight i and Ni(H) the number of

codewords which are �xed by some element of H. Now, we will investigate a method

of using the automorphism group to �nd out the weight distribution of a given code.

Theorem 2.11. [8] Let C be a binary code and H be a subgroup of Aut(C). Then

Ni ≡ Ni(H) (mod O(H))

Proof. The codewords of weight i can be divided into two classes those �xed by some

element of H. If c ∈ C is not �xed by any element of H then the O(H) codeword

g × c for g ∈ H must be distinct. Then Ni −Ni(H) is multiple of O(H).

2.2 Automorphism group of binary codes

The symmetric group Sn acts on Fn2 by the group action vσ := (vσ−1(1), ..., vσ−1(n))

where v = (v1, ..., vn) ∈ Fn2 and σ ∈ Sn. Let C be a binary code, then if vσ ∈ C for

all v ∈ C, then σ is an automorphism of C, and the set of all automorphisms of C

is a group, denoted Aut(C).
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Lemma 2.12. [19] Let C be a code of length n, such that all automorphism of

prime order p acts �xed point freely. If |Aut(C)| = pam, with (p,m) = 1, then

a ≤ max{r ∈ Z : pr|n}.

Proof. Suppose a > max{r ∈ Z : pr|n}. By Sylow's theorem, there exists a subgroup

H ≤ Aut(C) with |H| = pa. The group H acts on the set {1, ..., n}. Since all

automorphisms of order p acts �xed point freely, then each orbit has pa elements.

Therefore P a|n, a contradiction.

De�nition 2.13. Let σ ∈ Aut(C). The �xed code of σ is

Fσ(C) := {v ∈ C|vσ = v}.

Let Ω1, ...,Ωc be the cycle sets and let Ωc+1, ...,Ωc+f be the �xed points of σ. Clearly

v ∈ Fσ(C) if and only if v ∈ C and v is a constant on each cycle.

Let πσ : Fσ(C) → Fn+f
2 denotes the projection map de�ned by πσ(v

∣∣
Ωi

) = vj for

some j ∈ Ωi and i ∈ {1, ..., c+ f}.

Example 2.14. Consider the [7, 4]2 binary code H3, with the following generator

matrix:

G =


1 0 0 0 0 1 1

0 1 0 0 1 0 1

0 0 1 0 1 1 0

0 0 0 1 1 1 1


Then the following are automorphisms:

(1) σ1 = (12)(56) :

Gσ1 =


0 1 0 0 1 0 1

1 0 0 0 0 1 1

0 0 1 0 1 1 0

0 0 0 1 1 1 1


Gσ1 is simply the matrix G with the rows 1 and 2 switched, and thus still

generates C.

(2) σ2 = (123)(567)
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Gσ2 =


0 1 0 0 1 0 1

0 0 1 0 1 1 0

1 0 0 0 0 1 1

0 0 0 1 1 1 1


Again, Gσ2 is simply G with the rows 1, 2, and 3 permuted. It still provides a

basis for C.

(3) σ3 = (1245736)

Gσ3 =


1 1 1 0 0 0 0

0 0 1 1 0 0 1

1 0 0 0 0 1 1

1 0 1 0 1 0 1


Through simple row operations, we can transform Gσ3 into G, so Gσ3 provides

a basis for C.

These three permutations generate a simple, non-abelian group of order 168, which

turns out to be a very special group, PSL(2, 7).

Consider a linear [n, k]−code C with generator matrix M and a permutation

π ∈ Aut(C). For every basis vector vi of C, π(vi) can be expressed as a linear

combination of the basis vectors of C:

π(vi) = bi,1v1 + bi,2v2 + · · ·+ bi,kvk.

These bi,j together form the invertible k × k matrix Bπ. The generator matrix of

the code π(C) is given by BπM. The permutation π can be seen as a linear map

from Fn2 to Fn2 that permutes the basis vectors. Let Aπ be the transpose of the n× n
permutation matrix that belongs to this map. So Aπ mixes the columns of M in the

same way as π does, hence Aπ satis�es BπM = MAπ.

The map φ maps a permutation π ∈ Aut(C) to the inverse of the matrix Bπ ∈
GL(k, 2) :

φ(π) = B−1
π . (2.1)

For every π1, π2 ∈ Aut(C) it holds that Aπ1◦π2 = Aπ1Aπ2 . So

MAπ1◦π2 = MAπ1Aπ2 = Bπ2MAπ1 = Bπ2Bπ1M,
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and hence

φ(π1 ◦ π2) = (Bπ2B1)−1 = B−1
π1
B−1
π2

= φ(π1)φ(π2).

So the map φ is a group homomorphism. If φ is injective, then the automorphism

group of the code C is isomorphic to a subgroup of GL(k, 2).

Lemma 2.15. [6] Let C be a linear code. If the map φ is not injective for C, then

there is a 2-cycle (ij) in ker(π). This means that at least two columns of the gener-

ator matrix of C are equal.

Theorem 2.16. Let C be a cyclic [n, k]−code. Then φ : Aut(C)→ GL(k, 2) is not

injective if and only if C is a block repetition code.

Lemma 2.17. [6] The map φ is injective for the Hamming code of length n = 2m−1,

for m ≥ 3.

De�nition 2.18. Let α be such that F∗2m = 〈α〉 and take 2 ≤ δ ≤ n, m ≥ 1 and

0 ≤ b ≤ n. Let mi(x) be the minimal polynomial of αi over F2. Let g(x) be the monic

polynomial of lowest degree over F2 that has αb, ..., αb+δ−2 among its zeros, that is,

g(x) = lcm(mb(x), ...,mb+δ−2(x)).

The BCH(m, δ, b) code of length n = 2m − 1 is the code generated by g(x). When

b = 1, the BCH(m, δ, 1) code is called a narrow sense BCH code.

Theorem 2.19. [6] The map φ is injective for the dual code of a narrow sense

BCH(m, δ, 1) code of length n = 2m − 1, m ≥ 2.

Proof. Let α be such that F∗2m = 〈α〉. The generator polynomial h(x) ofBCH(m, δ, 1)

is the polynomial of lowest degree over F2 that has α, α
2, · · · , αδ−1 among its zeros.

Let g(x) be the generator polynomial of BCH⊥, which satis�es g∗(x)h(x) = xn− 1.

Suppose that φ is not injective for BCH⊥. Then BCH⊥ is a block repetition code,

so there exist l, p ∈ Z with n = lp and p ≥ 2, and f(x) with f(x)|xl − 1 such that

g(x) = (1 + xl + x2l + · · ·+ xn−l)f(x)

The reciprocal of g(x) is given by

g(x)∗ = (1 + xl + x2l + · · ·+ xn−l)∗f ∗(x)

= (1 + xl + x2l + · · ·+ xn−l)f ∗(x)
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So we see that 1+xl+ · · ·+xn−l|g∗(x). Furthermore, α is a zero of 1+xl+ · · ·+xn−l :

1 + αl + · · ·+ αn−l = (αn − 1)/(αl − 1) = 0;

since α is a primitive n − th root of unity and l is a proper divisor of n. So α is a

zero of both h(x) and g∗(x), hence α is a multiple zero of xn − 1. However, for odd

n, xn − 1 has only single roots:

gcd(xn − 1,
d

dx
(xn − 1)) = gcd(xn − 1, xn−1) = 1.

This leads to a contradiction, hence φ is injective for BCH(m, δ, 1)⊥.

Theorem 2.20. [6] The automorphism group of the Hamming code H of length

n = 2m − 1 is isomorphic to GL(m, 2).

Proof. To prove this, we consider H⊥, since the automorphism group of a code is

equal to the automorphism group of the dual code. Theorem (2.19) tells us that φ

is injective for H⊥ for m ≥ 3. For m = 2, H⊥ is equal to the even weight code of

length 3, for which φ is injective too. Also for the trivial case that m = 1 it holds

that φ is injective for H⊥. The dimension of H⊥ is m, so there is a basis v1, · · · , vm
for H⊥, which form the rows of the m× n generator matrix M. Let p0, · · · , pn−1 be

the n columns of the generator matrix. Since φ is injective, we know from lemma

(2.15) that the n = 2m − 1 vectors pi are all di�erent. Moreover, they are all not

equal to zero, because H⊥ is cyclic and not equal to the zero code. So p0, · · · , pn−1

are exactly all the nonzero vectors of Fm2 . For every matrixK ∈ GL(k, 2), the rows of

K−1M give a new basis for H⊥, so K−1M is also a generator matrix for H⊥. Hence,

the columns of K−1M need to be exactly all the nonzero vectors of Fm2 . So mixing

the columns of K−1M in the right way givesM. Thus there is a permutation matrix

A for this permutation, which satis�es K−1M = MA. So for every K ∈ GL(k, 2)

there is an automorphism π of H⊥ for which φ(π) = K. This means that the map φ

is not only injective, but also surjective for H⊥ and we can conclude

Aut(H) = Aut(H⊥) ∼= GL(k, 2).

De�nition 2.21. [3] The group Aut(C) is transitive as a permutation group if for

every ordered pair (i, j) of coordinates, there is a permutation in Aut(C) which sends

coordinate i to coordinate j.
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When Aut(C) is transitive, we have information about the structure of its punc-

tured codes. When Aut(Ĉ) is transitive, we have information about the minimum

weight of C. This lemma is used to prove part (i) of the next theorem.

Lemma 2.22. [3] If C is a code and P a permutation where jP = i, then

(CP )∗i = C∗jP
∗
j

where P ∗j is the permutation punctured at j, (remove column i and row j).

Theorem 2.23. [3]

(1) Let C be a binary [n, k, d] linear code, set

Ce = {c ∈ C : wt(c) is even}.

Then C = Ce has dimension k − 1.

(2) If C is an [n, k, d]q linear code, set

Ce = {c ∈ C :
n∑
i=1

ci = 0 in Fq}.

Elements of Ce are called 'even-like' codewords. All others are called 'odd-like.' Then

Ce = C or Ce has dimension k − 1.

Theorem 2.24. [3] Let C be an [n, k, d] code.

• (i)Suppose that Aut(C) is transitive. Then the n codes obtained from C by

puncturing C on a coordinate are permutation equivalent.

• (ii)Suppose that Aut(Ĉ) is transitive. Then the minimum weight d of C is its

minimum odd-like weight, dO. Furthermore, every minimum weight codeword

of C is odd-like.

Proof. • (i) Suppose that Aut(C) is transitive. Fix 1 ≤ i, j ≤ n, and consider

C∗i and C∗j . Because Aut(C) is transitive, there is a P ∈ Aut(C) that sends i

to j. Because P ∈ Aut(C), CP = C. Now, puncture CP on the jth coordinate

and C on the jth coordinate. Because of the lemma, C∗j = (CP )∗j = C∗i P
∗
i .

Hence, C∗j is permutation equivalent to C∗i .
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• (ii) Again, assume that Aut(C) is transitive. Applying (i) to Ĉ we conclude

that puncturing Ĉ on any coordinate gives a code permutation equivalent

to C. Let c be a minimum weight vector of C and assume that c is even-

like. Then wt(ĉ) = d, where ĉ ∈ Ĉ is the extended vector. Puncturing Ĉ

on a coordinate where c is nonzero gives a vector of weight d − 1 in a code

permutation equivalent to C, a contradiction.

2.3 Automorphism Groups of Cyclic Codes

In this section we will try to say something general about the automorphism groups

of cyclic codes. We will discuss whether some speci�c subgroups of Sn occur as the

automorphism group of a cyclic code of length n.

Theorem 2.25. The automorphism group of a linear code C of length n is equal to

Sn if C is one of the following codes: the zero code, Fn2 , the repetition code or the

even weight code.

Proof. Suppose C contains a codeword a, that has at least one 1 and one 0, so the

weight wt(a) satis�es 1 ≤ wt(a) ≤ n− 1. Suppose that there is a 1 on place i and a

0 on place j. Since the automorphism group is equal to Sn, τ = (ij) is an element of

Aut(C). So τ(a) is contained in C, and also a+ τ(a), which has weight 2. From this

code word a+τ(a), we can make each code word of even weight with an appropriate

permutation from Sn. So the even weight code is contained in C, and hence C is the

even weight code of dimension n− 1 or it is equal to Fn2 . If C has no such code word

a, then C is the zero code or the repetition code.

This theorem holds for linear codes in general. However, when a linear code C has

Sn as its automorphism group, then Aut(C) contains the n-cycle σ = (0, 1, ..., n− 1)

and hence the code turns out to be cyclic.

Let N ∈ IN and let FN2 be a vector space of dimension N , with �xed standard

basis ei indexed by i = {1, 2, ..., N}. Put a =
∑N

i=1 ei. We refer to the following four

codes as elementary codes:

ε0 = 0 ε1 = F2a ε3 = {v ∈ FN2 | wt(v) ≡2 0} ε3 = FN2
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If N = 1, then ε0 = ε2 and ε1 = ε3. Otherwise the four codes are distinct. Clearly,

the automorphism group of any of the elementary codes is the full symmetric group

Sn.

Proposition 2.26. [7] Let C be a binary linear code of length n. If An ≤ Aut(C)

and n 6= 2, then C is one of the elementary codes, the zero code, Fn2 , the repetition

code or the even weight code.

Proof. Suppose that An ≤ Aut(C) and n ≥ 3. We may assume that C * ε1, so that

we �nd c ∈ C with 0 < wt(c) < n. Put k = wt(c). As the usual action of An on

{1, 2, ..., n} is transitive [29], we may assume that c =
∑k

i=1 ei where 1 < k < n. If

k = 1, then C = ε3. If k ≥ 3, then applying the 3-cycle σ := (1, k, k + 1) ∈ Aut(C),

we see that e1 + ek+1 = c + cσ ∈ C, hence ε2 ⊆ C.

Corollary 2.27. Let C be a binary linear code of length n ≥ 3. Then Aut(C) 6= An.

Proposition 2.28. [7] The automorphism group of a binary cyclic code is not iso-

morphic (as an abstract group) to a non-trivial cyclic group of odd order.

Proof. Let C be a binary cyclic code of length n such that G = Aut(C) is cyclic of

odd order. Since G contains a regular cyclic subgroup of order n and since any tran-

sitive cyclic subgroup of Sn has order precisely n, we deduce that Aut(C) = Cn. We

may realise a code isomorphic to C as an ideal I of the �nite ringR = F2[x]\(xN−1)

equipped with the standard basis 1,X, ..., Xn−1. The ideal I is principal and invari-

ant under the Frobenius automorphism of R. The latter induces a permutation π of

the standard basis, given by xm 7−→ x2m where exponents are to be read as integers

modulo n. As π �xes the basis element 1, it can only belong to a regular cyclic

group, if it is trivial. Thus n = 1 or n = 2. Since n is odd, we conclude that C = 0,

and Aut(C) is trivial.

Theorem 2.29. [7] The automorphism group of a binary cyclic code is not isomor-

phic (as an abstract group) to an alternating group An of degree n ∈ {3, 4, 5, 6, 7}
or n ≥ 9. The group A8 occurs as the automorphism group of a binary cyclic code

of length 15.

Proof. Let C be a binary cyclic code of length N such that Aut(C) is isomorphic to

an alternating group An of degree n ≥ 3. An exact factorisation of An consists of two
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subgroups G,H ≤ An such that An = GH and G∩H = 1. Since Aut(C) contains a

regular cyclic subgroup of order N which is complemented by any point stabiliser,

this provides an exact factorisation An = GH with one of the groups G,H cyclic

of order N . Exact factorisations of alternating groups were studied by Wiegold and

Williamson. Adhering to the notation in [Wiegold and Williamson paper. Theorem

A]. our setting allows for two possibilities. It could be that G is cyclic of odd order

n = N and H ∼= An−1, but this would contradict (2.27). The only other possibility is

that n = 8, that G ∼= AGL(3, 2) is an a�ne group and H is cyclic of order N = 15.

Noting that A8
∼= PSL(4, 2) = PΓL(4, 2), we observe that this group does indeed

arise as the automorphism group of the binary Hamming code of length 24−1 = 15.

2.4 On Permutation Automorphism groups of q−ary
Hamming Codes

We have in (2.20) that the permutation automorphism group of the binary Hamming

code Hn
2 of length n = 2m − 1 is isomorphic to the general linear group GLm(2).

Recall that a mapping φ : Fnq → Fnq is called an isometry of the space Fnq if for

any two vectors x, y ∈ Fnq the following equality holds: d(x, y) = d(φ(x), φ(y)).

Suppose π ∈ Sn, where Sn is the symmetric group on n elements of the ground set

{1, 2, ..., n}. The action of the permutation π on any vector x = (x1, ..., xn) from Fnq
is de�ned by

π(X) = (xπ−1(x), ..., xπ−1(n)).

Thus we call an isometry σ : Fnq → Fnq such that

σ(x) = (σ1(x1), ..., σn(xn)),

where σi are permutations from the symmetric group Sq acting on the �eld Fq. the
automorphism group of the space Fnq is a semidirect product of the group Sn on the

group Snq of all con�gurations, i.e.

Aut(Fnq ) = Sn i Snq = {(π;σ) : π ∈ Sn, σ = (σ1, ..., σn) ∈ Snq }.

The group of all isometries of Fnq mapping a code C into itself is called the automor-

phism group of the code C :

Aut(C) = {(π;σ) ∈ Aut(Fnq ) : (π;σ)(C) = C}.
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Multiplying all elements of the �eld Fnq by some nonzero element β ∈ Fnq we get the

permutation τβ from Sq

τβ =

(
0 α0 α1 · · · αq−2

0 α0β α1β · · · αq−2β

)
By S∗q we denote the set of all q − 1 such permutations. De�ne the monomial auto-

morphism group of a code C as

MAut(C) = {(π;σ) ∈ Aut(C) : σ ∈ (S∗q )
n}.

Let ε be the identity con�guration, i.e. all its components are the identity permuta-

tions. It is natural to identify the isometry (π; ε) with the permutation π.

De�nition 2.30. [10] The permutation automorphism group of a code C is

PAut(C) = {π ∈ Aut(C)}.

As there are three versions of equivalence, there are three possible automorphism

groups. Let C be a code over Fq. We de�ned the permutation automorphism group

PAut(C) as in (2.30). The set of monomial matrices that map C to itself forms the

group MAut(C) called the monomial automorphism group of C. Finally, the set of

maps of the formMγ, whereM is a monomial matrix and γ is a �eld automorphism,

that map C to itself forms the group Aut(C) called automorphism group of C. In

the binary case all three groups are identical. If q is a prime, MAtu(C) = Aut(C).

In general, PAtu(C) ⊆MAut(C) ⊆ Aut(C).

2.4.1 The group PAut(Hn
q )

In this section we are going to prove that for any q > 2 the permutation automor-

phism group of a q−ary Hamming code of length n is isomorphic to the unitriangular

group UTm(q) where n = (qm − 1)/(q − 1).

The parity check matrix Hm of the q−ary Hamming code Hn
q of length n =

(qm − 1)/(q − 1) consists of n pairwise linear independent column vectors from Fnq .
Consider all nonzero vectors of length m that have 1 as their �rst nonzero coordinate.

Let α be a primitive element of Fq. In the case m = 2 we have

H2 =

[
0 1 1 1 · · · 1

1 0 α0 α1 · · · αq−2

]
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Let for any m we have Hm =
[
h1 h2 · · · hn

]
. Then Hm+1 can be de�ned by

Hm+1 =

[
0 h1 h1 · · · h1 · · · hn hn · · · hn

1 0 α0 · · · αq−2 · · · 0 α0 · · · αq−2

]
here 0 is the all zero vector of length m. Let Tm denote the column set of the

matrix Hm. If K ∈ GLm(q), then the multiplication y = Kx gives a linear mapping

on Fnq .

Lemma 2.31. [10] Any matrix L ∈ UTm(q) gives a bijection on the set Tm.

Note that the linear map mentioned above is a bijection on Tm if the matrix L

is lower unitriangular (in opposite to an upper unitriangular matrix U in the rule

y = xU). In the following lemma we will show that in the group GLq(m) there are

no bijections acting on the set Tm besides those described in Lemma (2.31).

Lemma 2.32. [10] If a matrix U belongs to GLm(q)\UTm(q), where m ≥ 1, q > 2,

then in the set Tm there is a vector h such that UT /∈ Tm.

Proof. We prove the statement by induction on m. Consider the Hamming code

parity check matrix Hm multiplied on the left by a matrix U. For m = 1, there

is nothing to prove since UH1 =
[
u11

] [
1
]

=
[
u11

]
, where u11 6= 0 and u11 6= 1.

Suppose that the statement is true for matrices of order m. Now we prove it for a

matrix U of order m+ 1. A matrix U can be represented as follows

U =

[
Ũ b

c β

]
,

where Ũ is a m ×m submatrix, a column vector b and a row vector c have length

m and β ∈ Fq. We have

UHm+1 =

[
b Ũh1 Ũh1 + α0b · · · Ũh1 + αq−2b · · · Ũhn · · · Ũhn + αq−2b

β ch1 ch1 + α0β · · · ch1 + αq−2β · · · chn · · · chn + αq−2β

]
There are the following four possible cases to check

1. If det(Ũ) 6= 0 and Ũ /∈ UTm(q), then by induction hypothesis, there is a vector

hj ∈ Tm such that Uhj /∈ Tm. Hence

U

[
hj

0

]
=

[
Ũhj

chj

]
/∈ Tm+1 and therefore h =

[
hj

0

]
.
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2. Let either det(Ũ) = 0 or Ũ ∈ UTm(q), and at the same time b 6= 0. In this

case, the vector b is collinear with some vector of the set Tm. Hence we have

b = γhk for some γ ∈ Fq and hk ∈ Tm.
If det(Ũ) = 0, then there is a vector hj in Tm such that Ũhj = 0.

on the other hand, if Ũ ∈ UTm(q), then we can apply Lemma (2.31). Namely,

in the set Tm there is a vector hj that is assigned the vector hk under the

action of the matrix Ũ . So we have Ũhj = hk. Combining these two subcases

we can conclude that the matrix ŨHm+1 has a submatrix of the form[
δhk (δ + α0γ)hk (δ + α1γ)hk · · · (δ + αq−2γ)hk

chj chj + α0β chj + α1β · · · chj + αq−2β

]
,

where δ equals either 0 or 1 in accordance with the subcases considered above.

Since the set {δ, δ + α0γ, δ + α1γ, · · · , δ + αq−2γ} coincides with the set of all

�eld elements, then for q > 2 one can �nd an integer l from [0, q−2] such that

δ + αlγ 6= 0 and δ + αlγ 6= 1. Hence,

U

[
hj

αl

]
=

[
(δ + αlγ)hk

chj + αlβ

]
/∈ Tm+1 and h =

[
hj

cαl

]
.

3. If Ũ ∈ UTm(q) and b = 0, then we have β 6= 0 for det(U) 6= 0. In addition,

we obtain β 6= 1 for U /∈ UTm+1(q). This implies that

U

[
0

1

]
=

[
0

β

]
/∈ Tm+1 and therefore h =

[
0

1

]
.

4. It should be noted that the conditions det(Ũ) = 0 and b = 0 are not

compatible since det(U) 6= 0.

Theorem 2.33. [10] For any n = (qm − 1)/(q − 1), where m ≥ 2, q > 2, it is true

that

PAut(Hn
q ) ∼= UTm(q).

Proof. We have seen that the Hamming code monomial automorphism group is

isomorphic to the general linear group, namely MAut(Hn
q ) ∼= GLm(q). The isomor-

phism θ : MAut(Hn
q )→ GLm(q) can be de�ned by

θ : M 7→ K, where KTHm = HmM
T.
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Here Hm is the parity check matrix of the Hamming code Hn
q , the matrix M is a

monomial n× n matrix and K ∈ GLm(q).

By Lemmas (2.31) and (2.32) we have θ(PAut(Hn
q )) = UTm(q). Therefore a restric-

tion of the isomorphism θ on the permutation automorphism group φ = θ|PAut(Hnq )

is an isomorphism between PAut(Hn
q ) and UTm(q). This proves the theorem.
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Chapter 3

The Automorphism

groups of Reed-Muller

And Generalized

Reed-Muller Codes

In this chapter we consider linear codes of length qm, q = pr and p is a prime, over

a �nite �eld K of characteristic p. Usually these codes are called extended

primitive codes. Let F be the �nite �eld of order qm; an automorphism of such a

code C is a permutation on F which preserves C.

3.1 Some Concepts of Reed-Muller Codes

In this section, we introduce the binary Reed-Muller codes. The binary codes were

�rst constructed and explored by Muller in 1954, and a majority logic decoding algo-

rithm for them was described by Reed also in 1954. Although their minimum distance

is relatively small, they are of practical importance because of the ease with which

they can be implemented and decoded. They are of mathematical interest because of

their connection with �nite a�ne and projective geometries.

These codes can be de�ned in several di�erent ways. One of these is a recursive

de�nition based on the (u, u + v) construction. Let m be a positive integer and r

nonnegative integer with r ≤ m. The binary codes we construct will have length 2m.

For each length there will be m + 1 linear codes, denoted RM(r,m) and called the

r-th order Reed-Muller code which is a binary linear code of parameters [2m,
(
m
0

)
+
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(
m
1

)
+ ...+

(
m
r

)
, 2m−r].

De�nition 3.1. [5] The (�rst order) Reed-Muller codes RM(1,m) are binary codes

de�ned, for all integers m ≥ 1, recursively as follows:

(i) RM(1, 1) = F2
2 = {00, 01, 10, 11}

(ii) for m ≥ 1,

RM(1,m+ 1) = {(u, u) : u ∈ RM(1,m)} ∪ {(u, (u+ 1)) : u ∈ RM(1,m)}

The codes RM(0,m) and RM(m,m) are trivial codes: the 0th order RM code

RM(0,m) is the binary repetition code of length 2m with basis {1}, and the m-th

order RM code RM(m,m) is the entire space F2m

2 . A generator matrix G(r,m) for

RM(r,m) is

G(r,m) =

[
G(r,m− 1) G(r,m− 1)

0 G(r − 1,m− 1)

]
.

Proposition 3.2. [5]

(i) A generator matrix of RM(1, 1) is[
1 1

0 1

]
.

(ii) If Gm is a generator matrix for RM(1,m), then a generator matrix for RM(1,m+

1) is

Gm+1 =

[
Gm Gm

0 · · · 0 1 · · · 1

]
.

Proof. see [5].

Example 3.3. :

(i) RM(1,2) = {0000, 0101, 1010, 1111, 0011, 0110, 1001, 1100}.

A generator matrix of RM(1,2) is

1 1 1 1

0 1 0 1

0 0 1 1
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(ii)

G(2, 3) =



1 0 0 0 1 0 0 0

0 1 0 0 0 1 0 0

0 0 1 0 0 0 1 0

0 0 0 1 0 0 0 1

0 0 0 0 1 0 1 0

0 0 0 0 0 1 0 1

0 0 0 0 0 0 1 1


.

From these matrices, notice that RM(1, 2) and RM(2, 3) are both the set of all

even weight vectors in F4
2 and F8

2, respectively.

De�nition 3.4. [5] For any r ≥ 2, the rth order Reed-Muller codes RM(r,m), are

de�ned, for m ≥ r − 1, recursively by

RM(r,m+ 1) =

{
F2r

2 if m = r − 1,

{(u, u+ v) : u ∈ RM(r,m), v ∈ RM(r − 1,m)} if m > r − 1.

Theorem 3.5. [3] Let r be an integer with 0 ≤ r ≤ m. Then the following hold:

(i) RM(i,m) ⊆ RM(j,m), if 0 ≤ i ≤ j ≤ m,

(ii) The dimension of RM(r,m) equals
(
m
0

)
+
(
m
1

)
+ ...+

(
m
r

)
,

(iii) The minimum weight of RM(r,m) equals 2m−r,

(iv) RM(m,m)⊥ = 0, and if 0 ≤ r ≤ m, then RM(r,m)⊥ = RM(m− r − 1,m).

Proof. (i) It is certainly true if m = 1 by direct computation and if j = m as

RM(m,m) is the full space F2m

2 .

Assume inductively that RM(k,m−1) ⊆ RM(`,m−1) for all 0 ≤ k ≤ ` < m.

Let 0 < i ≤ j < m. Then:

RM(i,m) = {(u, u+ v)|u ∈ RM(i,m− 1), v ∈ RM(i− 1,m− 1)}
⊆ {(u, u+ v)|u ∈ RM(j,m− 1), v ∈ RM(j − 1,m− 1)}
= RM(j,m).

So (i) follows by induction if 0 < i. If i = 0, we only need to show that the

all-one vector of length 2m is in RM(j,m) for j < m. Inductively assume the

all-one vector of length 2m−1 is in RM(j,m− 1). Then by de�nition (3.4), we

see that the all-one vector of length 2m is in RM(j,m) as one choice for u is

1 and one choice for v is 0.
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(ii) The result is true for r = m as RM(m,m) = F2m

2 and(
m

0

)
+

(
m

1

)
+ · · ·+

(
m

m

)
= 2m.

It is also true for m = 1 by inspection. Now assume that RM(i,m − 1) has

dimension(
m− 1

0

)
+

(
m− 1

1

)
+ · · ·+

(
m− 1

i

)
for all 0 ≤ i < m.

Thus RM(r,m) has dimension the sum of the dimensions of RM(r,m − 1)

and RM(r − 1,m− 1), that is,(
m− 1

0

)
+

(
m− 1

1

)
+· · ·+

(
m− 1

r

)
+

(
m− 1

0

)
+

(
m− 1

1

)
+· · ·+

(
m− 1

r − 1

)
.

The result follows by the elementary properties of binomial coe�cients:(
m− 1

0

)
=

(
m

0

)
and

(
m− 1

i− 1

)
+

(
m− 1

i

)
=

(
m

i

)
.

(iii) It is again valid for m = 1 by inspection and for both r = 0 and r = m as

RM(0,m) is the binary repetition code of length 2m and RM(m,m) = F2m

2 .

Assume that RM(i,m− 1) has minimum weight 2m−1−i for all 0 ≤ i < m.

If 0 < r < m, then by de�nition (3.4), RM(r,m) has minimum weight min{2 ·
2m−1−r, 2m−1−(r−1)} = 2m−r.

(iv) To prove it, we �rst note that RM(m,m)⊥ is {0} since RM(m,m) = F2m

2 . So

if we de�ne RM(−1,m) = {0}, then RM(−1,m)⊥ = RM(m− (−1)− 1) for

all m > 0. By direct computation, RM(r,m)⊥ = RM(m − r − 1,m) for all

r with −1 ≤ r ≤ m = 1. Assume inductively that if −1 ≤ i ≤ m − 1, then

RM(i,m − 1)⊥ = RM((m − 1) − i − 1,m − 1). Let 0 ≤ r < m. To prove

RM(r,m)⊥ = RM(m−r−1,m), it su�ces to show that RM(m−r−1,m) ⊆
RM(r,m)⊥ as dimRM(r,m)+dimRM(m−r−1,m) = 2m by (ii). Notice that

with the de�nition of RM(−1,m), (3.4) extends to the case r = 0. Let x =

(a, a+b) ∈ RM(m−r−1,m) where a ∈ RM(m−r−1,m−1) and b ∈ RM(m−
r−2,m−1), and let y = (u,u+v) ∈ RM(r,m) where u ∈ RM(r,m−1) and

v ∈ RM(r−1,m−1). Then x·y = 2a·u+a·v+b·u+b·v = a·v+b·u+b·v. Each
term is 0 as follows. As a ∈ RM(m−r−1,m−1) = RM(r−1,m−1)⊥, a·v = 0.

As b ∈ RM(m− r− 2,m− 1) = RM(r,m− 1)⊥,b ·u = 0 and b ·v = 0 using
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RM(r−1,m−1) ⊆ RM(r,m−1) from (i) we conclude thatRM(m−r−1,m) ⊆
RM(r,m)⊥, completing (iv).

Theorem 3.6. [5] The dual code RM(1,m)⊥ is (equivalent to) the extended binary

Hamming code.

Proof. A generator matrix of RM(1, 1) is

G1 =

(
1 1

0 1

)
,

then Gm is of the form 
1 1 · · · 1

0
... Hm

0


where Hm is some matrix. Moving the �rst coordinate to the last and moving the

�rst row of the matrix to the last, we obtain the following generator matrix G′m for

an equivalent code: 
0

Hm
...

0

1 · · · 1 1


Using Theorem 5.1.9 in [5] if we show thatHm is a parity check matrix forHam(m, 2),

then G′m is the parity check matrix for Ham(m, 2), so R(1,m)⊥ is equivalent to

Ham(m, 2).

To show Hm is a parity check matrix for Ham(m, 2), we need to show that the

columns of Hm consist of all the nonzero vectors of length m. Indeed, when m = 1, 2,

the columns of Hm consist of all the nonzero vectors of length m. Now suppose that

the columns of Hm consist of all the nonzero vectors of length m, for some m. By the

de�nition of Gm it follows readily that the columns of Hm+1 consist of the following:(
c

0

)
,

(
c

1

)
, and

(
0T

1

)
,

where c is one of the columns of Hm and 0 is the zero vector of length m. It is clear

that the vectors in this list make up exactly all the nonzero vectors of length m+ 1.

Hence, by induction, the columns of Hm consist of all the nonzero vectors of length

m.
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3.2 Automorphism groups of Reed-Muller codes

Let A = (aij) be an invertible m×m binary matrix and let b be a binary m-tuple.

The transformation

T : replace

v1

...

vm

 be A

v1

...

vm

+ b (3.1)

is a permutation of the set 2m m-tuples which sends 0 to b. We may also think

of T as permuting Boolean function:

T : replace f(v1, ..., vm) by f(
∑

aijvj + b1, ...,
∑

amjvj + bm). (3.2)

The set of all such transformations T forms a group, with composition as the

group operation.

The order of this group is found as follows:

The �rst column of A may be chosen in 2m− 1 ways, the second in 2m− 2, the third

in 2m − 22,.... Furthermore there are 2m choice for b. So this group, which is called

the general a�ne group and is denoted by GA(m), has order

|GA(m)| = (2m)(2m − 1)(2m − 2)(2m − 22)...(2m − 2m−1). (3.3)

A useful approximation to its order is

|GA(m)| = 0.29 2m
2+m, for m large.

It is clear from (3.2) that if f is a polynomial of degree r, so is Tf. Therefore the

group GA(m) permutes the codewords of the rth order RM code RM(r,m), and

GA(m) ⊂ Aut RM(r,m). (3.4)

The subgroup of GA(m) consisting of all transformations

T : replace

v1

...

vm

 by A

v1

...

vm

 (3.5)

(i.e., for which b = 0) is the general linear group GL(m, 2) and has order

|GL(m, 2)| = (2m−1)(2m−2)(2m−22)...(2m−2m−1) ≈ (0.29)2m
2

for m large. (3.6)

49



Chapter 3. The Automorphism groups of Reed-Muller And Generalized Reed-Muller Codes50

Since (3.5) �xes the zero m− tuple, the group GL(m, 2) permutes the codewords of

the punctured RM code RM(r,m)∗:

GL(m,2) ⊂ Aut RM(r,m)∗. (3.7)

Some group actions don't just take any element to any other element, but can do so

in pairs. Of course, we have to assume our set has at least two elements.

De�nition 3.7. A group G of permutations acting on a set Ω is called k−transitive
on Ω, if for every ordered k−tuple (a1, ..., ak) of distinct elements of Ω and for every

k−tuple (b1, ..., bk) of distinct elements of Ω, there is an element σ ∈ G such that

bi = σ(ai) for 1 ≤ i ≤ k. If k = 1 we call the group transitive.

De�nition 3.8. [29] An action of a group G on a set X, with |X| ≥ 2, is called

doubly transitive when, for any two ordered pairs of distinct elements (x, x′) and

(y, y′) in X, there is a g ∈ G such that y = gx and y′ = gx′.

The distinctness of elements means x 6= x′ and y 6= y′. We say g takes the pair

(x, x′) to the pair (y, y′).

Proposition 3.9. [1] GL(m, 2) is doubly transitive and GA(m) is triply transitive.

Proof. see [1].

De�nition 3.10. An m − flat is any subspace of a projective geometry PG(n, q)

of dimension m, when the points of a hyperplane H; that is a subgeometry of co-

dimension 1 are removed.

In a�ne plane, the 1 − flats are the lines of the plane and the points are the

0− flats of the plane.

Theorem 3.11. [1] For 1 ≤ r ≤ m− 1,

(a) AutRM(r,m)∗ ⊂ AutRM(r + 1,m)∗

(b) AutRM(r,m) ⊂ AutRM(r + 1,m)

Proof. (b) Let x1, ..., xB be the minimum weight vectors of RM(r,m). For π ∈
AutRM(r,m), let πxi = xi′ . Now xi is an (r −m)-�at. If Y is any (m− r − 1)�at,

then for some i, j, Y = xi ∗ xj. Therfore

πY = π(xi ∗ xj)
= πxi ∗ πxj
= xi′ ∗ xj′ ,
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which is the intersection of two (m− r)-�ats; and contains 2m−r−1 points. Since

π is a permutation. Thus πY is an (m − r − 1)-�at. So π permutes the generators

of RM(r + 1,m), and therefore preserves the whole code.

Proposition 3.12. [1]

(i) AutRM(r,m)∗ = S2m−1 for r = 0 and m− 1,

(ii) AutRM(r,m) = S2m for r = 0 m− 1, and m.

In the remaining cases we show that equality holds in (3.4) and (3.7).

Theorem 3.13. [1]

(i) AutRM(r,m)∗ = GL(m, 2)

(ii) AutRM(r,m) = GA(m).

Proof. (i) We have if we add 1 to simplex code H⊥m it will be RM(1,m)∗ code

by Theorem (3.6), and if we puncture 0 coordinate from RM(1,m)∗. So, since the

automorphism group of the simplex codeH⊥m isAutRM(1,m)∗. From Equation (3.7),

and that if the columns of the generator matrix are distinct the automorphism group

of a binary linear code of dimension km is isomorphic to a subgroup of GL(km, 2),

since H⊥m has dimension m,

AutH⊥m = AutRM(1,m)∗ = GL(m, 2)

Finally, since AutC = AutC⊥, AutHm = GL(m, 2).

(ii) Let G1 = AutRM(1,m)∗, G2 = AutRM(1,m). Then, G1 is a subgroup of G2

which �xes the 0 coordinate. Since GA(m) is transitive, so is G2. Each coset of

G1inG2 sends 0 to a di�erent point, so |G2| = 2m|G1|. Therefore from (3.3) and

(3.6)

G2 = GA(m). Again since AutC = AutC⊥, AutRM(m − 2,m) = AutRM(1,m) =

GA(m).

(iii) From (3.11), (i), and (ii), we have thatGA(m) = AutRM(1,m) ⊆ AutRM(2,m) ⊆
... ⊆ AutRM(m− 2,m) = GA(m).

GL(m, 2) = AutRM(1,m)∗ ⊆ AutRM(2,m)∗ ⊆ ... ⊆ AutRM(m − 2,m)∗ =

GL(m, 2).
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3.3 Generalized Reed- Muller Codes

S.D. Berman showed that the binary Reed-Muller codes may be identi�ed with the

powers of the radical of the group algebra over the two elements �eld F2 of an el-

ementary abelian 2-group. P. Charpin gave a generalization of Berman's result for

Reed-Muller codes over a prime �eld. Recently, I.N. Tumaikin studied the connec-

tions between Basic Reed-Muller codes and the radical powers of the modular al-

gebra Fq[H] where H is a multiplicative group isomorphic to the additive group of

the �eld Fq of order q = pr where p is a prime number and r is an integer. The

index of nilpotency of the radical of Fq[H] is r(p − 1) + 1. The modular algebra

Fp[X1, ..., Xm]/(Xp
1 − 1, ..., Xp

m − 1) where m ≥ 1 is used to represent the ambient

space of the codes. It isomorphic to the group algebra Fp[Fpm ].

3.3.1 The modular algebra A = Fq[X1, ..., Xm]/(Xq
1−1, ..., Xq

m−1)

and the GRM codes

Let q = pr with p a prime and r ≥ 1 an integer. We consider the �nite �eld Fq of
order q.

Let P (m, q) be the vector space of the reduced polynomials in m variables over Fq:

P (m, q) := P (Y1, ..., Ym) =

q−1∑
i1=0

...

q−1∑
im=0

ui1...imY
i1

1 · Y im
m |ui1...im ∈ Fq.

The polynomial functions from (Fq)m to Fq are given by the polynomials of

P (m, q).

Let v be an integer such that 0 ≤ v ≤ m(q − 1). Consider the subspace of P (m, q)

de�ned by

Pv(m, q) := {P (Y1, ..., Ym) ∈ P (m, q)|deg(P (Y1, ..., Ym)) ≤ v}.

Consider the ideal I = (Xq
1 − 1, ..., Xq

m − 1) of the ring Fq[X1, ..., Xm]. Set x1 =

X1 + I, ..., xm = Xm + I. Then

A =

{ q−1∑
i1=0

...

q−1∑
im=0

ai1...imx
i1
1 ...x

im
m |ai1...im ∈ Fq

}
(3.8)

A is a local ring with maximal ideal M which is the radical of A.

Let d be an integer such that 0 ≤ d ≤ m(q − 1). Consider the power Md of M .
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A linear basis of Md over Fq is

Bd = {(x1 − 1)i1 ...(xm − 1)im|0 ≤ i1, ..., im ≤ q − 1, i1 + ...+ im ≥ d} (3.9)

We have the following ascending sequence of ideals:

{0} = Mm(q−1)+1 ⊂Mm(q−1) ⊂ ... ⊂M2 ⊂M ⊂ A (3.10)

Let us �x an order on the set of monomials

{X i1
1 ...X

im
m |0 ≤ i1, ..., im ≤ q − 1}.

Then we have the following remark:

Remark 3.14. Each element
∑q−1

i1=0 ...
∑q−1

im=0 ai1...imx
i1
1 ...x

im
m of A can be identi�ed

with the vector (ai1...im), 0 ≤ i1, ..., im of (Fq)q
m
and vice-versa. Hence the modular

algebra A is identi�ed with (Fq)q
m
. Let α be a primitive element of the �nite �eld

Fq. Then Fq = {0, 1, α, α2, ..., αq−2}
Set

β0 = 0 and βi = αi−1 for 1 ≤ i ≤ q − 1. (3.11)

When considering P (m, q) and A as vector spaces over Fq, we have the following

isomorphism:

φ : P (m, q) −→ A

P (Y1, ..., Ym) 7−→
q−1∑
i1=0

...

q−1∑
im=0

P (βi1 , ..., βim)xi11 ...x
im
m (3.12)

The generalized Reed-Muller code of length qm and of order v(0 ≤ v ≤ m(q− 1))

over Fq is de�ned by

Cv(m, q) = {(P (βi1 , ..., βim))0≤i1,...,im≤q−1|P (Y1, ..., Ym) ∈ Pv(m, q)}. (3.13)

It is a subspace of (Fq)q
m
and we have the following ascending sequence:

{0} ⊂ C0(m, q) ⊂ C1(m, q) ⊂ ... ⊂ Cm(q−1)(m, q) = (Fq)q
m

(3.14)

53



Chapter 3. The Automorphism groups of Reed-Muller And Generalized Reed-Muller Codes54

We need the following notations:

Notations Set [0, q − 1] = {0, 1, 2, ..., q − 1}
Let S = [0, n], n = qm − 1; for each s ∈ S let us de�ne

φs : x ∈ A 7−→ φs(x) =
∑
g∈G

xgg
s, (3.15)

where φs(x) can be calculated in an over �eld of (Fq)q
m
and Fq = G. A code C is an

extended cyclic code if and only if Aut(C) contains the permutations:

πu,0 : x ∈ A 7−→
∑
g∈G

xgX
ug, u ∈ G∗

As α is a primitive element of G. The codeword x is an extension of a polynomial

which has the root αs if and only if φs = 0. Thus an extended cyclic code can be

uniquely de�ned by the set {s ∈ S|φs(C) = 0}

De�nition 3.15. [18] Let T be a subset of S containing 0, and assume that T is

invariant under the multiplication by q mod n. Then

C = {x ∈ A|φs = 0, s ∈ T}, (3.16)

is an extended cyclic q-qry code. We say that T is the de�ning-set of C.

The dual of the q-ary RM-code of order m(q − 1)− v, denoted by Cv(m, q) with

de�ning set Iv(m, q) = {s ∈ S|ωq(s) < v} is the code Cµ(m, q) with µ = m(q − 1)−
v + 1 [31], where the q-weight of s = ω(s) =

∑m−1
i=0 s and that for each q′ dividing

q, we can de�ne a class of q′-ary extended cyclic codes of A. Then we can always

de�ne the p-ary RM-codes as codes of A: that is the codes Cv(rm, p), with de�ning

set Iv(m, p).

The following theorem, due to Delsarte, gives a necessary and su�cient condition

for cyclic q-ary codes to be invariant under the group GL(m, q).

Theorem 3.16. [18] Let C be a code of A. Then Aut(C) contains GL(m, q) if and

only if C is an extended cyclic q-ary code, the de�ning set T of which satis�es:

s ∈ T and t satis�es (I)⇒ t ∈ T, (3.17)

where (I) is the condition

(I) : ωq(p
kt) ≤ ωq(p

ks), k ∈ [0, r − 1]
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Remark 3.17. The codes Cv(m, q) are invariant under GL(m, q). If m = 1. i.e., if

we consider codes of length q over GF (qe) we have the q-weight of s as ωq(s) = s

for s ∈ [0, q − 1]. Then the condition (I) is equivalent to ti ≤ si i ∈ [0, r − 1] where

(s0, ..., sr) and (t0, ..., tr) are respectively the coe�cients of the p-ary expansion of s

and t.

Theorem (3.16) characterizes the codes of A which are invariant under GL(rm, p). In

this case T is invariant under the multiplication by p and the condition (I) becomes:

ωp(t) ≤ ωp(s). Thus there is an element v of [1, rm(p−1)] such that the de�ning-set

T is the set {s|ωp(s) < v}, which is the de�ning-set Iv(rm, p) of the p− ary RM −
code Cv(rm, p). Then a code of A which is invariant under GL(rm, p) is a p −
ary RM − code.

Let U and V be two codes of A; we denote by UV the code generated by the

products xy, x ∈ U and y ∈ V and we say that UV is the product of U and V . Let

πM,0 ∈ GL(m, q); we have

πM,0(xy) = πM,0(x)πM,0(y)

since

πM,0(XgXh) = XM(g+h) = XMg +XMh.

Hence if U and V are invariant under πM,0, then the code UV is invariant under

πM,0. In particular, a product of two extended cyclic codes is an extended cyclic code.

Theorem 3.18. [18] Let v and v′ be such that v+ v′ ≤ m(q− 1). Then the product

of Cv(m, q) and Cv′(m, q) satis�es:

Cv(m, q)Cv′(m, q) ⊂ Cv+v′(m, q)

.

Proof. see [18]

3.3.2 The minimum weight codewords of the GRM-codes

Recall that A = K[G], G = GF (qm) and K = GF (qe). For any element x of A,

let us de�ne the support of x as the set:

supp(x) = {g ∈ G|xg 6= 0}, where x =
∑
g∈G

xgX
g. (3.18)
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The weight of x is: w(x) = |supp(x)|. Let g be a nonzero element of G and let

v ∈ [1, q − 1[. We denote by Cv({g}, q) the extended Reed-Solomon code of length

q and minimum distance v + 1, considered as a code of A in the sense that each

codeword has its support in the subspace gGF (q) of G:

Cv({g}, q) = {x ∈ A|x =
∑

λ∈GF (q)

xλgX
λg and φs(x) = 0, s ∈ [0, v[ }. (3.19)

Let x ∈ Cv({g}, q) and let t ∈ S be such that ωq(t) < v. Since λq = λ, we have:

φt(x) =
∑

λ∈GF (q)

xλg(λg)t = gt
∑

λ∈GF (q)

xλgλ
wq(t) = 0.

Then φt = 0, for each t ∈ Iv(m, q). We have the following:

Lemma 3.19. [18] Let v ∈ [1, q − 1[. Then the code Cv({g}, q) is contained in

Cv(m, q), for all g ∈ G∗.

Let k ∈ [1,m] and let V be a k-dimensional subspace of G. Let x =
∑

g∈V X
g;

the following property is proved by Kasami et al. in[18]:

s ∈ S and wq(s) < k(q − 1)⇒ φs(x) = 0 (3.20)

In accordance with the de�nition of Ck(q−1)(m, q), this property implies the following.

Lemma 3.20. [18] Let k ∈ [1,m] and de�ne the subset of A:

Ak = {
∑
g∈V

Xg|V is a k-dimensional subspace of G} (3.21)

Then Ak ⊂ Ck(q−1)(m, q).

Now we are able to present a description of the set of the minimum weight code-

words (mwc's) of any GRM-code. An (mwc's) can be identi�ed with an element y of

an Ak or with an mwc z of a code Cv({g},m) or with a product of type yz.

In [31] Delsarte et al. gave another description and the enumeration of the mwc's

of the GRM-codes of length qm over GF (q). The following lemma shows that their

results are available for K = GF (qe), e > 1. So we can present the enumeration of

the mwc's in the context (3.22).

Lemma 3.21. [18] Set K = GF (qe). Let C be an extended cyclic q-ary code. Let x

be an mwc of C. Then x = λx8 where λ ∈ K and x8 is an mwc of C whose coe�cients

are in GF(q).
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Proof. see [18]

Theorem 3.22. [31] Let v ∈ [1,m(q − 1)[,m(q − 1) − v = u(q − 1) + v with

v ∈ [0, q−1[. Then the number of the minimum weight codewords of the code Cv(m, q)

is

Lv = |K∗|qu
m−u−1∏
i=0

qm−i − 1

qm−u−i − 1
Nv, (3.22)

where N0 = 1 and, for v > 0,

Nv =

(
q

v

)
qm−u − 1

q − 1

Proof. see [31]

Theorem 3.23. [18] Let v = b(q − 1) + a, a ∈ [0, q − 1[, b ∈ [0,m[. A minimum

weight codeword (mwc) of the code Cv(m, q) is an element of A of the form:

x = λXhyz, λ ∈ F∗q, h ∈ G, y ∈ A, z ∈ A (3.23)

where

• If b = 0 then y = X0; otherwise y ∈ Ab.

• If a = 0 then z = X0; otherwise there is g ∈ G, g /∈ supp(y); such that z is

an mwc of the code Ca({g}, q).

The set Ab and the code Ca({g}, q) are respectively de�ned by (3.21) and (3.19).

Proof. We have that the minimum distance of the GRM-code Cv(m, q) equals (a+

1)qb. When a > 0 the codeword z can be considered as an mwc of an extended Reed-

Solomon code of length of length q and minimum distance a+ 1; thus w(z) = a+ 1.

From Lemma (3.19), z is an mwc of Cb(q−1)(m, q). If a > 0 and b > 0, the Theorem

(3.18) implies that the product yz is an element of Cb(q−1)+a(m, q). Moreover:

qb(a+ 1) ≤ w(yz) ≤ w(y)w(z) ≤ qb(a+ 1),

which means that w(x) = (a+1)qb. Then a codeword x which has the form (3.23) is

an mwc of Cv(m, q). Note that yz 6= 0, because the support of yz contains at least

two cosets of a b-dimensional subspace of G.

Let Rv be the number of the x
′s de�ned by (3.23) and let m(q− 1)− v = u(q− 1) +

v, v ∈ [0, q − 1[. We want to prove that Rv = Lv (where Lv is given by 3.22). In all
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cases the support of x is contained in an (m− u)-dimensional a�ne subspace of G.

There are

λu = qu
m−u−1∏
i=0

qm−i − 1

qm−u−i − 1

such a�ne subspaces. If v = 0, we have a = 0 and Rv = λu|K∗| = Lv. Suppose

now that v 6= 0 and �x g ∈ G∗. Then the code Ca({g}, q), is any extended RS-code,

satis�es the following property,

Property 1. For each subset Λ of GF(q) such that |Λ| = a+ 1, there is an mwc of

Ca({g}, q) the support of which is the set λg|λ ∈ Λ.

There are
qm−u

q − 1

possibilities for the choice of g in an (m−u)-dimensional a�ne subspace of G. Then

we have

Rv = |K∗|
(

q

a+ 1

)
qm−u

q − 1
λu = Lv

since λ0 = 1 and
(

q
a+1

)
=
(
q
v

)
.

3.4 The Automorphism groups of GRM-codes

We denote by Θ = {θ|i ∈ [0, r − 1]} the Galois group of the �eld GF(q), q = pr.

Since the �eld GF (qm), here denoted G, is an Fp-vector-space, each element of Θ

can be considered as a linear permutation on G, θi : g ∈ G → gp
i
, involving a

transformation on A. We denote by Ḡ(m, q) the set of the permutations on G:

θ(M,h, i) : g ∈ G 7→ (Mg)p
i

+ h, h ∈ G, i ∈ [0, r − 1], (3.24)

where M is a nonsingular matrix of order m over GF(q). The group Ḡ(m, q) is usu-

ally called the group of semi-a�ne bijection on G (denoted GSAf (E), F = GF (q)

and E = G. ) The group Ḡ(m, q) contains GL(m, q); if q = p, Θ contains only the

identity and we have Ḡ(m, q) = GL(m, q).

Let C be an extended cyclic q-ary code in A, with de�ning set T. Then θi is contained

in Aut(C) if and only if T is invariant under the multiplication by pi modulo qm−1.

Indeed we have, for any x ∈ C and any s ∈ T :

φs(θi(x)) = φs

(∑
g∈G

xgX
gp
i
)

=
∑
g∈G

xg(g
pi)s = φspi(x)
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where φs is de�ned by (3.15) and C by (3.18). In particular, we shall show that, in

general, q-ary RM-code cannot be invariant under θi, i 6= 0.

Lemma 3.24. [18] Let q = pr, r > 1, v ∈ [2,m(q−1)−1]. Then, for all i ∈ [1, r−1],

the set Iv(m, q) is not invariant under the multiplication by pi modulo qm − 1. In

other words, the set Θ ∩ Aut(Cv(m, q)) is reduced to the identity.

Proof. The dual of the code Cv(m, q) is Cµ(m, q), µ = m(q − 1) − v + 1. Two dual

codes have the same automorphism group. So we need to prove the lemma only for

v <
m(q − 1) + 1

2

We state the property:

Hv : For each i, i ∈ [1, br
2
c], there is s ∈ Iv(m, q) such that pis /∈ Iv(m, q),

where b r
2
c denotes the integer part of r

2
.

Assume that Hv is true. Suppose that there is a j, j ∈]b r
2
c, r− 1], such that Iv(m, q)

is invariant under the multiplication by pj. Let i = r − j; thus pr = q = pipj, with

i ∈ [1, b r
2
c]]. Since Iv(m, q) is invariant under the multiplication by q, the hypothesis

on j contradicts Hv. That means: if Hv is true then the lemma is proved for v. So

we shall prove the lemma in proving Hv, by induction on v, v < (m(q−1)+1)
2

. Recall

that Iv(m, q) is the set of those s ∈ S such that ωq(s) < v.

If v = 2, we have 1 ∈ I2(m, q) while pi /∈ I2(m, q); indeed the q-weight of pi equals

pi. Then H2 is true. We suppose now that Hv′ is true for all v
′ ∈ [2, v[ and we want

to prove Hv.

Let i ∈ [1, b r
2
c]. Since Hv−1 is true, we know that there is s ∈ Iv−1(m, q) such that

pis /∈ Iv−1(m, q). If ωq(p
is) > v − 1 then pis /∈ Iv(m, q) and Hv is true. So only the

case ωq(p
is) = v − 1 remains. For λ ∈ [0, q − 1], let us de�ne:

[λpi] =

{
λpi modulo q − 1 if λ < q − 1,

q − 1 if λ = q − 1

If
∑m−1

l=1 slq
l is the q-ary expansion of s, we have [18]

ωq(p
is) =

m−1∑
l=0

[slp
i]. (3.25)

Now we get:

t = s+ qk wit k ∈ [0,m− 1] such that [pisk] + pi < q.
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Note that this property implies: [pi(sk + 1)] = [pisk] + pi.

This choice of k is always possible. Indeed

[pisk] ≥ q − pi, ∀k → ωq(p
is) ≥ m(q − pi),

from (3.25), but ωq(p
is) = v − 1 and v − 1 < m(q−1)

2
. Thus

m(q − pi) < m(q − 1)

2
→ 2pi − q − 1 > 0,

which contradicts i < b r
2
c.

Then we have:

ωq(t) =
∑
l 6=k

sl + (sk + 1) = ωq(s) + 1 < v,

Thus t ∈ Iv(m, q). Moreover;

ωq(p
it) =

∑
l 6=k

[pisl] + ([pisk] + pi) = ωq(p
is) + pi,

which proves that pit /∈ Iv(m, q). Therefore Hv is true.

The automorphism group of the GRM-codes are known in the following cases:[18]

• for q = 2, Aut(Cv(m, 2)) = GL(m, 2);

• if m = 1, Cv(1, q) is an extended Reed-Solomon code and it its automorphism

group is GL(1, q);

• if v = 1 or v = m(q − 1), each permutation on G is an automorphism of

Cv(m, q).

So we suppose now that: q > 2, m > 1 and v ∈ [2,m(q − 1) − 1]. Recall

that Theorem (3.16) implies that in all cases the automorphism group of Cv(m, q)

contains GL(m, q).

Theorem 3.25. [18] Let v ∈ [2,m(q − 1) − 1]. The automorphism group of the

q-ary RM-code of order m(q − 1)− v is GL(m, q)-i.e. Aut(Cv(m, q)) = GL(m, q).

To prove this theorem we �rst need some de�nitions and to describe the funda-

mental theorem of a�ne geometry for �nite �elds. We denote by E a vector-space

over a �eld F.
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De�nition 3.26. An application f : E → E is semi-linear if there is an automor-

phism τ of the �eld F such that:

(1) f(x+ y) = f(x) + f(y), x ∈ E and y ∈ E.

(2) f(λx) = τ(λ)f(x), x ∈ E and λ ∈ F.

De�nition 3.27. An application f ′ : E → E is semi-a�ne if there is a ∈ E and

f : E → E semi-linear such that:

f ′(x) = f(x) + a, x ∈ E.

The group of semi-linear bijections is denoted by GSLF(E); the group of semi-

a�ne bijections is denoted by GSAF(E).

Theorem 3.28. [18] Suppose that the dimension of E is strictly greater than 1 and

that F is not the �nite �eld of order 2. Let f : E → E be a bijection satisfying: if a,

b and c are collinear in E, then f(a), f(b) and f(c) are collinear in E. Then f is

an element of GSAF(E).

From now on assume that F is the �nite �eld Fq, q > 2, and that E is the �nite

�eld Fmq , m > 1, considered as an F-vector-space.

Corollary 3.29. [18] let s ∈ [1,m − 1] and f : E → E be a bijection which

transforms any s-dimensional a�ne subspace into an s-dimensional a�ne subspace.

Then f is an element of GSAF(E).

Proof. If s = 1, the Theorem (3.28) implies f ∈ GSAFq(E). Suppose that s >

1. Each i-dimensional a�ne subspace L has q elements and can be considered as

an intersection of some s-dimensional a�ne subspaces. By hypothesis f(L) has q

elements and is an intersection of some s-dimensional a�ne subspaces. Then we can

apply the Theorem (3.28).

This corollary (3.29) characterize the permutations on the �eld GF (qm) which

preserve the a�ne subspaces of equal dimension. When F is a �nite �eld GF(q),

with q = pr (p is a prime and r ≥ 0), the group of automorphisms of the �eld F is

Θ = {θi : F→ F|θi(g) = gp
i

, i ∈ [0, r − 1]}.
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Since E is a �eld of characteristic p, each θi is an automorphism of the �eld

E; thus for any h : E → E, h being a linear bijection, the application θi ◦ h is an

element of GSLF(E).

Conversely let f ∈ GSLF(E) be associated with the automorphism θi. By de�nition,

the application θ−i ◦ f is linear; hence f = θi ◦ h, h is linear and bijective. Then we

can state:

GSLF(E) = {θi ◦ h|θi ∈ Θ, h linear and bijective}, (3.26)

and deduce

GSAF(E) = {θi ◦ h+ b|θi ∈ Θ, h linear bijective, b ∈ E} (3.27)

The formula (3.27) means that the group composed of these permutations is ex-

actly the group Ḡ(m, q).

Now we can prove theorem (3.25)

Proof. De�ne a permutation σ on G as a transformation on A:

σ :
∑
g∈G

xgX
g 7→

∑
g∈G

xgX
σ(g) =

∑
g∈G

xσ−1(g)X
g

Thus a permutation σ ∈ Aut(Cv(m, q)). We denote by Mwv the set of all minimum

weight codewords (mwc's) of Cv(m, q). So σ can be considered as a permutation on

G; so, for simpli�cation, we shall apply σ on A or on G. It is clear that, by de�nition,

σ(Mwv) = Mwv. We shall prove the theorem in describing the action of σ on the

elements of Mwv. We distinguish four cases:

Case 1: v = b(q − 1), b ∈ [1,m− 1].

From theorem (3.23), we have:

Mwv = {λXh
∑
g∈L

Xg|λ ∈ F∗q, h ∈ G, L is a b− dim.subspace of G}

That means that σ transforms any b-dimensional a�ne subspace of G into another.

From Corollary (3.29) and Equation (3.27), that yields σ ∈ Ḡ(m, q). Applying lemma

(3.24), we obtain σ ∈ GL(m, q).

Case 2: v = b(q − 1) + a, b ∈ [0,m− 1[, a ∈ [2, q − 1[.

Let V = h + L be any (b + 1)-dimensional a�ne subspace of G, where h is any

element of G and L is any (b + 1)-dimensional subspace of G. Let {e1, ..., eb+1} be
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a basis of L; let L′ be the b-dimensional subspace of G generated by {e2, ..., eb+1}.
From Theorem (3.23) the following codewords are elements of Mwv :

x = yz, y = Xh
∑
g∈L

Xg, z ∈ Ca({e1}, q) and ω(z) = a+ 1, (3.28)

where Ca({e1}, q) is de�ned by (3.19)-by convention, if b = 0 then y = Xh and L′ =

φ. It is clear that the support of x is contained in V . Now the code Ca({e1}, q), which
is in fact an extended RS-code of minimum distance a + 1, satis�es the Property

1. Since a > 1, the minimum distance of Ca({e1}, q) is at least 3. So we can de�ne

two distinct mwc's of Ca({e1}, q), say z and z′, satisfying:

|supp(z) ∩ supp(z′)| ≥ 2 (3.29)

Let y be de�ned by (3.28) and:

x = yz and x′ = yz′, U = supp(x) and U ′ = supp(x′).

By de�nition, an mwc of Cv(m, q) has its support contained in only one (b+ 1)-

dimensional a�ne subspace of G. Since σ(x) ∈Mwv and σ(x′) ∈Mwv, we have two

(b + 1)-dimensional a�ne subspaces of G, say W and W ′, containing respectively

supp(σ(x)) and supp(σ(x′)). But σ(U ∩ U ′) = σ(U) ∩ σ(U ′); moreover (3.28) and

(3.29) yield

|σ(U ∩ U ′)| ≥ 2qb.

We then obtain:

2qb ≤ |σ(U) ∩ σ(U ′)| ≤ |W ∩W ′| ≤ qb+1

Since W ∩W ′ is an a�ne subspace of G, we can conclude that W = W ′.

Applying the Property 1, we can construct a sequence,

x0, ..., xk, ..., xζ , xk = yzk,

such that

• zk is an mwc of Ca({e1}, q)

• for each k > 0, zk−1 and zk satisfy (3.29)

•
⋃ζ
k=0 supp(xk) = V .
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Let Uk = supp(xk) and let Wk be the (b + 1)-dimensional a�ne subspace of G

containing σ(Uk). Applying the preceding result to xk−1 and xk, for each k > 0, we

obtain:

W0 = W1 = ... = Wζ .

Moreover any element of V is containing in an Uk. Then σ(V ) equals W0. We have

proved that σ transforms any (b+1)-dimensional a�ne subspace of G into a (b+1)-

dimensional a�ne subspace of G. From Corollary (3.29), σ ∈ Ḡ(m, q). Therefore

from Lemma (3.24), σ ∈ GL(m, q).

Case 3: v = b(q − 1) + 1, b ∈ [1,m− 1].

The dual of Cv(m, q) is Cµ(m, q), with

µ = m(q − 1)− v + 1 = (m− b)(q − 1).

Then, from case 1, Aut(Cv(m, q)) = Aut(Cµ(m, q)) = GL(m, q).

Case 4: v = (m− 1)(q − 1) + a, a ∈ [2, q − 2].

The dual of Cv(m, q) is Cµ(m, q), with

µ = m(q − 1)− v + 1 = q − a where q − a ∈ [2, q − 2].

Then, from Case 2., Aut(Cv(m, q)) = Aut(Cµ(m, q)) = GL(m, q).

In the parts Case 1 and Case 2 of the proof of Theorem (3.25), we prove in

fact that a permutation σ on G, which preserves Mwv, is an element of the group

Ḡ(m, q). Then we have immediately the following.

Corollary 3.30. [18] Set m > 1 and q > p. Let v ∈ [2, (m−1)(q−1)], v ∈ b(q−1)+a

with a = 0 or a ∈ [2, q− 1[. Let C be an extended cyclic q-ary code such that the set

of mwc's of C equals Mwv. Then Aut(C) ⊂ Ḡ(m, q).
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Chapter 4

The Automorphism

Groups of BCH Codes

In this chapter we will look at extending certain cyclic codes and examine an

important class of codes called a�ne-invariant codes in section (4.1). Reed-Muller

codes and some BCH codes in section (4.3) are a�ne invariant.

We will present a new setting for primitive cyclic codes that will assist us in the

description of a�ne-invariant codes.

4.1 A�ne-invariant codes

A primitive cyclic code over Fq is a cyclic code of length n = qt − 1 for some t. To

proceed, we need some notation.

Let I denote the �eld of order qt, which is then an extension �eld of Fq. The
set I will be the index set of our extended cyclic codes of length qt. Let I∗ be the

nonzero elements of I, and suppose α is a primitive nth root of unity in I and hence
a primitive element of I. The set I∗ will be the index set of our primitive cyclic codes
of length n = qt − 1. With X an indeterminate, let

Fq[I] =

{
a =

∑
g∈I

agX
g|ag ∈ Fq for all g ∈ I

}
.

The set Fq[I] is actually an algebra under the operations

c
∑
g∈I

agX
g + d

∑
g∈I

bgX
g =

∑
g∈I

(cag + dbg)X
g
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for c, d ∈ Fq, and ∑
g∈I

agX
g
∑
g∈I

bgX
g =

∑
g∈I

(∑
h∈I

ahbg−h

)
Xg.

The zero and unity of Fq[I] are
∑

g∈I 0Xg and X0, respectively. This is the group

algebra of the additive group of I over Fq. Let

Fq[I∗] =

{
a =

∑
g∈I∗

agX
g|ag ∈ Fq for all g ∈ I∗

}
.

Fq[I∗] is a subspace of Fq[I] but not a subalgebra. So elements of Fq[I∗] are of

the form
n−1∑
i=0

aαiX
αi ,

while elements of Fq[I] are of the form

a0X
0 +

n−1∑
i=0

aαiX
αi .

Let Sym(I) be the symmetric group acting on I. Any permutation σ in Sym(I)

acts naturally on the elements of Fq[I],

σ

(∑
g∈I

xgX
g

)
=
∑
g∈I

xgX
σ(g).

De�nition 4.1. [36] The permutation group Per(C) of any code C is the subgroup

of Sym(I) which leaves the code globally invariant. More precisely, in the ambient

space Fq[I], it is the subgroup of those σ satisfying∑
g∈I

xgX
σ(g) ∈ C for all x =

∑
g∈I

xgX
g, x ∈ C.

The vector space Fq[I∗] will be the new setting for primitive cyclic codes, and

the algebra Fq[I] will be the setting for the extended cyclic codes. So in fact both

codes are contained in Fq[I], which makes the discussion of a�ne-invariant codes

more tractable. Suppose that C is a cyclic code over Fq of length n = qt − 1. The

coordinates of C have been denoted {0, 1, ..., n− 1}. In Rn, the ith component ci of

a codeword c = c0c1...cn−1, with associated polynomial c(x), is the coe�cient of the
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term cix
i in c(x); the component ci is kept in position xi. Now we associate c with

an element C(X) ∈ Fq[I∗] as follows:

c↔ C(X) =
n−1∑
i=0

CαiX
αi =

∑
g∈I∗

CgX
g, (4.1)

where Cαi = ci. Thus the ith component of c is the coe�cient of the term CαiX
αi in

C(X); the component ci is kept in the position Xαi .

Example 4.2. Consider the element c(x) = 1 + x + x3 in R7 over F2. So n = 7 =

23 − 1. Let α be a primitive element of F8. Then c0 = Cα0 = 1, c1 = Cα1 = 1, and

c3 = Cα3 = 1, with the other ci = Cαi = 0. So

c(x) = 1 + x+ x3 ↔ C(X) = X +Xα +Xα3

.

We now need to examine the cyclic shift xc(x) under the correspondence (4.1).

We have

xc(x) = cn−1 +
n−1∑
i=1

ci−1x
i ↔

n−1∑
i=1

Cαi−1Xαi =
n−1∑
i=0

CαiX
ααi .

Example 4.3. We continue with Example 4.2. Namely,

xc(x) = x+ x2 + x4 ↔ Xα +Xα2

+Xα4

= Xα1 +Xαα +Xαα3

.

De�nition 4.4. [2] Let C be a cyclic code of length n over Fq. The de�ning set T

of C is the largest subset of the range [0, n − 1], invariant under the multiplication

by q (modn), such that any codeword x ∈ C satis�es

ρs(x) = x(αs) = 0 ∀s ∈ T.

The set T is a union of q−cyclotomic cosets modulo n; any s ∈ T corresponds to a

zero of C, say αs.

De�nition 4.5. A primitive cyclic code over Fq of length n = qt − 1 is any subset

C of Fq[I∗] such that
n−1∑
i=0

CαiX
αi =

∑
g∈I∗

CgX
g ∈ C

if and only if
n−1∑
i=0

CαiX
ααi =

∑
g∈I∗

CgX
αg ∈ C (4.2)
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De�nition 4.6. Let n = qt − 1. Let us denote by a = (ag)g∈I any element of (F∗q)q
t

where F∗q = Fq\{0}. The monomial group Mn(Fq) = (F∗q)q
t o Sym(I) is the set of

transformations (a;σ) which acts on A as follows:

(a;σ)

(∑
g∈I

xgX
g

)
=
∑
g∈I

agxgX
σ(g),

where A = Fq[I] is the ambient space, and xg is the extended codeword of

C(X) =
∑

g∈I∗ CgX
g which is de�ned as xg = Ĉ(X) =

∑
g∈I CgX

g such that∑
g∈I Cg = 0.

The automorphism group Aut(C) of a code C is then the subgroup of Mn(Fq)
which leaves the code globally invariant. Since I is an extension �eld of k = Fq with
degree m′; the �eld I will be generally be identi�ed with Fpm where q = pr,m = rm′

from (4.2), together with the observation that Xα0 = X0 = 1, in this terminology we

can de�ne an extended cyclic code as follows

De�nition 4.7. [2] An extended cyclic code is a subspace Ĉ of Fq[I] such that∑
g∈I

CgX
g ∈ Ĉ if and only if

∑
g∈I

CgX
αg ∈ Ĉ and

∑
g∈I

Cg = 0.

With this new notation we want to see where the concepts of zeros and de�ning

sets come in. This can be done with the assistance of a function φs.

Let N̂ = {s|0 ≤ s ≤ n}. For s ∈ N̂ de�ne φs : Fq[I]→ I by

φs

(∑
g∈I

CgX
g

)
=
∑
g∈I

Cgg
s,

where by convention 00 = 1 in I. Thus φ0(Ĉ(X)) =
∑

g∈I Cg implying that Ĉ(X) is

the extended codeword of C(X) if and only if φ0(Ĉ(X)) = 0. In particular, if Ĉ is

extended cyclic, then φ0(Ĉ(X)) = 0 for all Ĉ(X) ∈ Ĉ. As 0s = 0 in I,

φs(Ĉ(X)) =
n−1∑
i=0

Cαi(α
i)s =

n−1∑
i=0

Cαi(α
s)i =

n−1∑
i=0

ci(α
s)i = c(αs), (4.3)

where c(x) is the polynomial in Rn = Fq[x]/(Xn − 1) associated to C(X) in Fq[I∗].
If the original code C de�ned on Rn had de�ning set T relative to the nth root of

unity α. Then (4.3) shows that if 1 ≤ s ≤ n− 1, s ∈ T if and only if φs(Ĉ(X)) = 0

for all Ĉ(X) ∈ Ĉ. Finally, for φn(Ĉ(X)) equation (4.3) works in this case as well,

implying that αn = 1 is a zero of C if and only if φn(Ĉ(X)) = 0 for all Ĉ(X) ∈ Ĉ.
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But α0 = αn = 1. Hence we have that 0 ∈ T if and only if φn(Ĉ(X)) = 0 for all

Ĉ(X) ∈ Ĉ.
We can now describe the extended cyclic code in terms of de�ning set as follows: a

code Ĉ of length qt is an extended cyclic code with de�ning set T̂ provided T̂ ⊆ N̂
is a union of q-cyclotomic cosets module n = qt − 1 with 0 ∈ T̂ and

Ĉ = {Ĉ(X) ∈ Fq[I]|φs(Ĉ(X)) = 0 for all s ∈ T̂}. (4.4)

Recall that the set of coordinate permutations that map a code C to itself forms a

group, that is, a set with an associative binary operation which has an identity and

where all elements have inverses, called the permutation automorphism group of C.

This group is denoted by Aut(C). So if C is a code of length n, then PAut(C) is

a subgroup of the symmetric group Symn. Thus a permutation σ of I acts on Ĉ as

follows: (∑
g∈I

CgX
g

)
σ =

∑
g∈I

CgX
gσ.

So for any divisor e of m, we can consider G = I as a vector-space of dimension

m/e over the sub�eld Fpe. Then we have the following subgroups of the symmetric

group Sym(G) : [36]

• The group of the Frobenius mappings

γpk : g 7−→ gp
k

.

• The linear group GL(I) = GL(m/e, pe), which is the group of Fpe-linear per-
mutation of I.

• The a�ne group AGL(m/e, pe), which is the group generated by the linear

group GL(m/e, pe) and by the transformation of G-i.e,those mappings

g 7→ g + b, b ∈ G. In particular

AGL(1, pm) = AGL1(I) = {σa,b|a ∈ I∗, b ∈ I},

where gσa,b = ag + b. Notice that the maps σa,0 are merely the cyclic shift

on the coordinates {αn, α1, ..., αn−1} each �xing the coordinate 0. The group

AGL1(I) has order (n+ 1)n = qt(qt − 1).

• The semi-linear group ΓL(m/e, pe), which is the group generated by the linear

group GL(m/e, pe) and by the Frobenius mapping γp.
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• The semi-a�ne group AΓL(m/e, pe), which is the group generated by the a�ne

group AGL(m/e, pe) and by the Frobenius mapping γp.

De�nition 4.8. [21] An a�ne-invariant code is a proper subspace of A invariant

under the a�ne permutation acting on G. In other words it is a code of A whose

automorphism group contains AGL(1, pm).

Thus we can decide which extended cyclic codes are a�ne-invariant by examine

there de�ning sets. In order to do this we introduce a partial ordering � on N̂ .

Suppose that q = pm, where p is a prime. Then N̂ = {0, 1, ..., n}, where n = qt−1 =

pmt − 1. So every element s ∈ N̂ can be written in its p-ary expansion

s =
mt−1∑
i=0

sip
i, where 0 ≤ si < p for 0 ≤ i < mt.

We say that r � s provided ri ≤ si for all 0 ≤ i < mt, where r =
∑mt−1

i=0 rip
i is the

p-adic expansion of r. We also need a result called Lucas' Theorem.

Theorem 4.9. [3] (Lucas') Let r =
∑mt−1

i=0 rip
i and s =

∑mt−1
i=0 sip

i be the p-ray

expansions of r and s. Then (
s

z

)
=

mt−1∏
i=0

(
si
ri

)
(mod p)

We can now determine the a�ne-invariant codes from their de�ning sets, a result

due to Kasami, Lin, and Peterson, a proof of which can be found in [21].

Theorem 4.10. [3] [Kasami, Lin, and Peterson] Let Ĉ be an extended cyclic code

of length qt with de�ning set T̂ . The code Ĉ is a�ne-invariant if an only if whenever

s ∈ T̂ then r ∈ T̂ for all r ∈ N̂ with r � s.

4.2 The Automorphism Groups of A�ne-Invariant

Codes

In this section we will state some theorems a bout the automorphism groups of a�ne-

invariant codes as follows

Theorem 4.11. [21] (Berger and Charpin) Let C be a nontrivial a�ne-invariant

code of A of length pm over Fq, q = pr, m = rm′. Then there exist a divisor e of

m and a divisor ` of e such that the permutation group Per(C) of C is generated by

AGL(m/e, pe) together with the Frobenius mapping γp`
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Let N̂ be the de�ning of C. Then ` is the smallest integer such that N̂ is invariant

under multiplication by p`. Moreover r divides e and ` divides r. Berger proved later

that the full automorphism group of any a�ne-invariant code is deduced from its

permutation group:

Theorem 4.12. [21] If C is a non-trivial a�ne-invariant code, with permutation

group Per(C), then

Aut(C) = F∗q o Per(C).

More precisely, the elements of Aut(C) are of the form∑
g∈I

xgX
g 7→ a

∑
g∈I

xgX
σ(g), a ∈ F∗q, σ ∈ Per(C).

Thus knowledge of the permutation group is su�cient for the complete description

of the automorphism group of any a�ne-invariant code. In accordance with Theorem

(4.11), this is achieved as soon as we know the values of the two parameters, ` and

e.

Theorem 4.13. [21] Let C be an a�ne-invariant code with de�ning set T . Let e be

a divisor of m. Then the code C is invariant under AGL(m/e, pe) if and only if

t ∈ T and j � t⇒ t+ j(pe − 1) ∈ T.

4.3 BCH codes

BCH Code is most famous code in the �eld of coding theory because they have very

e�ective encoding and decoding algorithms. These codes are best considered as cyclic

codes. The class of Bose, Chaudhuri and Hocquenghem (BCH) codes is, in fact, a

generalization of the Hamming codes for multiple-error correction (recall that Ham-

ming codes correct only one error). Binary BCH codes were �rst discovered by A.

Hocquenghem in 1959 and independently by R. C. Bose and D. K. Ray-Chaudhuri

in 1960. Generalizations of the binary BCH codes to q-ary codes were obtained by

D. Gorenstein and N. Zierler in 1961.

4.3.1 De�nitions

Suppose we have t nonzero polynomials f1(x), ..., ft(x) ∈ Fq[x]. The least common

multiple of f1(x), ..., ft(x) is the monic polynomial of the lowest degree which is a

multiple of all of f1(x), ..., ft(x), denoted by lcm(f1(x), ..., ft(x)).
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Remark 4.14. If f1(x), ..., ft(x) ∈ Fq[x] have the following factorizations:

f1(x) = a1.p1(x)e1,1 ...pn(x)e1,n , ..., ft(x) = at.p1(x)et,1 ...pn(x)et,n ,

where a1, ...at ∈ F∗q, ei,j ≥ 0 and pi(x) are distinct monic irreducible polynomials

over Fq, then

lcm(f1(x), ..., ft(x)) = p1(x)max{e1,1,...,et,1}...pn(x)max{e1,n,...,et,n}.

Example 4.15. Consider the binary polynomials

f1(x) = (1 +x)2(1 +x+x4)3, f2(x) = (1 +x)(1 +x+x2)2, f3(x) = x2(1 +x+x4).

Then we have by the above remark that

lcm(f1(x), f2(x), f3(x)) = x2(1 + x)2(1 + x+ x2)2(1 + x+ x4)3.

Lemma 4.16. Let f(x), f1(x), f2(x), ..., ft(x) be polynomials over Fq. If f(x) is divis-

ible by every polynomial fi(x) for i = 1, 2, ..., t, then f(x) is divisible by lcm(f1(x), f2(x), ..., ft(x))

as well.

Proof. see [5]

Example 4.17. The polynomial f(x) = x15−1 ∈ F2[x] is divisible by f1(x) = 1+x+

x2 ∈ F2[x], f2(x) = 1+x+x4 ∈ F2[x] and f3(x) = (1+x+x2)(1+x3 +x4) ∈ F2[x]

respectively. Then f(x) is also divisible by

lcm(f1(x), f2(x), f3(x)) = (1 + x+ x2)(1 + x+ x4)(1 + x3 + x4)

Example 4.18. [5] Fix a primitive element α of Fqm and denote by M i(x) the

minimal polynomial of αi with respect to Fq. Each root β of M i(x) is an element of

Fqm , and therefore β satis�es βq
m−1−1 = 0; i.e., x−β is a linear divisor of xq

m−1−1.

Since M i(x) has no multiple roots. Hence, M i(x) is a divisor of xq
m−1 − 1. For a

subset I of Zqm−1, the least common multiple lcm(M i(x))i∈I is a divisor of x
qm−1−1

as well by Lemma (4.16).

Example (4.18) provides a method to �nd some divisors of xq
m−1 − 1. These

divisors can be chosen as generator polynomials of cyclic codes of length qm − 1.
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De�nition 4.19. [5] Let α be a primitive element of Fqm and denote by M i(x) the

minimal polynomial of αi with respect to Fq. A (primitive) BCH code over Fq of

length n = qm − 1 with designed distance δ is a q-ary cyclic code generated by

g(x) = lcm(Ma(x),Ma+1(x), ...,Ma+δ−2(x))

for some integer a. Furthermore, the code is called narrow-sense if a = 1.

Example 4.20. [5]

(i) Let α be a primitive element of F2m . Then a narrow-sense binary BCH code

with designed distance 2 is a cyclic code generated by M (1)(x). It is in fact a

Hamming code.

(ii) Let α ∈ F8 be a root of 1 + x + x3. Then it is a primitive element of F8. The

polynomials M (1)(x) and M (2)(x) are both equal to 1+x+x3. Hence, a narrow-

sense binary BCH code of length 7 generated by lcm(M (1)(x),M (2)(x)) = 1 +

x+ x3 is a [7, 4]code. In fact it is a binary [7, 4, 3]-Hamming code.

(iii) Let β be a root of 1 + x + x2 ∈ F2, then F4 = F2[β]. Let α be a root of

β+x+x2 ∈ F4[x]. Then α is a primitive element of F16. Consider the narrow-

sense 4-ary BCH code of length 15 with designed distance 4. Then the generator

polynomial is

g(x) = lcm(M (1)(x),M (2)(x),M (3)(x)) = 1 + βx+ βx2 + x3 + x4 + β2x5 + x6.

4.3.2 Parameters Of BCH Codes

The length of a BCH code is clearly qm − 1. We consider the dimension of BCH

codes �rst.

Theorem 4.21. [3]

(i) The dimension of a q-ary BCH code of length qm − 1 generated by

g(x) = lcm(M (a)(x),M (a+1)(x), ...,M (a+δ−2)(x))

is independent of the choice of the primitive element α.

(ii) A q-ary BCH code of length qm − 1 with designed distance δ has dimension at

least qm − 1−m(δ − 1).
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Proof. (i)Let Ci be the cyclotomic coset of q modulo qm − 1, containing i. Put

S =
⋃a+δ−2
i=a Ci. Then we have

g(x) = lcm(
∏
i∈Ca

(x− αi),
∏

i∈Ca+1

(x− αi), ...,
∏

i∈Ca+δ−2

(x− αi)) =
∏
i∈S

(x− αi).

Hence, the dimension is equal to qm − 1− deg(g(x)) = qm − 1− |S|. As the set S is

independent of the choice of α, the desired result follows.

(ii) By part (i) the dimension k satis�es

k = qm − 1− |S|

= qm − 1− |
a+δ−2⋃
i=a

Ci|

≥ qm − 1−
a+δ−2∑
i=a

|Ci|

≥ qm − 1−
a+δ−2∑
i=a

m

= qm − 1−m(δ − 1).

Theorem(4.21) shows that, in order to �nd the dimension of a q-ary BCH code

of length qm − 1 generated by g(x) = lcm(M (a)(x),M (a+1)(x), ...,M (a+δ−2)(x)), it is

su�cient to check the cardinality of
⋃a+δ−2
i=a Ci, where Ci is the cyclotomic coset of

q modulo qm − 1 containing i.

Example 4.22. For t ≥ 1, t and 2t belong to the same cyclotomic coset of 2 modulo

2m − 1. This is equivalent to the fact that M (t)(x) = M (2t)(x) Therefore,

lcm(M (1)(x), ...,M (2t+1)(x)) = lcm(M (1)(x), ...,M (2t)(x));

i.e., the narrow-sense binary BCH codes of length 2m − 1 with designed distance

2t+ 1 are the same as the narrow-sense binary BCH codes of length 2m−1 designed

distance 2t.

Proposition 4.23. [5] A narrow-sense q-ary BCH code of length qm − 1 with de-

signed distance δ has dimension exactly qm−1−m(δ−1) if q 6= 2 and gcd(qm−1, e) =

1 for all 1 ≤ e ≤ δ − 1.
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Theorem 4.24. [39] (BCH bound) A BCH code with designed distance δ has min-

imum distance at least δ

Proof. [39]

The next theorem shows that many Hamming codes are narrow-sense BCH codes.

Theorem 4.25. [3] Let n = qr−1
q−1

where gcd(r, q − 1) = 1. Let C be a narrow-sense

BCH code with de�ning set T = C1. Then C is the Hamming code Hq,r.

Corollary 4.26. [3] Every binary Hamming code is a primitive narrow-sense BCH

code.

4.4 The Automorphism Groups of Primitive Narrow-

Sense BCH-Codes

In this section we will give the automorphism groups of primitive narrow-sense

BCH codes de�ned on any extension �eld. Recall that from now on k = Fq, q =

pr and m = rm′, r > 1. The extended primitive BCH code over k of length pm

and designed distance δ will be denoted by Bq(δ); it is the code with de�ning set

Tδ =
δ−1⋃
j=0

clq(j),

where clq(j), 1 ≤ j ≤ pm−1, is the orbit of j under multiplication by q, by convention

we suppose that δ is the smallest element of clq(δ).

The primitive BCH code of length pm − 1 and designed distance δ over k, (whose

extension is Bq(δ)) will be denoted by B∗q (δ). We will study the extension of BCH

codes, because we want to work in the ambient space of GRM-codes; our ambient

space is the algebra A = k[(Fqm′ ,+)] So the length of any of the codes is pm =

qm
′
, m = m′r.

In accordance with Theorem (4.11) we must determine for any code Bq(δ), a

divisor e of m and a divisor ` of e such that its permutation group is generated

by AGL(m/e, pe) together with the Frobenius mapping γp`. We begin by proving that

generally ` = r.We next examine some particular cases, called 'exceptional'. Actually

we will prove that e is equal to m when Bq(δ) is not exceptional. Here Let n = pm−1.

75



Chapter 4. The Automorphism Groups of BCH Codes 76

Lemma 4.27. [21] Let 1 ≤ δ ≤ n, where δ is the smallest element of its q-cyclotomic

coset. Let ` be the smallest integer such that Tδ is invariant under multiplication by

p`. Then ` = r except when δ = 1 or pm − 1, and when δ = 3 for q = 4.

Proof. According to Theorem (4.11), ` must divide r. Recall that clpu(s), for some

u dividing m, denotes the orbit of s under multiplication by pu modulo n, i.e., the

pu-cyclotomic coset containing s.

First consider some particular values of δ. The cases δ = 1 and δ = pm − 1 are

trivial cases where obviously ` = 1. Suppose that q = 4. We have T2 = {0} ∪ cl4(1)

where clearly 2 /∈ T2 implying ` = 2 = r. But

T3 = {0} ∪ cl4(1) ∪ cl4(2) = {0} ∪ cl2(1).

So if δ = 3 and q = 4 then ` = 1.

Denote by L the number of q-cyclotomic cosets modulo n. Let C be the following

set of coset representatives

C =

{
δi|i ∈ [1, L], δi < δi+1, δi = min clq(δi)

}
(4.5)

Note that Tδi = clq(δi−1)∪ Tδi−1
, δ1 = 1 δL = n = pm− 1. We are going to prove by

induction on i, 2 ≤ i ≤ L, the following property:

(Hi) Assume that 3 < i when q = 4. Then for any ` dividing r, ` < r, there is an

s ∈ Tδi such that p`s /∈ Tδi .
We �rst prove that (Hi) is true for the smallest value of i. Suppose that q > 4 and

i = 2, i.e. δ2 = 2. Then T2 = {0} ∪ clq(1) and clearly p` is not in T2 since 1 ≤ ` < r;

so (H2) is true. If q = 4 and i = 4 we have δ4 = 5 and

T5 = T3 ∪ cl4(3) = {0} ∪ cl2(1) ∪ cl4(3).

In this case, the only possible value for ` is 1. (H4) is true because 6 = 2× 3 is not

in T5.

Now suppose that (Hi) is true for i ∈ [3, j[ when q > 4 and for i ∈ [4, j[ otherwise.

We are going to prove that (Hj) is true. We have

Tδj = clq(δj−1) ∪ Tδj−1

and we assume that

∀`, `|r, ∃s ∈ Tδj−1
such that p`s /∈ Tδj−1

.
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If p`s /∈ clq(δj−1) then p`s /∈ Tδj and (Hj) is true. Assume that p`s ∈ clq(δj−1); so

δj−1 ≡ qup`s (mod n), for some u. Moreover we can suppose that s is the smallest

element of its q-cyclotomic coset because the condition (s ∈ Tδj−1
and p`s /∈ Tδj−1

)

is satis�ed for qks, for any k.

So we have: δj−1 ≡ qup`s (mod n) and s < δj−1. Considering the p-ary expansion

of s, s = [s0, ..., sm−1], set t = s+pi where i is the smallest index such that si < p−1.

We remark that this implies s ≥ pi − 1. By construction we have s ≺ t, implying

qup`s ≺ qup`t. Note that t is not in clp(s). In particular, this implies t 6= δj−1.

Since Bq(δj−1) is a�ne-invariant then qup`t ∈ Tδj−1
would imply that qup`s (and any

element of clq(p
`s)) is in Tδj−1

. So there is no element of clq(p
`t) in Tδj−1

. If t < δj−1

then t ∈ Tδj−1
with p`t /∈ Tδj−1

, implying that (Hj) is true.

Suppose that t > δj−1. Since

δj−1 − t = qup`s− s− pi = s(qup` − 1)− pi,

we must have: 0 < s(qup` − 1) < pi. When p > 2 or p = 2 with qup` 6= 2, this

implies s < pi − 1 which is not in accordance with the choice of i. So we must have

p = 2, u = 0 and ` = 1. According to the choice of i, one obtains

s = 2i − 1 and δj−1 = 2s = 2(2i − 1). (4.6)

We are going to prove that (Hj) is true for δj−1 = 2s, with s ∈ Tδj−1
, with q = 2r.

Note that cl2(s) has cardinalitym, because of the form of s. Since δj−1 is the smallest

element of its q-cyclotomic coset, it is clear that i ≤ m − 2. Thus we have s < 2s

and 2s is smaller than any t ∈ cl2(s) unless t = s. Moreover cl2(s) is the union of

the r classes clq(2
`s), 0 ≤ ` ≤ r − 1. Each such class has cardinality m/r.

When q = 2r with r > 2 we deduce that clq(4s) is not contained in Tδj ; in particular

4s /∈ Tδj , i.e(Hj) is true.

Suppose that q = 4. By hypothesis δj−1 ≥ 5; so, according to (4.6), i ≥ 2, s ≥
3 and δj−1 ≥ 6. If s = 3 we have clearly that 5 ∈ Tδj−1

and 10 /∈ Tδj . More

generally, suppose that s ≥ 7 and take u = s + 2i − 2i−1, i.e. u = 2i+1 − 1 − 2i−1.

The 2-ary expansions of u and 2u are respectively

[1, ..., 1, 0,

i︷︸︸︷
1 , 0, ...] and [0, 1, ..., 1, 0,

i+1︷︸︸︷
1 , 0, ...]

(recall that i ≤ m − 2). We have s < u < 2s; moreover, even when i = m − 2,

it appears that the smallest element of cl4(2u) is strictly greater than 2s implying

77



Chapter 4. The Automorphism Groups of BCH Codes 78

2u /∈ Tδj while u ∈ Tδj , i.e (Hj) is true.

We have proved that (Hj) is true, for 2 ≤ i ≤ L. Obviusly (Hi) means that the

de�ning set of BCH code of designed distance δi, over the �eld of order pr, is not

invariant by multiplication by p`, ` dividing r and ` < r, completing the proof.

Theorem 4.28. [21] Suppose that the code Bq(δ) is invariant under AGL(m′′, pe).

Moreover we suppose that δ, q and e are such that

q 6= 2, pe ≤ δ and δ 6= pm − 1

(where δ is the smallest element of its q-cyclotomic coset). Then the q-ary expansion

of δ, say (d0, ..., dm′−1)q is

δ = (q − 1, ..., q − 1︸ ︷︷ ︸
κ

, dκ, 0, ..., 0︸ ︷︷ ︸
λ

)q, (4.7)

where κ denotes the biggest i such that di 6= 0 and λ = m′ − (κ + 1). Moreover, if

δ ≤ pm−e − 1 then dκ = 1.

Proof. see [21]

Recall that the most important classes of a�ne-invariant codes are the primitive

extended narrow-sense BCH codes and the generalized Reed-Muller (GRM) codes.

Here we will state the de�nition of (GRM) codes.

De�nition 4.29. [21] Recall that k = Fq, q = pr, m = rm′ and A = Fq[I].

For any µ, 1 ≤ µ ≤ m′(q − 1), The GRM-code of length pm over k and of index µ

is the code GRMq(µ) of A with de�ning set

L(µ) = {t ∈ S|0 ≤ wtq(t) < µ}.

where S = Zn and the integer v = m′(q − 1)− µ is the order of GRMq(µ).

We have that, for each divisor e of m, we can de�ne the v-ary expansion and the

v-weight expansion of any s ∈ S [36] :

s =
m′′∑
i=0

siv
i and wtv(s) =

m′′∑
i=0

si, vi ∈ [0, v − 1], (4.8)

where v = pe and m′′ = m/e.
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Lemma 4.30. [21] For the following values of q and δ, the code Bq(δ) has a permu-

tation group greater than 〈AGL(1, pm), γpr〉. These cases, listed below, will be called

'exceptional'.

Some extended BCH codes are in fact GRM codes:

(E1) δ = 1 or δ = qm
′ − 1, for any q. The codes Bq(δ) are the trivial GRM codes,

GRMq(1) and GRMq(m
′(q − 1)), respectively. Their permutation group is the

full symmetric group Sym(G), G = Fpm .

(E2) δ = 2, for any q. The code Bq(2) is equal to GRMq(2); thus Per(Bq(2)) =

AGL(m′, q).

(E3) δ = qm
′ − qm

′−1 − 1, for any q. The code Bq(q
m′ − qm

′−1 − 1) is equal to

GRMq(m
′(q − 1)− 1); thus Per(Bq(δ)) = AGL(m′, q).

(E4) m′ = 2, and δ = q2−2q−1. The code Bq(q
2−2q−1) is equal to GRMq(2q−4);

thus Per(Bq(δ)) = AGL(2, q).

(E5) q = 4 and δ = 3. The code B4(3) is equal to GRM2(2), with scalars extended

to F4, and Per(B4(3)) = AGL(m, 2).

There is one exception where Bq(δ) is not a GRM code:

(E6) q = 2r, with r > 2 (i.e q even and q ≥ 8), and δ = 3. Then Per(Bq(3)) =

AGL(m′, 2r).

Proof. Recall that the de�ning set ofGRMq(µ), theGRM code of index µ and length

qm
′
over Fq is denoted by L(µ). The permutation group of GRMq(µ) is AGL(m′, q)

see [18], when 1 < µ < m′(q − 1). If µ = 1 or µ = m′(q − 1) then GRMq(µ) is

a trivial code whose permutation group is the symmetric group over G = Fqm the

extension �eld of K.

(E1) This case is obvious because the de�ning sets are

T1 = {0} and Tqm′−1 = {0, 1, ..., qm′ − 2}.

They correspond to the code containing any word for whom the sum of the

coordinates is zero and the code containing the constant vector only, respec-

tively.

79



Chapter 4. The Automorphism Groups of BCH Codes 80

(E2) It is easy to check that

T2 = {0} ∪ clq(1) = L2.

(E3) We have that Tqm′−qm′−1−1 is the set of s, s ∈ [0, qm
′ − 1] such that 0 ≤

wtq(s) < m′(q − 1) − 1. This is exactly the de�ning set L(m′(q − 1) − 1) of

GRMq(m
′(q − 1)− 1). These codes are the duals of those in (E2).

(E4) We remark that δ = (q − 1, q − 3)q. Let s = (s1, s2)q. Then s is in Tq2−2q−1 if

and only if

• s1 < q − 3 or s2 < q − 3; or

• s1 = q − 3 and s2 < q − 1; or

• s2 = q − 3 and s1 < q − 1.

This occurs if and only if wtq(s) < 2q − 4. So Tq2−2q−1 is the de�ning set of

GRMq(2q − 4).

(E5) We have seen in the proof of the previous lemma (4.27) that T3 = {0}∪ cl2(1),

when q = 4. Thus T3 is the de�ning set of GRM2(2).

(E6) We have already proved that the value of ` is always r ( cf. Lemma 4.27). We

apply Theorem (4.13) when the de�ning set is

T3 = {0} ∪ clq(1) ∪ clq(2), q = 2r, r > 2.

We consider the pairs (s, t), such that s ∈ T3 and t � s, and compute s′ =

s+ t(2r − 1) :

• If (s, t) = (0, 0) then s′ = 0.

• If s 6= 0 and t = 0 then s′ = 0.

• If s 6= 0 and t 6= 0 the only possibility is s = t, implying s′ = s2r; hence

s′ ∈ clq(δ).

In any case we have s′ ∈ T3; so we have proved that the corresponding pair (s, t)

cannot be a disqualifying pair for r. Hence Bq(3) is invariant under AGL(m′, q).

Now for any e = rv the group AGL(m/e, pe) is contained in AGL(m′, q). We can

conclude that the permutation group of Bq(3) is AGL(m′, q), the permutation group
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of the non-trivial GRM codes over Fq. Note that T3 is not the de�ning set of a GRM

code, since wtq(1 + q) = 2 = wtq(2) where 2 ∈ T3 and 1 + q /∈ T3.

Theorem 4.31. [21] Let k = F, q = pr, p a prime, r > 1. Let Bq(δ) be the

extended BCH-code of length pm, r dividing m over k. Then the permutation

group of Bq(δ) is

〈AGL(1, pm), γqr〉

except when q, δ and m satisfy the hypothesis of one of the exceptions (E1) to

(E6) listed in Lemma(4.30). When the permutation group of any Bq(δ) is generated

by AGL(m/e, pe) and γp` for some ` and some e, then the permutation group of the

corresponding BCH code B∗q (δ) is generated by GL(m/e, pe) and γp` .

The automorphism group of Bq(δ) is k∗ × Per(Bq(δ)).

Proof. According to Theorem (4.11), it remains to determine the value of e, since

the value of ` is known to be generally r (see Lemma (4.27)). So Tδ is invariant

under multiplication by pr and r is the smallest integer such that this property

holds. Recall that e = rv, for some v.

The di�culty of the proof comes from the number of particular cases for δ.We have

chosen to treat separately the small values of δ, the medium values of δ and the big

values of δ. However the notion of 'small', or 'big' is relative and depends on the

value of e. In particular m = m′r = m′′vr = m′′e; note that pe = qv. Recall that

q = pr with 1 < r < m, i.e. 4 ≤ q < pm, since the cases r = 1 and r = m were

treated with.

From now on, we �x e < m, i.e. v < m′. This implies e ≤ m/2 since e divides m. In

order to determine if Bq(δ) is, or is not, invariant under AGL(m/e, pe), we will try

to produce a disqualifying pair for e, e = rv and 1 < r < m. Generally, the de�ning

pair will be (s, t) and s′ = s+ t(pe − 1).

We generally identify δ with its q-ary expansion, which is denoted by (d0, ..., dm′−1)q.

In the proof, κ will be the biggest su�x j such that dj 6= 0; setting λ = m′ − 1− κ,
we have:

δ = (d0, ...d
κ
κ, 0, ..., 0︸ ︷︷ ︸

λ

)q

The pe-ary expansion of δ will be denoted, as previously, by (δ0, ..., δm′′−1)pe . Notice

that δi = (dvi, dvi+1, ..., dv(i+1)−1)q.

(1) The first case : δ ≤ pe − 1. We have κ < v implying

δ1 = ... = δm′′−1 = 0 and λ ≥ m′ − v.
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Suppose that p = 2. We consider 3 < δ, because the cases where δ ∈ {1, 2, 3}
were already treated- see the exceptions (E1), (E2), (E5) and (E6) in Lemma

(4.30). The pair (s, t) = (3, 1) is disqualifying for e. Indeed we have clearly

3 ∈ Tδ and 1 ≺ 3; moreover s′ is not in Tδ. Indeed s
′ = s + t(2e − 1) = 2e + 2

has the following expansions:

s′ = (2, 1, 0, ..., 0︸ ︷︷ ︸
m′′−2

)2e = (2, 0, ..., 0︸ ︷︷ ︸
v−1

, 1, 0, ..., 0︸ ︷︷ ︸
m′−(v+1)

)2r .

Since v ≤ m′/2 then m′ − (v + 1) ≥ v − 1, implying that s′ is the smallest

element of its q-cyclotomic coset. As δ ≤ pe − 1, δ < s′; so s′ is not in Tδ.

When p > 2, δ = 1 and δ = 2 are exceptions. We suppose δ > 2. The pair

(s, t) = (2, 1) is disqualifying for e, since 2 ∈ Tδ, 1 ≺ 2 and s′ = pe + 1 has

expansions

s′ = (1, 1, 0, ..., 0︸ ︷︷ ︸
m′′−2

)pe = (1, 0, ..., 0︸ ︷︷ ︸
v−1

, 1, 0, ..., 0︸ ︷︷ ︸
m′−(v+1)

)q.

As above, we have s′ /∈ Tδ.

(2) The second case : pe − 1 < δ ≤ pm−e − 1. Note that pm−e − 1 = qm
′−v − 1.

We have v ≤ κ < m′ − v and δm′′−1 = 0. Moreover, according to Theorem

(4.28), we have to treat those δ whose q-ary expansion has the form

δ = (q − 1, ..., q − 1︸ ︷︷ ︸
κ

,

κ︷︸︸︷
1 , 0, ..., 0︸ ︷︷ ︸

λ≥v

)q,

i.e. δ = 2qκ − 1. Take (s, t) = (δ − 1, qκ−v). Then δ − 1 ∈ Tδ and we have

that qκ−v ≺ δ − 1 when κ > v. If κ = v then t = 1 and we have t ≺ s

unless p = 2. We will treat later the case where p = 2 and κ = v. We have

s′ = s+ t(qv − 1) = 2qκ + (qκ − qκ−v − 2) whose q-ary expansion is

s′ = (q − 2, q − 1, ...., q − 1,

κ−v︷ ︸︸ ︷
q − 2, q − 1, ..., q − 1,

κ︷︸︸︷
2 , 0, ..., 0︸ ︷︷ ︸

λ≥v

)q,

when κ > v. If κ = v then s′ = 2qv + qv − 3, which yields

s′ = (q − 3, q − 1, ..., q − 1,

κ︷︸︸︷
2 , 0, ..., 0︸ ︷︷ ︸

λ≥v

)q. (4.9)
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In any case s′ is the smallest element of its q-cyclotomic coset and δ < s′,

implying s′ /∈ Tδ. So (s, t) is disqualifying for e. If p = 2 and κ = v, we choose

(s, t) = (δ− qv, 2). We have s = qv − 1, 2 ≺ s and s′ = 2qv + (qv − 3). Since s′

has the q-ary expansion (4.9), we conclude that (s, t) is disqualifying for e.

(3) The third case : pm−e − 1 < δ. We have κ ≥ m′ − v; thus δm′′−1 6= 0 and

λ < v (λ = m′ − 1 − κ). Moreover, according to Theorem (4.28), we have to

treat those δ whose q-ary expansion has the form

δ = (q − 1, ..., q − 1︸ ︷︷ ︸
κ

, dκ, 0, ..., 0︸ ︷︷ ︸
λ<v

)q.

Recall that m′ = vm′′, m′′ > 1; so m′ = v + 1 if and only if m′ = 2 (and

v = 1).

(3.1) We �rst suppose that m′ > 2 (then m′ > v + 1) and consider the pair

(s, t) = (δ− 1, qm
′−v−1), where clearly δ− 1 ∈ Tδ. Since κ > m′− (v+ 1),

we have that t ≺ s and

s′ = s+ t(pe − 1) = dκq
κ + qκ − 2 + qm

′−v−1(qv − 1)

= qm
′−1 + dκq

κ + (qκ − qm′−v−1 − 2).

Whenever s′ /∈ Tδ, we can conclude that the pair (s, t) is a disqualifying

pair for e. We distinguish three cases:

• If λ ≥ 2, we have

s′ = (q − 2, q − 1, ..., q − 1︸ ︷︷ ︸
m′−v−2

,

m′−v−1︷ ︸︸ ︷
q − 2 , q − 1, ..., q − 1, dκκ, 0, ..., 0︸ ︷︷ ︸

λ−1

, 1)q.

The smallest element of the q-cyclotomic coset of s′ is

(1, q − 2, q − 1, ..., q − 1︸ ︷︷ ︸
m′−v−2

,

m′−v︷ ︸︸ ︷
q − 2, q − 1, ..., q − 1,

κ+1︷︸︸︷
d
κ
, 0, ..., 0︸ ︷︷ ︸

λ−1

)q.

which is greater than δ, implying s′ /∈ Tδ.
• If λ = 1, then

s′ = (q − 2, q − 1, ..., q − 1︸ ︷︷ ︸
m′−v−2

,

m′−v−1︷ ︸︸ ︷
q − 2 , q − 1, ..., q − 1,

κ︷︸︸︷
d
κ
, 1)q.
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Then, s′ is the smallest element of its the q-cyclotomic coset, since

q = pr with r > 1. Then s′ is greater than δ which is yields s′ /∈ Tδ.
• If λ = 0, then

s′ = (q − 2, q − 1, ..., q − 1︸ ︷︷ ︸
m′−v−2

,

m′−v−1︷ ︸︸ ︷
q − 2 , q − 1, ..., q − 1︸ ︷︷ ︸

v−1

, dκ + 1)q.

When dκ < q − 3, we have that s′ /∈ Tδ, because s
′ is the smallest

member of its q-cyclotomic coset.

If dκ = q − 3, s′ is not in Tδ because the coe�cient of its q-ary

expansion are q − 1 or q − 2, implying that any element of its q-

cyclotomic coset is greater than δ

If dκ = q− 2 then δ = qm
′ − qm′−1 − 1; we obtain the exception (E3)

of Lemma (4.30).

(3.2) We now treat the particular case where m′ = 2. Then e = r, v = 1 and

δ = (q − 1) + d1q, i.e. δ = (q − 1, d1)q.

We remark that d1 = q − 2 corresponds to the exception (E3) (δ =

q2 − q − 1) and d1 = q − 3 to the exception (E4) (δ = q2 − 2q − 1). Thus

we assume that d1 ≤ q − 4; since d1 6= 0 we then assume q > 4. We will

distinguish when the characteristic is 2 or odd.

• If p > 2, we choose (s, t) = (δ− 1, 1). We have clearly δ− 1 ∈ Tδ and
1 ≺ δ − 1. Moreover

s′ = s+ t(q − 1) = d1q + 2q − 3 i.e., s′ = (q − 3, d1 + 1)q.

Since d1 ≤ q − 4, it follows that s′ is the smallest member of its

q-cyclotomic coset. As s′ > δ, s′ /∈ Tδ. Thus (s, t) is a disqualifying

pair for r.

• Assume that p = 2. When d1 ≤ q − 5 we choose the pair (s, t) =

(δ − 2, 1). We have δ − 2 ∈ Tδ, 1 ≺ (δ − 2) and

s′ = s+ t(q − 1) = d1q + 2q − 4 i.e. s′ = (q − 4, d1 + 1)q.

Again, s′ is the smallest member of its q-cyclotomic coset and s′ > δ;

i.e (s, t) is a disqualifying pair for r.

When d1 = q − 4, then δ = q2 − 3q − 1, i.e. δ = (q − 1, q − 4)q. We
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choose the pair (s, t) = (q4 − 4q − 1, 2). Since s = (q − 1, q − 5)q, it

is clear that s ∈ Tδ and t ≺ s. Moreover

s′ = s+ t(q − 1) = q2 − 2q − 3 i.e. s′ = (q − 3, q − 3)q;

s′ is the only element of its q-cyclotomic coset and is greater than δ;

so (s, t) is a disqualifying pair for r.

We have proved that any Bq(δ) which is not exceptional cannot be invariant under

AGL(m/e, pe), for any e such that e = rv, 1 ≤ v < m′. We conclude that e = m

is the only possibility, implying that the permutation group of Bq(δ) is generated

by AGL(1, pm) and γq. Then the permutation group of B∗q (δ) is 〈GL(1, pm), γq〉.
The automorphism group of Bq(δ) is immediately deduced, according to Theorem

(4.12).
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