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We characterize the operation of semiconductor micro-ring lasers in an excitable regime. Our
experiments reveal a statistical distribution of the characteristics of noise-triggered optical pulses
that is not observed in other excitable systems. In particular, an inverse correlation exists between
the pulse amplitude and duration. Numerical simulations and an interpretation in an asymptotic
phase space confirm and explain these experimentally observed pulse characteristics.
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I. INTRODUCTION

Excitability — the ability of nonlinear systems to
fire large well-defined output pulses when a threshold is
crossed — has been investigated in a broad range of scien-
tific areas, including physics, chemistry, biology and neu-
roscience [1–7]. The strong interdisciplinarity of excitable
systems has attracted the attention of theoreticians in-
terested in their universal properties. These theoretical
studies disclosed that excitability takes place when a sep-
aratrix is crossed in the phase space of the system, and
led to a comprehensive classification of excitable systems
based on bifurcations taking place in their phase space
[3, 6]. Considerable theoretical insight was further gained
into the role played by networks of excitable units in
neuroscience [8]. Moreover, the investigation of excitable
units is of high practical relevance as networks of spiking
neurons have proved to be computationally superior to
other neural networks [4].

In the field of photonics, excitability is widely stud-
ied both theoretically and experimentally [9–17] and a
broad search was started for optical excitable units that
could be deployed in optical neural networks. In the last
decade, lasers with saturable absorber [9, 10], optically
injected lasers [11, 16], lasers with optical feedback [15]
or VCSELs with opto-electronic feedback [17] have all
been proposed as optical excitable units.

Most often excitable behavior in optical systems has
been shown to occur close to a fold bifurcation and a
homoclinic bifurcation of a stable limit cycle [9–12, 16].
In these systems, the response to noise is governed by
the presence of an accessible saddle point S embedded
in the separatrix. Pulses are activated by noise-induced
fluctuations which connect the resting state to S and
the large deterministic excursion takes place along the
unstable manifold of S. In this scenario, excitability is
therefore possible in the limit of vanishing noise intensity.

In a recent paper [18], we proposed that excitabil-
ity can take place in systems with weakly broken Z2-
symmetry, which includes optical units such as semicon-
ductor micro-ring lasers [19, 20] and micro-disk lasers
[21]. It can be shown that in this class of systems the ac-

cessible saddle is not embedded in the separatrix for ex-
citability. Therefore, the unstable manifold of S does not
participate in excitability and the generation of pulses
cannot be initiated in the vanishing noise limit. Clear
evidence of such excitability was shown in semiconductor
ring lasers with weakly broken Z2-symmetry in the pres-
ence of a non-vanishing, finite intensity of spontaneous
emission noise [18].

In this paper, we address that micro-ring lasers
(MRLs) in the excitable regime show a notable degree
of variation in the amplitude and width of the excited
pulses. We characterize both theoretically and experi-
mentally the particular pulse properties when the trig-
gering occurs through optical noise in the system. The
main result is that a clear inverse correlation is observed
between the amplitude and width of the excited pulses.
In Section II, we experimentally investigate the excitable
behavior of a MRL in the time domain. A characteri-
zation of the stochastic properties of excitability is car-
ried out to reveal an inter-spike-interval (ISI) distribution
which is exponential for large waiting times, but diverges
from the Kramers form for intervals below approx. 50 ns.
In Sections III and IV, we use a general rate-equation
model and an asymptotic model for excitability in MRLs
as introduced in Ref. [18, 22] to explain the experimen-
tally observed features. Finally, in Section V, we discuss
the main results presented and their generality.

II. EXPERIMENTS

A. Device and Setup

The experiments have been performed on an InP-based
multi-quantum-well MRL with a racetrack geometry [see
Fig. 1(a)]. The optical power is coupled out of the ring
cavity by directional coupling to bus waveguides which
are integrated on the same optical chip. The use of two
bus waveguides in the micro-ring design allows for four
independent input/output ports A-D which can be ac-
cessed with optical fibers. The device is mounted on a
copper mount and is thermally controlled by a Peltier
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FIG. 1. Experimental MRL set-up. (a) depicts the actual
MRL device with its contacting. The ring itself is pumped
with a current Ip. Four waveguide contacts are depicted of
which only port A is biased with Iw. (b) shows the overall
setup where the read-out and the SOA are separated from
each other by a circulator C.

element which is stabilized with an accuracy of 0.01◦C.

The MRL chip is deployed in a setup as shown in Fig. 1.
In our experiments only port A of the four ports is used
for collecting output power from the MRL as well as in-
jecting optical noise in the micro-ring cavity. We use a
directly biased semiconductor optical amplifier [SOA in
Fig. 1(b)] operating in the C-band to generate a con-
trollable amount of noise through amplified spontaneous
emission which is injected in the ring through a lensed
optical fiber coupled to port A of the MRL. The use of a
circulator [C in Fig. 1(b)] allows us to read output from
port A with the same lensed fiber.

Electrical contacts have been applied to the bus waveg-
uides that can be independently pumped. They allow to
amplify on-chip the signal emitted by the ring. More in-
terestingly, the presence of a contact allows us to contin-
uously break the symmetry of the device in a controlled
way by making both the strength and the phase of the lin-
ear coupling between the CW and the CCW mode asym-
metric. Using the fiber’s facet as a mirror, we are able to
reflect power from one mode (e.g. CCW) back into the
waveguide and finally to the counter-propagating mode
in the ring. The application of a direct bias current Iw
on the waveguide’s electrode has two main effects. First,
it controls the power that is coupled to the CW mode;
second, it affects the optical length of the waveguide via
carrier-induced refractive index changes. Therefore, the
phase of the reflected signal can be controlled by tun-
ing the bias current on the waveguide and changing the
position of the fiber facet which is piezo-controlled. We
have previously demonstrated in Refs. [18, 22] that such
a breaking of the Z2-symmetry of the micro-ring leads
to excitable behavior when the optical noise intensity is
large enough to make one of the states metastable. We
analyze the output power of the CCW mode (port A)
using a fast photodiode (with a bandwidth of 2.4 GHz)
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FIG. 2. (a) Experimental time series of port A demon-
strating the excitable behavior of the MRL operating at
Ip = 47.45mA. The current on the waveguide of port A
is Iw = 13mA and the current in the external SOA is
ISOA = 700mA. (b) and (c) show examples of a single and a
double excited pulse taken from the same time series.

connected to an oscilloscope (with a maximum sampling
rate of 20 Gs/s).

B. Excitability

In the temperature range of operation, the trans-
parency current density of our semiconductor material is
∼ 1.0kA/cm2, which leads to a transparency current of
∼ 24mA for the MRL and ∼ 4mA for the waveguide. The
MRL device reaches threshold at 35mA and excitability
is observed between 42mA and 48mA. A typical time
series revealing excitable behavior of the micro-ring is
shown in Fig. 2(a). The device operates most of the time
in the CW unidirectional mode. However, pulses in the
CCW direction can be regularly observed. An example of
an excited pulse with a pulse duration of ∼ 7ns is shown
in Fig. 2(b).

In contrast to what is expected for a typical excitable
system, not all excited pulses have the same amplitude
and duration, see e.g. Fig. 2(a). We clearly observe a
degree of variation in the amplitude of the pulses (which
is not a consequence of undersampling since it persists for
higher sampling rates). In the same way, a distribution
of pulse-durations is observed in the experimental time
series and the pulse-durations seem to be spread between
a minimum of 7ns and a maximum of 20ns. Such a spread
is significantly larger than the sampling time.
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FIG. 3. Inter-Spike-Interval (ISI) distribution for pulses emit-
ted by the symmetry broken MRL for device parameters as
given in Fig. 2. The logarithm of the number of events N in
each ISI bin is shown. (a) The distribution of ’long’ ISIs is
well-fitted by an exponential curve (see gray solid line). The
gradient 1/T1 = 1.6µs−1 indicates a characteristic time-scale
of ∼ 0.63 µs. (b) The distribution of ’short’ ISIs reveals a
different time constant T2 ∼ 18.4ns. The inset in panel (a)
shows the dependence of the ’long’ ISI time-scale T1 (with er-
ror bars given by the standard deviation from the mean value
T1) on the current on the external SOA (ISOA) which is used
as noise source.

C. Inter-spike-interval distribution

In order to quantitatively describe the ISI, we have
constructed the ISI-distribution from the experimental
time-series. A threshold is put at 60 % of the maximum
pulse height recorded in the time series. Only pulses
above this threshold are taken into account in the cal-
culation of the ISI distribution. We have verified that
calculating the ISI distribution for other values of the
threshold gives the same qualitative results as long as it
is not chosen too low as one will then start to measure
noisy excursions instead of actual excited pulses. An ex-
ample of such an ISI-distribution is shown in Fig. 3(a) for
the MRL operating at a current of 47.45 mA. The tail of
the distribution is well fitted by a typical Kramers’ expo-
nential distribution P (τ) ∝ exp [−τ/T1], which indicates
that the excited pulses are activated by noise-induced
crossing of a potential barrier. The time constant T1 ob-
tained from the fitting of Fig. 3(a) is T1 = 0.63 µs.

A significant deviation from the Kramers’ law is, how-
ever, observed for ISIs shorter than 50 ns, as shown in
Fig. 3(b). The distribution of such ’short’ ISI is strongly
peaked around approx. 20ns and decreases abruptly with
a characteristic time T2 = 18.4ns. A similar devi-
ation from the Kramers’ law was previously reported
in the residence-time distribution of MRLs [23] and in
other optical excitable systems such as lasers with optical
feedback close to the low frequency fluctuations regime
[24, 25].

In order to confirm and quantify the noise-activated
origin of excitability, we have investigated the depen-
dence of the average Inter-Spike-Interval T1 as function
of the bias current on the ring Ip and the external noise.
The external noise source is the external semiconductor
optical amplifier [see Fig. 1(b)] and it is biased at dif-
ferent DC currents. We assume a linear relationship be-
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FIG. 4. Distribution of (a) the pulse amplitude and (b) the
pulse width for Ip = 47.45mA, ISOA = 700mA, Iw = 13.0
mA. The number of events N in each bin is plotted. The
gray solid line shows the corresponding Gaussian distribution
as predicted by the theory presented in Section IV.

tween the SOA current and the noise intensity coupled
into the MRL. In the inset of Fig. 3(a) the dependence of
T1 versus the SOA current is shown. The linear relation
between log(T1) and the inverse of the SOA current is
consistent with a Kramers rate across a potential barrier
[26]. We have also verified that T1 increases with the
bias current Ip on the ring, which is consistent with the
theoretical result that the activation energy of the MRL
increases with the bias current [27].

In contrast, we have checked that the ‘short’ ISI has a
much smaller dependence on the noise strength and re-
mains approximately constant when changing the ISOA
and Ip. The origin of the non-Arrhenius distribution for
these ’short’ ISIs is instead related to deterministic dy-
namics. This will be discussed in more detail in Sections
III-IV.

D. Amplitude-width distribution

In order to further characterize the properties of the
excited pulses, we build the distribution of the pulse du-
ration, defined as the full-width-half-maximum (FWHM)
and the distribution of pulse amplitudes. Typical exam-
ples of the amplitude and width distributions are shown
in Fig. 4.

A distribution of pulse amplitudes is evident in
Fig. 4(a), which is consistent with the pulse amplitude
modulation present in Fig. 2. Such distribution of ampli-
tudes was not observed in other optical excitable systems
(see for instance [9, 14, 39]) and is not consistent with a
standard excitability scenario where the system performs
a large phase space excursion following the unstable ma-
nifold of a saddle structure [6, 7] for which a much sharper
distribution is expected. The width of the excited pulses
is distributed asymmetrically around an average value of
18 ns and reveals a non-zero probability for pulses as long
as 40 ns.

In order to shed light onto the dynamical origin of such
distributions, we have measured the correlation between
pulse amplitude and width for different values of the bias
current on the ring. We minimize the noise-contributions
to the pulse amplitude by performing this measurement
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FIG. 5. Measured width and amplitude of the excited pulses
for two different values of the bias current Ip on the ring.
ISOA = 0mA and Iw = 13.0 mA. (a) Ip = 42.82mA and (b)
Ip = 44.49mA. A linear fit of the data points is shown by the
gray, solid line. The correlation coefficient C is approx. 0.7 in
both cases.

without the external SOA. The results are shown in Fig. 5
and quantified using a correlation coefficient C:

C =

∑
(wi − w̄)

(
hi − h̄

)
Ntotσhσw

(1)

σh =

√∑
(hi − h̄)2

Ntot
; σw =

√∑
(wi − w̄)2

Ntot
(2)

For all used bias currents there is a clear correlation
between the width and amplitude of the pulses. The
experiments reveal that pulses with a higher peak power
are narrower, whereas pulses with a lower peak power
are wider. For ISOA = 0mA and Iw = 13.0 mA, we
have measured a correlation C of about 0.7. The linear
fit between the amplitude and width is indicated by the
gray, solid line. We remark that this correlation shown in
Fig. 5 has been obtained by defining the pulse-width by
its FWHM; we have verified that other ways to quantify
the pulse duration (not shown) lead to consistent results.

To understand the origin of this amplitude-width cor-
relation of the excited pulses, we will numerically analyze
the pulse properties in Section IV. To allow for a clear
presentation of the results, in the next section, we shortly
retake our approach towards modeling the time evolu-
tion of a single-longitudinal, single-transverse mode in a
micro-ring cavity using a general rate-equation model for
MRLs and an asymptotically reduced model. In particu-
lar, we explain the excitability scenario for MRLs in the
asymptotic phase-space. For more information on the
rate-equation model, we refer to Refs. [22, 28, 29].

III. MODELING AND ORIGIN OF
EXCITABILITY IN SEMICONDUCTOR RING

LASERS

In order to model the MRL operating in single-
longitudinal and single-transverse mode, we use a rate-
equation model for the the evolution of the slowly vary-
ing amplitudes of the counter-propagating modes Ecw,ccw
and the carrier inversion N [22]:

Symbol Physical meaning Simulation value

κ Field decay rate 100ns−1

γ Carrier inversion decay rate 0.2ns−1

α Linewidth enhancement factor 3.5

µ Renormalized bias current 1.65

s Self-saturation coefficient 0.005

c Cross-saturation coefficient 0.01

k Coupling amplitude 0.44ns−1

∆k Coupling amplitude asymmetry 0.044ns−1

φk Coupling phase 1.5

∆φk Coupling phase asymmetry 0

TABLE I. Summary of the physical meaning of the parame-
ters in the rate equations (3)-(5) and their typical values used
throughout this article, unless stated otherwise.

dEcw
dt

= κ(1 + iα) [gcwN − 1]Ecw

−(k −∆k/2)ei(φk−∆φk/2)Eccw + ξcw, (3)

dEccw
dt

= κ(1 + iα) [gccwN − 1]Eccw

−(k + ∆k/2)ei(φk+∆φk/2)Ecw + ξccw, (4)

dN

dt
= γ[µ−N − gcwN |Ecw|2 − gccwN |Eccw|2] (5)

where gcw = 1−s|Ecw|2−c|Eccw|2, gccw = 1−s|Eccw|2−
c|Ecw|2 is a differential gain function which includes phe-
nomenological self (s) and cross (c) saturation terms. κ
is the field decay rate, γ is the inversion decay rate, α is
the linewidth enhancement factor of the semiconductor
material and µ is the renormalized injection current with
µ ≈ 0 at transparency and µ ≈ 1 at lasing threshold.
For the device such as the one discussed Sec. II, µ = 0
corresponds to 25mA and µ = 1 to 35mA, yielding the
approximate relation Ip ≈ (10µ+ 25)mA.

Asymmetric linear coupling terms are present in
Eqs. (3)-(4) between Ecw and Eccw, which model a
backscattering of power from one mode to the other.
Such intrinsic backscattering originates from reflections
at the directional coupler or at the chip facets, and is in
general asymmetric due to unavoidable imperfections in-
troduced during device fabrication. Moreover, asymme-
tries in backscattering introduced externally in our set-up
(see Fig. 1), such as reflections at the fiber tip at one side
of the chip, are also lumped into these coupling terms.
The parameters k and φk represent respectively the aver-
age coupling amplitude and phase, whereas the coupling
asymmetry is described by the symmetry breaking terms
∆k and ∆φk. Unless mentioned otherwise, throughout
this manuscript we will use the parameters shown in Ta-
ble I.

Noise terms are introduced in Eqs. (3)-(5) as complex,
Gaussian, zero-mean stochastic terms ξcw,ccw described
by the correlation terms 〈ξi(t + τ)ξ∗j (t)〉 = 2DNδijδ(τ),
where i, j ={cw, ccw} and D is the noise intensity [30].
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All simulations are performed in this rate equation
model (3)-(5). However, we will interpret our results in a
two-dimensional phase-space corresponding to a reduced
MRL model that has been proven to be a powerful tool to
model the slow time dynamics in MRLs [18, 22, 23, 31].
This two-dimensional model is valid on time scales slower
than those of the relaxation oscillations. The two vari-
ables θ ∈ [−π/2, π/2] and ψ ∈ [0, 2π] are defined by

θ ≡ 2 arctan

(
|Ecw|
|Eccw|

)
− π

2
, (6a)

ψ ≡ ∠Eccw − ∠Ecw. (6b)

θ is a measure for the power partitioning between the
counter-propagating modes and ψ is the phase difference
between the corresponding electric fields.

To describe the excitability scenario in MRLs, we con-
sider a ring laser operating unidirectionally whose sym-
metry has been slightly broken. The corresponding phase
space is shown in Fig. 6. Two counter-propagating unidi-
rectional stable attractors are present in the MRL —the
CW and the CCW mode— and are depicted here in the
two-dimensional (θ, ψ) phase space. The white and gray
regions indicate the basins of attraction of the CW and
the CCW mode. They are separated by the stable man-
ifolds of a saddle state indicated by S.

The presence of an asymmetry parameter manifests
itself in the different stability of the modes, leading to
different sizes of their basins of attraction. In particular,
the distance between two branches of the stable manifold
of S is affected by the symmetry breaking and can be
made arbitrarily small by controlling the parameters of
the system [22]. When noise is present in the system, a
diffusion length-scale LD appears, which depends on the
noise intensity D. The onset of excitability in MRLs is
regulated by the interplay between LD and the distance
between the folds of the stable manifold of S.

Assume that the MRL is operating in a regime such
that LD is small compared to the size of the basin of
attraction of CW and large compared to the distance

between the branches of the stable manifold of S. The
MRL will spend most of the time in the vicinity of the
CW stable state; however a rare large fluctuation may
move the system to the boundary of the basin of attrac-
tion of CW. When this happens, the system will cross this
boundary with an overwhelming probability by crossing
both branches of the stable manifold of S and thereafter
perform a large deterministic excursion leading to the
emission of a CCW pulse.

This excitability scenario is different from the one most
frequently encountered in optics, where pulses are initi-
ated stochastically by crossing only one branch of the
stable manifold of a saddle and completed largely deter-
ministically by following a branch of the unstable mani-
fold of the same saddle back to the initial quiescent state
[9–11, 14, 16]. Even in the rare situations where the sys-
tem was shown to be both bistable and excitable at the
same time, the excitable excursions are still completed
by following the unstable manifold of the saddle point
[32]. In MRLs, however, this scenario is forbidden by
the residual Z2-symmetry and the unstable manifold of
S which connects with the metastable CW state [18].

This specific mechanism of excitability is general for
all systems with weakly broken Z2-symmetry and occurs
near a homoclinic bifurcation that unfolds from a Takens-
Bogdanov point. In that homoclinic bifurcation an un-
stable cycle is created, which later disappears in a fold of
cycles [22]. Such a sequence of bifurcations leads to the
folded shape of the stable manifold of the saddle (see Fig.
6), necessary for the system to be excitable. The unfold-
ing of the different bifurcations from a Takens-Bogdanov
point has been characterized in depth, both in systems
with Z2-symmetry [33, 34] and in systems where this sym-
metry is broken [35]. As an example of other systems that
share the same symmetry as the MRL and which can
therefore exhibit similar excitable behavior when weakly
breaking this symmetry, we mention e.g. CO2-lasers [36]
and oscillatory convection in binary fluid mixtures [37].
Perhaps the most obvious example with the same cir-
cular symmetry as MRLs are semiconductor micro-disk
lasers [21]. In semiconductor micro-disk lasers where the
two lasing modes are the whispering gallery modes, the
appropriate rate-equation model is identical to the one
studied in this work.

IV. STOCHASTIC ANALYSIS AND
COMPARISON TO THE EXPERIMENTS

In this Section, we use direct numerical integration
of Eqs. (3)-(5) using a stochastic Euler-Heun method
to characterize the specific features of excited pulses in
MRLs. More specifically, numerical time-series are col-
lected and statistics of the ISI, the pulse amplitude and
the pulse width are built. A projection of the time-series
on the reduced phase space (θ, ψ) is then performed in
order to validate the topological arguments of Sec. III
explaining the spread in amplitude of the pulses and the
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FIG. 7. (Color online) Results of simulations of Eqs. (3)-
(5). (a)-(b): D = 1.5 × 10−4 ns−1, tobs = 100 ms, (c)-(d):
D = 2.5×10−4 ns−1, tobs = 10 ms, with D the noise strength
and tobs the observation time. (a) and (c): Histogram of the
trajectories in asymptotically reduced two-dimensional phase
space. The full (dashed) white lines indicate the stable (un-
stable) manifolds of the saddle. (b) and (d): Pulse width vs
pulse amplitude. The white curve indicates the prediction
from the deterministic reduced model. Parameters are taken
as in Table I.

associated correlated spread in their width, as also ob-
served experimentally (see Figures 4-5).

A. Pulse amplitude and width

Fig. 7 shows the distribution of the phase space trajec-
tories corresponding to excited pulses. In order to avoid
sampling of double pulses, the system is reinitialized to
the original CW mode when the tail of the pulse sat-
isfies the condition θ > 0. Rare excursions that reside
longer than 20 ns around the metastable CCW state are
discarded. Figs. 7(a) and (c) show histograms of the
collected trajectories projected on the asymptotically re-
duced two-dimensional phase space (θ, ψ), and this for
two different values of the noise strength D. The full
(dashed) white lines indicate the stable (unstable) man-
ifolds of the saddle S.

It is clear from Fig. 7(a) and (c) that noise-activated
trajectories cross the excitability threshold at a finite dis-
tance from the saddle S. Such saddle-avoidance is ex-
pected in stochastic systems where LD is not the shortest
length scale [38] and it is therefore compatible with the
mechanism described in Sec. III.

After crossing the stable manifolds of S, the trajecto-
ries spread in the phase space due to diffusion. A dis-
tribution of pulse amplitudes and pulse widths as ex-
perimentally observed in Figs. 2 and 4 can therefore be
expected in MRLs as the deterministic evolution of the
pulse does not take place along a unique trajectory. In
the reduced phase space, pulses are a one-parameter fam-

ily of trajectories that can be parameterized by their ini-
tial conditions (θin, ψin) [see Fig. 6]. By fixing θin = 0
and ψin beyond the excitability separatrix, a sampling of
excited pulses is achieved. The width of each pulse can
be quantified by the required time to return to the θ > 0
condition; in the same way, the extreme value θmax can
be used to quantify the pulse amplitude.

The correlation between amplitude and width can now
be understood due to the different velocity-fields at differ-
ent positions in the reduced phase space. Higher (larger
|θ|) pulses move faster in phase space and are thus nar-
rower, while lower pulses are slower and consequently also
wider. The correlation curves extracted in such a way are
plotted in Fig. 7(b) and (d) (see the solid, white line).
The observed increase in pulse width with the decrease
in pulse amplitude confirms the experimental trend re-
ported in Sec. II D, i.e. we refer to Fig. 5. A projection of
the pulses, obtained by numerically solving the stochastic
full-rate equation model, in the amplitude-width space
[see point cloud in Fig. 7(b) and (d)] provides an extra
confirmation of this deterministic prediction.

We observe that the theoretical amplitude-width curve
is not evenly sampled by the numerical pulses and
that the numerical data clusters around a middle value.
For this reason, we argue that the full profile of the
amplitude-width curve cannot be observed experimen-
tally in our devices. The position of the point cloud
in the amplitude-width space is slightly affected by
noise. The correlation relation holds for the two different
noise strengths, although it is clear that for lower noise
strengths [Fig. 7(b)] the pulses tend to be less high in
amplitude and thus wider than in the case of higher noise
strengths [Fig. 7(d)]. The fact that the point cloud in
Fig. 7(b) and (d) opens up for decreasing pulse ampli-
tudes is related to the nature of these pulses. These rela-
tively long pulses tend to wander around the metastable
CW state or the saddle point. Near the saddle point
the deterministic trajectory greatly slows down. Hence,
in this case, the transit times of the pulses are mainly
determined by the noise, giving rise to a larger spread.

A more tangible picture is given by considering
the width distribution and the amplitude distribution
separately, instead of their mutual projection on the
two-dimensional (θ, ψ) phase-plane. These histograms
are shown in Fig. 8. The pulse amplitude distribu-
tion can be properly fitted by a Gaussian distribution
A exp[−(θmax − B)2/C2], indicating that the amplitude
of the pulse is mainly determined by the magnitude of the
perturbation and less by the topology of the flow. The
average pulse amplitude also increases with increasing
noise intensity, initiating excursions farther away from
the stable saddle manifold. In contrast, the pulse width
distribution is asymmetric. Some of the pulses tend to
erratically wander around the CCW state or the saddle
giving rise to the tail in the pulse width distribution.
The average pulse width decreases with increasing noise
intensity indicating that the flow near the stable mani-
fold is slower. This also confirms the pulse amplitude-
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FIG. 8. (Color online) Results of simulations of Eqs. (3)-(5).
The histogram of events N/Ntot is shown in function of the
pulse amplitudes (a),(c) and in function of the pulse widths
(b),(d). D = 1.5×10−4 for (a)-(b) and D = 2.5×10−4 for (c)-
(d). The histogram of the pulse amplitudes can be fitted by
a Gaussian: A exp(−((x−B)/C)2). (a) Ntot = 15052 events,
A = 0.0575, B = 0.9762, C = 0.1237. (c) Ntot = 23748 events,
A = 0.0503, B = 1.019, C = 0.1508. The vertical gray lines
show the maxima of the histograms: a width of ≈ 9.20 ns is
found in (b) and ≈ 7.99 ns in (d). Parameters are taken as in
Table. I.

width trade-off trend of Fig. 7. Similar experimental
histograms have been shown in Fig. 4. Fig. 4(a) showed
that the spread in pulse amplitudes is consistent with a
Gaussian distribution, while the spread in the width of
the pulses in [see Fig. 4(b)] is distributed asymmetrically.

Finally, in Fig. 9 we show typical pulse shapes as the
pulse width varies. Figs. 9(a)-(e) show a random col-
lection of pulses with widths in the following intervals:
5-6 ns, 8-9 ns, 11-12 ns, 14-15 ns, 17-18 ns, respectively.
The corresponding trajectories in the (θ, ψ) phase space
are shown in gray. The faster, narrower pulses start out
at a relatively large distance from the stable manifold,
and remain distant from it during the whole pulse tra-
jectory. This is clearly visible in the pulses in Fig. 9(a)-
(b). Oppositely, pulses that start out closer to the stable
manifold slow down and are less high. For this type of
excursions, if the pulse trajectory comes too close to the
stable manifold it can get tangled up in the metastable
CCW state or slowed down near the saddle, explaining
the formation of possible plateaus in the pulse. In the
case one gets trapped in the CCW state, the pulse would
show a plateau at the pulse maximum, while if the pulse
slows down near the saddle, it would exhibit a plateau
at the trailing edge of the pulse. In Fig. 9(d), many of
the pulses come very close to the saddle point, result-
ing in an even more pronounced slow-down, especially at
the trailing edge of the pulse. Several rare pulse events
where the system briefly gets stuck in the CCW state are
depicted in panel (e). Also pulses that do not get close
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FIG. 9. Simulation of Eqs. (3)-(5). Typical pulse shapes cor-
responding to different pulse widths are shown. Single pulses
are collected from the time traces in panels (a)-(e) with next
to each panel (a)-(e) the corresponding trajectory in the (θ, ψ)
phase space in gray. Stable (full) and unstable (dashed) man-
ifolds are drawn in black. From (a) to (e) pulses are shown
with widths in the following intervals: 5-6 ns, 8-9 ns, 11-12
ns, 14-15 ns, 17-18 ns. D = 2.5 × 10−4 ns−1 and the other
parameters are taken as in Table. I.

to the CCW state or the saddle point are characterized
by an asymmetric pulse shape. Such asymmetry due to
a slowing down of the pulse at the trailing edge (higher
values of ψ) is best visible in panels (b) and (c).

B. Inter-spike-interval diagram

We have also determined the ISI distribution by sim-
ulating Eqs. (3)-(5) during a time tobs = 10ms. The dis-
tribution of the ISI between all excited pulses is shown
in Fig. 10. We have plotted the logarithm of the nor-
malized number of events log(N/Ntot) in function of the
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FIG. 10. Simulation of Eqs. (3)-(5) for 10ms showing the
inter-spike-interval diagram. log2(N/Ntot) is plotted in func-
tion of the inter-spike-interval. In (a) µ = 1.65, D =
2.5×10−4 ns−1 and the bin-size is chosen to be 1ns. In panels
(b)-(d), a zoom of the peak at shorter ISI is shown with a bin-
size of 0.05ns. Panels (b) and (c) show the variation of the
ISI with µ for D = 2.5× 10−4 ns−1 and D = 1.5× 10−4 ns−1,
respectively. Panel (d) demonstrates the change in ISI for
asymmetric noise contributions to the CW (Dcw = D) and
the CCW (Dccw) mode for µ = 1.65. The other parameters
are taken as in Table. I.

inter-spike-interval, with N the total amount of events in
each bin and Ntot the total amount of excited pulses.

In Fig. 10(a), we have taken µ = 1.65 and D = 2.5 ×
10−4 ns−1 corresponding to the parameter set used before

in Figures 7-9. The bin-size has been chosen to be 1
ns. It becomes evident from Fig. 10(a) that the total
ISI distribution is the combination of two different time
scales. The short ISIs and long ISIs are distributed in a
different way and together represent a strongly Kramers’
type of behavior.

The slow time scale can be fitted by an exponential
curve [∝ exp (−t/T1)], where the average ISI (T1) is the
fitting parameter. This slow time scale T1 is typically
in the order of µs and corresponds to the generation of
the pulses in an Kramers’ type noise-activation process
across the excitability threshold [26]. The short ISI times,
however, are a signature of multiple consecutive excited
pulses due to noise clustering. The possible excitation
of double pulses such as those experimentally shown in
Fig. 2(c) depend on the closeness of the stable and un-
stable manifolds of the saddle S. When these are close
enough, noise can excite a second pulse before the sys-
tem can relax to the quiescent state. The presence of such
excited multi-pulses will show up in the ISI distribution
as a sharp peak around the average pulse width. The
numerical results in Fig. 10(a) confirm the experimental
observation of both time scales in the experimental ISI
distribution presented in Section II (see Fig. 3).

The presence of these time scales was also found in
our study of stochastic mode-hopping in the bistable
regime in Refs. [23, 27, 31]. Both a mode-hop in the
bistable regime and an excitation beyond the excitabil-
ity threshold are described by a noise-activated escape,
corresponding to the slow Arrhenius time-scale. The fast
non-Arrhenius character of the ISI finds its origin in a
noise-induced diffusion through both branches of the sta-
ble manifold, thus initiating another excursion in phase
space before relaxing to the CW state. Such a noise
clustering of pulses due to the proximity of the relax-
ation trajectory of the excited pulse and the excitability
threshold has been observed in several other noise driven
excitable systems, such as e.g. lasers with optical feed-
back [24, 25], quantum-dot lasers with optical injection
[39, 40] and neurons of the Hodgkin-Huxley type [41].

In panels (b)-(d), we study in more detail the ISI dis-
tribution of the faster time scale for different values of the
pump current µ, the noise strength D and for asymmet-
ric contributions of the noise to both counter-propagating
modes. The bin-size is taken to be 0.05ns.
Figs. 10(b)-(c) show the ISI distribution for varying val-
ues of the current µ at a fixed noise strength D =
2.5 × 10−4 ns−1 and D = 1.5 × 10−4 ns−1, respectively.
One can notice that in all cases the maximum amount of
events are located around 5ns, which corresponds roughly
to half of an excitable excursion[42]. For slightly higher
ISI (5 − 10ns) a dip in the ISI distribution is observed.
Such a dip is typical for noise clustering [24, 41] and is
due to the nature of the relaxation trajectory of the ex-
cited pulse. In particular, it becomes evident from Fig.
10(b)-(c) that the dip becomes less pronounced for de-
creasing values of the current µ due to the fact that the
relaxation to the stable node occurs increasingly slowly
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for lower values of µ. One can also notice that the entire
ISI curve moves up for decreasing µ, which is a logical
consequence of the decreasing depth of the potential well.
It is interesting to note that the basin of attraction of the
metastable CCW state decreases when decreasing µ. In
fact, similar excited pulses and ISI distribution still hold
for µ = 1.59 when the saddle and the metastable CCW
state have disappeared. This can be understood by the
fact that such dynamics arises as a scar of the bifurca-
tions nearby [24].

All of the previous theoretical analysis has been done
for the stochastic rate-equation system (3)-(5), where for
reasons of simplicity the noise terms have been added
in a symmetric way to both counter-propagating modes.
From the experimental set-up explained in Section II,
one can wonder whether this symmetric assumption is
valid as noise coming from the external SOA is injected
mainly in one direction (the stable CW state). In order
the check the validity of such an assumption, we have
checked our analysis for asymmetric noise contributions,
introducing noise with strength Dcw = D in Eq. (3) for
the stable CW mode and noise with strength Dccw < D
in Eq. (4) for the metastable CCW mode. Qualitatively
similar results are obtained as presented throughout this
manuscript, which is reflected in Fig. 10(d) showing the
ISI distribution for µ = 1.65, Dcw = D = 2.5×10−4 ns−1

and different values of Dccw.

V. DISCUSSION AND CONCLUSION

In conclusion, we have investigated the features of
excitability in optical systems which are close to Z2-
symmetry and have elucidated the differences with other

— more common — excitability scenarios [9–16, 24, 39].
The key message of this paper is the experimental and
theoretical observation of a spread of the pulse amplitude
and width in MRLs in the presence of noise, where a cor-
relation between the amplitude and width of the excited
pulses has been observed. Such a correlation between
these two quantities is the signature of the deterministic
evolution of the system once the separatrix is crossed.
Multi-pulse excitability [24] is also present due to the
finiteness of the noise intensity and the relaxation to the
quiescent state being slow due to the closeness to a ho-
moclinic bifurcation in parameter space.

For a realization of an all-optical neural network based
on MRLs, such a pulse width distribution can present a
drawback compared to other excitable systems. However,
such drawback is eventually balanced by the easy inte-
grability of MRLs on an optical chip and the possibility
to control the coupling between ring cavity and waveg-
uide [43]. Furthermore, excitability in MRLs does not
require feedback from an external cavity or optical injec-
tion from a master laser as in the case of other optical
systems.
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