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Abstract

In this thesis, we try to facilitate the concept of convergence of filters
by introducing different types of convergence, including the following: δ, θ and
rc-convergence. The similarities among δ, θ, and rc-limit points as well as their
δ, θ, and rc-cluster points are studied. A number of results, whose statements
are parallel to those in the usual sense of convergence, are established.

Some of the topological properties could be characterized by filters, the
δ, θ, and rc-cluster (δ, θ, and rc-adherent) points of a subset are introduced in the
obvious way. Furthermore, δ, θ, and rc-convergence are studied under various
types of topologies, such as, the convergence of filters in the product topology.

Some types of compactness are introduced, including the following:
nearly compact, quasi-H-closed, and S-closed spaces, without any axiom of sep-
aration to be assumed. These versions of compactness are characterized through
filters.

The concepts of almost-strongly closed graph, strongly closed graph,
and rc-strongly closed graph are defined. These concepts, which are character-
ized by filters, are parallel to the closed graph concept in the usual sense of
convergence. Also, a filter notion leads to an important theory of convergence
structure in topological spaces.
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Introduction and Historical Overview of
Filters

The notion of a limit has a significant role in analysis and it has been received
frequent and varied treatment by many mathematicians. Of the several theories
available, there are two which appear to be most popular in current use. One is
that of net, which was initiated by E. H. Moore and H. L. Smith [72] and has been
discussed and improved by J. L. Kelley [55]; the other is that of filter, discovered
by Henri Cartan, which finally eliminates countability from topology by replacing
the notion of a sequence and introduces the modern notion of compactness [20,
21]. The theory of filters is the convergence theory of choice for many topologists.
Filters appear in order and lattice theory, but can also be found in topology. It
appears that the net notion is predominant in the U.S.A., whereas the filter theory
reigns supreme in France. In 1915, a paper by E. H. Moore appeared in the
Proceedings of the National Academy of Science U.S.A. titled Definition of limit in
general integral analysis [71]. This study of unordered summability of sequences
led to a theory of convergence by E. H. Moore and H. L. Smith titled A general
theory of limits which appeared in the American Journal of Mathematics in 1922
[72]. Convergence has been studied via filter bases 1 by Vietoris [116]. He was
the first to introduce filter bases, directed sets, nets and the related convergence
and introduces the modern notion of compactness [1]. Also, convergence has
been studied via filter bases by G. Birkhoff [13, 14], via filters by Cartan [21],
and via ultrafilters by Cartan [20]. These concepts enabled André Weil [117]
and Bourbaki [15] to provide a particularly elegant treatment of compactness.

1. called Kränze by Vietoris and overlapping systems by Birkhoff.

ix



With the developement of topology, this Moore-Smith convergence was ap-
plied to topology by G. Birkhoff [14] under a still more general form, using the
concept of directed sets and nets. But this is not the only theory of convergence
to be found in topology. Independently, Wallman in 1938 developed something
very close to Cartan’s ultrafilters with his idea of maximal subsets having the "fi-
nite intersection property". In fact, the Rudin-Frolík as well as the Rudin-Keisler
order of ultrafilters were introduced in a more general setting of filters by Katě-
tov [6].

In 1940, J. W. Tukey made extensive use of the theory in his monograph titled
Convergence and uniformity in topology, published in the Annals of Mathematics
Studies series [114]. Tukey worked with objects that were generalizations of
sequences that he referred to as phalanxes. They were a special case of the
objects that are usually called nets today.

After G. Birkhoff reinvented the filter base notion [13], J. Schmidt wrote a pa-
per in 1952 titled Beiträge zur Filtertheorie II and he dedicated to Prof. Vietoris
[99], but without mentioning that also directed sets and nets can already be
found in Vietoris [116]. Topological spaces are presented as a special subclass of
convergence spaces of particular interest, but a large part of the material usually
developed in a topology textbook is treated in the larger field of convergence
spaces. To many, especially students, convergence theory is more natural and in-
tuitive than classical topology. On the other hand, the framework of convergence
is easier, more powerful and far-reaching which, highlights a need for a theory
of convergence in various branches of analysis.



Chapter 1
Preliminaries

We start with a review of the basic concepts of the theory of filters, which
are needed in the later chapters. The notion of modified open and closed sets
such as semi-open, regular open and regular closed sets are also introduced.
Semi-regularizations and their related topologies are also introduced. Regular,
almost regular, Semi-regular, extremally disconnected, and weakly-T2 spaces are
discussed as well. Prime spaces are studied such as completely normal, and fully
normal spaces.

1.1 Filters

In topology and analysis, filters are used to define convergence in a manner
similar to the role of sequences in a metric space. Filters provide very general
contexts to unify the various notions of limit to arbitrary topological spaces. A se-
quence is usually indexed by the natural numbers, which are a totally ordered set.
Thus, limits in first-countable spaces can be described by sequences. However, if
the space is not first-countable, nets or filters must be used. Nets generalize the
notion of a sequence by requiring the index set simply be a directed set. Filters
can be thought of as sets built from multiple nets [90].

1



1.1.1 Ordered Sets

Definition 1.1.1. [12, 78] Let X be a set and ≤ be a relation on X. Then ≤ is
called

(i) reflexive if x ≤ x for all x ∈ X.
(ii) transitive if x ≤ y and y ≤ z implies x ≤ z for all x, y, z ∈ X.
(iii) antisymmetric if x ≤ y and y ≤ x implies x = y for all x, y ∈ X.

Definition 1.1.2. [12, 78] Let X be a set and ≤ be a relation on X. The relation
≤ is called a partial ordering on X if it is reflexive, transitive and antisymmetric.
The pair (X, ≤) is a partially ordered set and it is abbreviated by poset.

Definition 1.1.3. [12] Let (X, ≤) be a poset and A ⊆ X. An element x ∈ X is
called an upper bound of A if y ≤ x for every y ∈ A.

Definition 1.1.4. [12] Let (X, ≤) be a poset and A ⊆ X. An element x ∈ X is
called a supremum (or the least upper bound) of A if

(i) x is an upper bound of A.
(ii) x ≤ y for every upper bound y of A.

1.1.2 Filters, Filter Bases and Filter Subbases

A filter is like an algebraic road function with directions to points or places
in a topological space. More precisely, it is a certain subset of a poset. In this
subsection, the poset we focus on is the power set of a set X. That is, we consider
filters of subsets of a given set [17].

Definition 1.1.5. [9] A topology on a nonempty set X is a collection τ of subsets
of X satsifying the following axioms:

(i) ∅ and X ∈ τ ;
(ii) If A ⊆ τ , then ⋃

A∈A
A ∈ τ ;

(iii) If A1, A2, · · · , An ∈ τ , then
n⋂

i=1
An ∈ τ .

2



In words, axiom (ii) states that: an arbitrary union of elements of τ is an
element of τ , while axiom (iii) states that: a finite intersection of elements of τ

is an element of τ . In fact, axiom (iii) can be replaced by the equivalent form: If
A1 and A2 ∈ τ , then A1 ∩ A2 ∈ τ .

Definition 1.1.6. [9] A nonempty set X equipped with a topology τ is called a
topological space, denoted by the pair (X, τ).

For simplicity, when no confusion occurs concerning τ , we say that X is a
topological space, or simply a space.

We give the definition of a filter on a set (not necessarily a topological space)
because it is of independent interest.

Definition 1.1.7. [9] A filter on a set X is a nonempty family F of subsets of X

such that

(i) ∅ /∈ F;

(ii) If A, B ∈ F then A ∩ B ∈ F;

(iii) If A ∈ F and A ⊆ B ⊆ X then B ∈ F.

Now, let us examine a few elementary consequences of this definition. By an
induction argument it easily follows from (ii) that a filter is closed under finite
intersections. Also, from (iii) it follows that X is a member of any filter on X.

Definition 1.1.8. [16, 79] Let F1 and F2 be two filters on X. If F2 ⊆ F1, then we
say that F1 is finer than F2 and F2 is coarser than F1.

Definition 1.1.9. [64] Let F1 and F2 be two filters on X. Then we say that F2 is
a subfilter of F1 if F1 ⊆ F2.

Definition 1.1.10. [60, 79] Given a set X, the set of all filters on X is denoted by
F(X).

Remark 1.1. [30] The ordered pair (F(X), ⊆) is a poset.

3



Definition 1.1.11. [101] Let Φ(X) be any nonempty class of filters on a nonempty
set X. That is, Φ(X) ⊆ F(X). Then a filter F on X is said to be a supremum
(infimum) of Φ(X) with respect to the inclusion ⊆ if F is finer (coarser) than each
member of Φ(X) and if F′ is any filter on X which is finer (coarser) than each
member of Φ(X), then F is coarser (finer) than F

′ and it is denoted by ∨
G∈Φ(X)

G

( ∧
G∈Φ(X)

G).

Remark 1.2. [30] The supremum of a family of filters on a set X doesn’t always
exist while the infimum always exists.

Example 1.1.1. [9] Given X ̸= ∅ and x ∈ X. Then F = {A ⊆ X : x ∈ A} is a
filter on X, called the principal filter generated by x. It is denoted by ⟨x⟩.

Now, we discuss a useful way of describing filters using a base or subbase. The
treatment here parallels the corresponding ideas from topology.

Definition 1.1.12. [98] Let X be a set and ∅ ̸= B ⊆ P(X). Then B is a filter
base in X if it satisfies the following conditions:

(i) ∅ ̸∈ B.

(ii) If B1, B2 ∈ B, then there exists B3 ∈ B such that B3 ⊆ B1 ∩ B2.

Example 1.1.2. Let (X, τ) be a topological space and x ∈ X. The collection τ(x)
of all open neighborhoods of x is a filter base in X.

Remark 1.3. Every filter on a set X is a filter base in X but the converse is not
true.

Definition 1.1.13. [98] If B is a filter base in X, then F = {F ⊆ X : F ⊇ B, B ∈
B} is a filter on X called the filter generated by B and it is denoted by ⟨B⟩X . In
this case we say that B is a filter base for F. The filter ⟨B⟩X is uniquely determined
by B and it is the smallest filter on X containing B.

Notation 1. For a filter base B in a set X, when there is no confusion, we will
just write the filter “⟨B⟩” instead of “⟨B⟩X”.

4



Example 1.1.3. Let (X, τ) be a topological space. For each x ∈ X, the filter
generated by τ(x) is the τ -neighborhood filter of x, Uτ (x).

Notation 2. For a topological space (X, τ) and x ∈ X, when there is no confusion,
we will just write the τ -neighborhood filter of x, “ U(x)” instead of “ Uτ (x)”.

Remark 1.4. [26, 48] Let B and C be two filter bases in a set X. If B ∩ C ̸= ∅
for all B ∈ B and all C ∈ C, then we write B(∩)C. Otherwise, we write B ⊥ C.

Proposition 1.1.1. Let A, B, and C be filter bases in a set X and A ⊆ B.
(i) If B(∩)C, then A(∩)C.
(ii) If A ⊥ C, then B ⊥ C.

Proof. (i) Suppose that B(∩)C. Let A ∈ A and C ∈ C, then A ∈ B since A ⊆ B.
So, A ∈ B and C ∈ C but B(∩)C, then A ∩ C ̸= ∅. Hence, A(∩)C.

(ii) Suppose that A ⊥ C, then there exist A ∈ A and C ∈ C such that A ∩ C = ∅
but A ⊆ B, so A ∈ B. Hence, there exist A ∈ B and C ∈ C such that
A ∩ C = ∅. Therefore, B ⊥ C.

Definition 1.1.14. [30, 56] Let F and G be two filters on a set X. If F(∩)G, then
the family B = {F ∩ G : F ∈ F, G ∈ G} is a filter base in X. The filter generated
by B is the supremum filter of {F,G} and it is denoted by F ∨ G. We say in this
case that F∨G exists. If F ⊥ G, we say that F∨G fails to exist and the pair {F,G}
hasn’t an upper bound.

Proposition 1.1.2. [30] If {Fα : α ∈ ∆} is a family of filters on a set X, then⋂
α∈∆

Fα is a filter on X and { ⋃
α∈∆

Fα : Fα ∈ Fα} is a filter base for ⋂
α∈∆

Fα.

Proposition 1.1.3. [30] Let Φ(X) be any nonempty class of filters on a nonempty
set X, then the filter ⋂

F∈Φ(X)
F is the infimum of the set Φ(X) in the poset (F(X), ⊆).

As we use
∧

to denote infimum, we will write
∧

F∈Φ(X)
F and

⋂
F∈Φ(X)

F inter-

changeably [30, 60].

5



Proposition 1.1.4. [49] Let F and G be two filters on a set X. Then
(i) F(∩)G if and only if F ∨ G ̸= P(X).
(ii) F ⊥ G if and only if F ∨ G = P(X).

Proof. (i) Suppose that F(∩)G. Then F ∩ G ̸= ∅ for all F ∈ F and all G ∈ G. So,
∅ /∈ F ∨ G, and hence F ∨ G ̸= P(X). Conversely, suppose that F ∨ G ̸= P(X),
then ∅ /∈ F∨G since F∨G is closed under the superset operation. So, F ∩G ̸= ∅
for all F ∈ F and all G ∈ G. Thus, F(∩)G.

(ii) F ⊥ G if and only if F ∩ G = ∅ for some F ∈ F and G ∈ G if and only if
∅ ∈ F ∨ G if and only if F ∨ G = P(X).

Definition 1.1.15. [95] Let F be a filter on a set X and let A ⊆ X. Then the
trace of F on A is denoted by F

∣∣∣
A

and is defined by F
∣∣∣
A

= {F ∩ A : F ∈ F}.

Definition 1.1.16. [23] Let (X, τ) be a topological space, B be a filter base in X

and A ⊆ X. We say that B meets A if and only if for every B ∈ B, B ∩ A ̸= ∅.

Theorem 1.1.1. [95] If F is a filter on a set X and A ⊆ X, then F
∣∣∣
A

is a filter on
A if and only if F meets A.

Proof. Assume that F
∣∣∣
A

is a filter on A, then ∅ ̸∈ F
∣∣∣
A

. So, F ∩ A ≠ ∅ for all F ∈ F.
That is, F meets A. Conversely, suppose that F meets A. Then F ∩ A ̸= ∅ for
all F ∈ F. So, ∅ /∈ F

∣∣∣
A

. Let F1 ∩ A and F2 ∩ A ∈ F
∣∣∣
A

. Then F1 ∩ F2 ∈ F, and
so (F1 ∩ A) ∩ (F2 ∩ A) = (F1 ∩ F2) ∩ A ∈ F

∣∣∣
A

. Next, let F ∩ A ⊆ P ⊆ A. Then
(F ∪ P ) ∩ A = (F ∩ A) ∪ (P ∩ A) = (F ∩ A) ∪ P = P . Since F ⊆ F ∪ P and F ∈ F,
then F ∪ P ∈ F. So, P = (F ∪ P ) ∩ A ∈ F

∣∣∣
A

.

Proposition 1.1.5. [101] If F is a filter on Y and Y ⊆ X, then F is a filter base
in X.

Proposition 1.1.6. [95] Let F be a filter on a set X and A ⊆ X. If F meets A,
then F

∣∣∣
A

is a filter base in X and the filter G = ⟨F
∣∣∣
A

⟩X containing A and finer than
F.
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Proof. First, since F meets A, then F ∩ A ≠ ∅ for all F ∈ F, hence by Theorem
1.1.1, F

∣∣∣
A

is a filter on A, and so by Proposition 1.1.5 part (ii), F
∣∣∣
A

is a filter base
in X. Next, since A ⊇ F ∩ A for all F ∈ F, then A ∈ G. Also, since for all F ∈ F,
F ⊇ F ∩ A, then for all F ∈ F, F ∈ G. That is, F ⊆ G.

Definition 1.1.17. [79] A collection A of sets in a topological space, is said to
have the finite intersection property, written F.I.P iff whenever A1, . . . , An ∈ A,
then

n⋂
i=1

Ai ̸= ∅.

Definition 1.1.18. [98] Let X be a set and ∅ ̸= S ⊆ P(X). then we say that S is
a filter subbase on X if S has the F.I.P.

Definition 1.1.19. [98] If S is a filter subbase on X, then

F =
{
F ⊆ X : ∃ S1, . . . , Sn ∈ S such that F ⊇

n⋂
i=1

Si

}

is a filter on X called the filter generated by S and is denoted by ⟨S⟩. In this case,
we say that S is a filter subbase for F. The filter ⟨S⟩ is uniquely determined by S

and it is the smallest filter on X containing S.

Definition 1.1.20. [48, 120] Let S be a filter subbase on X. Then

B =
{ n⋂

i=1
Si : S1, . . . , Sn ∈ S, n ∈ N

}

is a filter base in X called the filter base generated by S and is denoted by [S]X .

Notation 3. For a filter subbase S on a set X, when there is no confusion, we will
just write the filter base “[S]” instead of “[S]X”.

Proposition 1.1.7. Let S1 and S2 be filter subbases on X. If S1 ⊆ S2, then
[S1] ⊆ [S2].

Proof. Let B ∈ [S1], then B =
n⋂

i=1
Si, where Si ∈ S1 for each i = 1, . . . , n but

S1 ⊆ S2, then Si ∈ S2 for each i = 1, . . . , n. Hence, B ∈ [S2]. Thus, [S1] ⊆ [S2].
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Proposition 1.1.8. [98] Let S be a filter subbase on X. Then S and [S] generate
the same filter on X.

Proof. We have S ⊆ [S], so that ⟨S⟩ ⊆ ⟨[S]⟩. But since ⟨S⟩ is closed under finite
intersections, then [S] ⊆ ⟨S⟩, and hence ⟨[S]⟩ ⊆ ⟨S⟩. Therefore, ⟨S⟩ = ⟨[S]⟩.

1.1.3 Ultrafilters

Definition 1.1.21. [9] Let F be a filter on X. Then F is called an ultrafilter if for
any A ⊆ X, either A ∈ F or X − A ∈ F.

Example 1.1.4. [9] Let X be a nonempty set. For any x ∈ X, the principal filter
⟨x⟩ is an ultrafilter on X.

Definition 1.1.22. [79] A filter F on X is a maximal filter iff whenever G is a
filter on X with F ⊆ G, then G = F.

Theorem 1.1.2. [9] Let F be a filter on X. Then F is an ultrafilter if and only if
F is a maximal filter.

Theorem 1.1.3. [79] For every filter F on a set X, there is an ultrafilter G that is
finer than F.

Theorem 1.1.4. [27] If A is a nonempty subset of X, then every filter on X which
meets A is contained in an ultrafilter on X which also meets A.

Theorem 1.1.5. [2, 95] Let A be a nonempty subset of X. If F is an ultrafilter
on X which meets A, then F

∣∣∣
A

is an ultrafilter on A and F
∣∣∣
A

⊆ F.

Proof. Let B ⊆ A. Then B ⊆ X, so B ∈ F or X − B ∈ F since F is an ultrafilter
on X. So, A ∩ B ∈ F

∣∣∣
A

or A ∩ (X − B) ∈ F
∣∣∣
A

, and hence B ∈ F
∣∣∣
A

or A − B ∈ F
∣∣∣
A

.
Therefore, F

∣∣∣
A

is an ultrafilter on A. Next, since F meets A, then X − A ̸∈ F

but F is an ultrafilter on X, so A ∈ F. Thus, F ∩ A ∈ F for all F ∈ F. That is,
F

∣∣∣
A

⊆ F.
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Definition 1.1.23. [17] Let X and Y be two nonempty sets and f : X → Y

be any function. If F is a filter on X, then {f(F ) : F ∈ F} is a filter base
in Y , which generates a filter f(F) called the image of F under f . That is,
f(F) = ⟨{f(F ) : F ∈ F}⟩Y .

Definition 1.1.24. [107] Let X and Y be two nonempty sets and f : X → Y be
any function. If G is a filter on Y and G meets f(X), then {f−1(G) : G ∈ G} is
a filter base in X, which generates a filter f−1(G) called the inverse image of G
under f . That is, ⟨{f−1(G) : G ∈ G}⟩X .

Theorem 1.1.6. [119] Let X, Y be two sets and f : X → Y be an onto function.
If F is an ultrafilter on X, then f(F) is an ultrafilter on Y .

1.2 Modified Open and Closed Sets

1.2.1 Semi-open Sets

The notion of semi-open sets in a topological space, which is one of the gener-
alizations of open sets, plays an important role in several of the recent research
in General Topology. This notion was originally given in 1963 by Levine [62],
who demonstrated that the family of semi-open sets is closed under arbitrary
unions and the family of interiors of semi-open sets coincides with the topology
of space. Semi-open sets have been used to define and study new versions of in-
terior, closure, separation axioms and continuity. It can be seen by the following
definition.

Definition 1.2.1. [62] Let (X, τ) be a topological space and S ⊆ X. Then S is
called semi-open if there exists an open set U in X such that U ⊆ S ⊆ U . The set
of all semi-open sets in (X, τ) is denoted by SO(X, τ). As usual, we simply write
SO(X) if no confusion would arise.

Notation 4. For a topological space (X, τ) and x ∈ X, we simply write SOτ (x) =
{S ⊆ X : S ∈ SO(X, τ) and x ∈ S} by SO(x) if no confusion would arise.
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Example 1.2.1. In R with the usual topology, the intervals (a, b), [a, b), (a, b] and
[a, b] are semi-open sets.

The following theorem gives the characterizations of the semi-open sets.

Theorem 1.2.1. [5, 25] Let X be a topological space and S ⊆ X. Then the
following are equivalent:

(i) S is semi-open in X.

(ii) S ⊆ S◦.

(iii) S = S◦.

Proof. 3aa

(i) =⇒ (ii) Assume that S is semi-open in X, then there exists an open set U in X such
that U ⊆ S ⊆ U . Then U = U◦ ⊆ S◦. So, U ⊆ S◦ but S ⊆ U , then S ⊆ S◦.

(ii) =⇒ (iii) Assume that S ⊆ S◦, then S ⊆ S◦ = S◦ but S◦ ⊆ S. Hence, S = S◦.

(iii) =⇒ (i) Assume that S = S◦. Let U = S◦, then U is open in X and U = S◦ ⊆ S ⊆
S = S◦ = U . Hence, there exists an open set U in X such that U ⊆ S ⊆ U .
Therefore, S is semi-open in X.

Proposition 1.2.1. [25, 62] Let X be a topological space.

(i) All open sets in X are semi-open in X.

(ii) Any union of semi-open sets in X is semi-open in X.

The intersection of two semi-open sets is not semi-open in general. The next
example can be shown.

Example 1.2.2. In R with the usual topology, [1, 2] and [2, 3] are semi-open but
{2} = [1, 2] ∩ [2, 3] is not semi-open since {2} ̸⊆ {2}◦ = ∅.

Now, we recall some results which will be useful in the sequel. We start with
a theorem which will be used frequently.
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Theorem 1.2.2. [5, 42] Let X be a topological space and A ⊆ X. If U is an open
set in X, then U ∩ A ⊆ U ∩ A.

Proof. Let x ∈ U ∩ A and let V be any open set in X containing x. Then V ∩ U

is open containing x. But x ∈ A, so (V ∩ U) ∩ A ̸= ∅, and thus V ∩ (U ∩ A) ̸= ∅.
Hence, x ∈ U ∩ A. Therefore, U ∩ A ⊆ U ∩ A.

Corollary 1.2.1. Let X be a topological space, A ⊆ X and U be an open set in X.
Then U ∩ A = ∅ if and only if U ∩ A = ∅.

Proof. If U ∩A = ∅, then U ∩A ⊆ U ∩A = ∅, and so U ∩A = ∅. Conversely, suppose
that U ∩ A = ∅. Since U is open, then by Theorem 1.2.2, U ∩ A ⊆ U ∩ A = ∅ = ∅.
Hence, U ∩ A = ∅.

The following two propositions are easy consequences of the definitions of
open sets and semi-open sets.

Proposition 1.2.2. [80] Let X be a topological space. If U is open in X and A is
semi-open in X, then U ∩ A is semi-open in X.

Proof. Assume that U is open in X and A is semi-open in X, then there is an
open set G in X such that G ⊆ A ⊆ G. So, U ∩ G ⊆ U ∩ A ⊆ U ∩ G. But
since U is open in X, then by Theorem 1.2.2, U ∩ G ⊆ U ∩ G. Hence, we have
U ∩ G ⊆ U ∩ A ⊆ U ∩ G and U ∩ G is open in X. Thus, U ∩ A is semi-open in
X.

Proposition 1.2.3. [62] Let X be a topological space and A ⊆ B ⊆ X. If A is
semi-open in X, then A is semi-open in B.

Proof. Since A is semi-open in X, then there is an open set U in X such that
U ⊆ A ⊆ U . Now, since U ⊆ A ⊆ B, then U = U ∩ B ⊆ A ∩ B ⊆ U ∩ B. This
implies that, U ⊆ A ⊆ ClB(U). Since U is open in X, then U ∩ B is open in B

but U = U ∩ B, so U is open in B. Therefore, A is semi-open in B.
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The converse of proposition 1.2.3 need not be true in general which will be
shown by the following example.

Example 1.2.3. Let X = R with the usual topology. Let A = {0} = B. Since A

is open in B, then A is semi-open in B but A is not semi-open in X.

Theorem 1.2.3. [80] Let X be a topological space and A ⊆ B ⊆ X. If B is
semi-open in X. Then A is semi-open in X if and only if A is semi-open in B.

Proof. Assume that A is semi-open in X, then by Proposition 1.2.3, A is semi-
open in B. Conversely, assume that A is semi-open in B, then there exists an
open set V in B such that V ⊆ A ⊆ ClB(V ). Since V is open in B, then
there exists an open set U in X such that V = U ∩ B. Therefore, we have
U ∩ B ⊆ A ⊆ ClB(U ∩ B) = U ∩ B ∩ B ⊆ U ∩ B. Since U is open in X and
B is semi-open in X, then by Proposition 1.2.2, U ∩ B is semi-open in X. So,
there exists an open set O in X such that O ⊆ U ∩ B ⊆ O. Then O ⊆ A. But
A ⊆ U ∩ B ⊆ O = O. Hence, there exists an open set O in X such that O ⊆ A ⊆ O.
Therefore, A is semi-open in X.

1.2.2 Regular Open and Regular Closed Sets

Definition 1.2.2. [110] A subset S of a topological space (X, τ) is said to be
regular open if S

◦ = S. The set of all regular open sets in (X, τ) is denoted by
RO(X, τ). As usual, we simply write RO(X) if no confusion would arise.

Definition 1.2.3. [110] A subset S of a topological space (X, τ) is said to be
regular closed if S◦ = S. The set of all regular closed sets in (X, τ) is denoted by
RC(X, τ). As usual, we simply write RC(X) if no confusion would arise.

Notation 5. For a topological space (X, τ) and x ∈ X.

(i) ROτ (x) = {S ⊆ X : S ∈ RO(X, τ) and x ∈ S}. When no confusion arises,
we write “ RO(x)” instead of “ ROτ (x)”.

(ii) RCτ (x) = {S ⊆ X : S ∈ RC(X, τ) and x ∈ S}. When no confusion arises,
we write “ RC(x)” instead of “ RCτ (x)”.
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Proposition 1.2.4. [25] Let (X, τ) be a topological space and C be the family of
all closed sets in (X, τ).

(i) RO(X, τ) ⊆ τ ⊆ SO(X, τ).

(ii) RC(X, τ) ⊆ C.

(iii) RC(X, τ) ⊆ SO(X, τ).

Proof. 3aa

(i) Suppose that U is regular open, then U = U
◦ is open. So, RO(X, τ) ⊆ τ .

Next, τ ⊆ SO(X, τ) by Proposition 1.2.1.

(ii) Suppose that F is regular closed, then F = F ◦ is closed. So, RC(X, τ) ⊆ C.

(iii) Let F be regular closed, then F = F ◦, and so F ⊆ F ◦. Hence, by Theorem
1.2.1, F is semi-open. Therefore, RC(X, τ) ⊆ SO(X, τ).

Theorem 1.2.4. [25, 33, 120] Let (X, τ) be a topological space and S ⊆ X. Then
S is regular closed in X if and only if X − S is regular open in X.

Proof. S ∈ RC(X) if and only if S◦ = S if and only if X−S◦ = X−S if and only if
X − S

◦ = X − S if and only if X − S ∈ RO(X).

Theorem 1.2.5. [42] Let (X, τ) be a topological space. If A or B is open in X,
then A ∩ B

◦ = A
◦ ∩ B

◦.

Proof. Suppose that B is open in X. Since A
◦ and B are open, then by Theorem

1.2.2, A
◦ ∩ B ⊆ A

◦ ∩ B and A ∩ B ⊆ A ∩ B, respectively. Thus,

A
◦ ∩ B

◦ ⊆ A
◦ ∩ B ⊆ A

◦ ∩ B ⊆ A ∩ B ⊆ A ∩ B = A ∩ B.

Hence, (A◦ ∩ B
◦)◦ ⊆ A ∩ B

◦, and so A
◦ ∩ B

◦ ⊆ A ∩ B
◦. The other case is

similar. Next, since A ∩ B ⊆ A ∩ B, then A ∩ B
◦ ⊆ (A ∩ B)◦ = A

◦ ∩ B
◦. So,

A ∩ B
◦ ⊆ A

◦ ∩ B
◦. Therefore, A ∩ B

◦ = A
◦ ∩ B

◦.

Proposition 1.2.5. [110] Let (X, τ) be a topological space. If A and B ∈ RO(X),
then A ∩ B ∈ RO(X).

13



Proof. Let A, B ∈ RO(X), then A = A
◦ and B = B

◦. But since A and B

are open, then by Lemma 1.2.5, we have A ∩ B
◦ = A

◦ ∩ B
◦ = A ∩ B. Hence,

A ∩ B ∈ RO(X).

Note that by the usual induction argument, any finite intersection of regular
open sets is a regular open set but a finite union of regular open sets need not
be regular open. It can be easily shown by the following example.

Example 1.2.4. Let X = {a, b, c} and τ = {ϕ, X, {a}, {b}, {a, b}}. Let A = {a}
and B = {b}. Then A

◦ = A and B
◦ = B. That is, A and B are regular open sets

of X. But A ∪ B = {a, b} is not regular open since {a, b}◦ = X ̸= {a, b}.

Proposition 1.2.6. [110] Let (X, τ) be a topological space.

(i) Any finite union of regular closed sets is a regular closed set.

(ii) A finite intersection of regular closed sets need not be regular closed.

Proof. 3aa

(i) This follows from Theorem 1.2.4 and Proposition 1.2.5.

(ii) Let X = R with the usual topology. Let A = [0, 1] and B = [1, 2]. Then A

and B are regular closed in X. But A ∩ B = {1} is not regular closed since
{1}◦ = ∅ ≠ {1}.

Proposition 1.2.7. [33, 53] Let (X, τ) be a topological space. Then

(i) RO(X) = {U
◦ : U ∈ τ}.

(ii) RC(X) = {U : U ∈ τ}.

(iii) RC(X) = {S : S ∈ SO(X)}.

Proof. aaa

(i) Let G ∈ RO(X), then G = G
◦ and G ∈ τ . So, G ∈ {U

◦ : U ∈ τ}. Next,
let U ∈ τ , then we show that G = U

◦ ∈ RO(X). Since U ∈ τ , then
U = U◦ ⊆ U

◦ = G but then U
◦ ⊆ G

◦, so G ⊆ G
◦. But G

◦ = U
◦◦

⊆ U
◦ = G.

Thus, G = G
◦. Hence, G ∈ RO(X).
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(ii) Let F ∈ RC(X). Then F = F ◦ but since F ◦ ∈ τ , then F ∈ {U : U ∈ τ}.
Next, let U ∈ τ , then we show that U ∈ RC(X). Since U = U◦ ⊆ U

◦ ⊆ U ,
then U

◦ = U . Thus, U ∈ RC(X).

(iii) Let S ∈ SO(X). Then by Theorem1.2.1, S = S◦. Since S◦ ∈ τ , then by part
(ii), S = S◦ ∈ RC(X). Next, let R ∈ RC(X), then R = R◦. Since R◦ ∈ τ ,
then R◦ ∈ SO(X). Thus, R ∈ {S : S ∈ SO(X)}.

1.3 Semi-Regularizations and Their Related
Topologies

Recall that a topological space X is a T1-space if for each x ̸= y in X, there
exist open sets U and V in X such that x ∈ U but y ̸∈ U and y ∈ V but x ̸∈ V

[64]. A topological space X is Hausdorff (or T2) if for each x ̸= y in X, there
exist open sets U and V in X such that x ∈ U , y ∈ V and U ∩ V = ∅ [64]. A
topological space X is said to be regular if for each x ∈ X and each open U in X

containing x, there exists an open set V such that x ∈ V ⊆ V ⊆ U [33].

1.3.1 Semi-regular Spaces

The semi-regularization method was first defined and studied by M. H. Stone
[110]. It can be easily seen by the following definition.

Definition 1.3.1. [110] If (X, τ) is a topological space, then the topology τs

generated by the regular open sets of (X, τ) is called the semi-regularization
topology of τ and is coarser than τ . (X, τ) is said to be a semi-regular space if
τs = τ .

Example 1.3.1. Let X = {a, b, c} with the topology τ = {∅, X, {a}, {b}, {a, b}}.
Then RO(X, τ) = {∅, X, {a}, {b}} is a base for τ . Hence, τs = τ . Therefore, (X, τ)
is a semi-regular space.
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The regular open sets of a topological space (X, τ) need not be a base for τ as
shown in the following example.

Example 1.3.2. Let X = {a, b, c} with the topology τ = {∅, X, {a}, {a, b}}. Then
RO(X, τ) = {∅, X} is not a base for τ . In fact, RO(X, τ) is a base for τs = {∅, X}.

Theorem 1.3.1. [76] A topological space (X, τ) is semi-regular if for each x ∈ X

and each open U in (X, τ) containing x, there exists an open set V in (X, τ) such
that x ∈ V ⊆ V

◦ ⊆ U .

Proposition 1.3.1. [73] Every regular space is semi-regular. The converse is not
always true. As an example the simplified Arens square [109, Example 81].

Proof. Let (X, τ) be a regular space. Let U ∈ τ and x ∈ U , then by regularity
of (X, τ), there exists an open set V in (X, τ) such that x ∈ V ⊆ V ⊆ U . Then,
x ∈ V = V ◦ ⊆ V

◦ ⊆ U◦ = U . Hence, x ∈ V ⊆ V
◦ ⊆ U . So, by Definition 1.3.1,

(X, τ) is semi-regular.

Recall that if τ1 and τ2 are two topologies on a set X such that τ1 ⊆ τ2, then
Clτ2(A) ⊆ Clτ1(A) and Intτ1(A) ⊆ Intτ2(A) for any subset A of X [58].

Lemma 1.3.1. [4, 73, 113] Let (X, τs) be the semi-regularization space of a
topological space (X, τ). Then

(i) Clτ (U) = Clτs(U) for each U ∈ τ .
(ii) Intτ (F ) = Intτs(F ) for each F ∈ RC(X, τ).

(iii) RO(X, τ) = RO(X, τs).
(iv) RC(X, τ) = RC(X, τs).

Proof. (i) Let U ∈ τ . Then Clτ (U) ⊆ Clτs(U) since τs ⊆ τ . Let x ∈ Clτs(U)
and let V ∈ τ with x ∈ V . Then x ∈ V ⊆ Intτ Clτ (V ) and Intτ Clτ (V ) ∈ τs.
So, Intτ Clτ (V ) ∩ U ̸= ∅, and hence Clτ (V ) ∩ U ̸= ∅, but since U ∈ τ , so by
Corollary 1.2.1, we have V ∩ U ̸= ∅. Therefore, x ∈ Clτ (U).

(ii) Let F ∈ RC(X, τ). Then Intτs(F ) ⊆ Intτ (F ) since τs ⊆ τ . Let x ∈ Intτ (F ).
Since F ∈ RC(X, τ), then F = Clτ Intτ (F ). Now, Intτ (F ) = Intτ Clτ Intτ (F ) ∈
τs. So, x ∈ Intτ (F ) ⊆ F and Intτ (F ) ∈ τs. Thus, x ∈ Intτs(F ).
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(iii) Since Clτ (U) ∈ RC(X, τ) for all U ∈ τ . Then by parts (i) and (ii), Intτ Clτ (U) =
IntτsClτs(U) for all U ∈ τ . Since RO(X, τ) ⊆ τ and RO(X, τs) ⊆ τ ,
then we have U ∈ RO(X, τ) if and only if U = Intτ Clτ (U) if and only if
U = IntτsClτs(U) if and only if U ∈ RO(X, τs).

(iv) This follows from Theorem 1.2.4 and part (iii).

Proposition 1.3.2. [73] For any topological space (X, τ), (τs)s = τs, that is, (X, τs)
is semi-regular.

Proof. Clearly, (τs)s ⊆ τs. Let U ∈ τs. Then U is a union of sets in RO(X, τ)
but by Lemma 1.3.1, RO(X, τ) = RO(X, τs), so U is a union of sets in RO(X, τs).
Thus, U ∈ (τs)s. Hence, τs ⊆ (τs)s. Therefore, (τs)s = τs.

Definition 1.3.2. [73] A topological property P is called semi-regular if (X, τ)
has property P if and only if (X, τs) has property P .

Lemma 1.3.2. [73] If A and B are disjoint open sets in (X, τ), then A
◦ and B

◦

are disjoint open sets in (X, τs) containing A and B, respectively.

Proof. Suppose that A and B are disjoint open sets in (X, τ). Since A
◦ and B

◦

are regular open sets in (X, τ), then A
◦ and B

◦ are open sets in (X, τs). Now,
A = A◦ ⊆ A

◦. Similarly, B ⊆ B
◦. Also, by Theorem 1.2.5, A

◦ ∩ B
◦ = A ∩ B

◦ =
∅◦ = ∅.

Recall that if (X, τ1) is a Tj-space and τ2 is a topology on X such that τ1 ⊆ τ2,
then (X, τ2) is a Tj-space for j = 1, 2 [64].

Proposition 1.3.3. [73] A topological space (X, τ) is Hausdorff if and only if
(X, τs) is Hausdorff. That is, the Hausdorff property is semi-regular.

Proof. Clearly, if (X, τs) is Hausdorff, then (X, τ) is Hausdorff since τs ⊆ τ . Con-
versely, suppose that (X, τ) is Hausdorff. Let x ̸= y in X, then there exist U, V ∈ τ

such that x ∈ U , y ∈ V and U ∩ V = ∅. By Lemma 1.3.2, U
◦ and V

◦ are disjoint
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open sets in (X, τs) containing U and V , respectively. So, U
◦ and V

◦ are open
sets in (X, τs) such that x ∈ U

◦, y ∈ V
◦ and U

◦ ∩ V
◦ = ∅. Therefore, (X, τs) is

Hausdorff.

1.3.2 Almost-Regular Spaces

Almost-regular topological spaces was introduced and studied in 1969 by Sin-
gal and Arya [102]. It can be easily seen by the following definition.

Definition 1.3.3. [102] A topological space (X, τ) is said to be almost-regular if
for each regular closed subset A of (X, τ) and each point x ̸∈ A, there exist open
sets U and V in (X, τ) such that A ⊆ U , x ∈ V and U ∩ V = ∅.

Proposition 1.3.4. Every regular space is almost-regular.

Proof. Assume that (X, τ) is regular. Let A be a regular closed subset of (X, τ)
and x ̸∈ A. Then A is closed in (X, τ) and x ̸∈ A. But X is regular, so there are
disjoint open sets U and V in (X, τ) such that A ⊆ U and x ∈ V . Thus, (X, τ) is
almost-regular.

Theorem 1.3.2. [22] A topological space (X, τ) is almost-regular if and only if for
each x ∈ X and each regular open set U containing x, there exists a regular open
set V such that x ∈ V ⊆ V ⊆ U .

Theorem 1.3.3. [73] A topological space (X, τ) is almost-regular if and only if
(X, τs) is regular.

Proof. Let (X, τ) be almost-regular, C be a closed set in (X, τs) and x ∈ X − C.
Now, C = ⋂

i∈I
Ci, where Ci is regular closed in (X, τ) for each i ∈ I. Since

x ∈ X −C, then there is some j ∈ I such that x ∈ X −Cj . So, by almost-regularity
of (X, τ), there are disjoint open sets U and V in (X, τ) such that C ⊆ Cj ⊆ U

and x ∈ V . By Lemma 1.3.2, there are disjoint open sets U ′ and V ′ in (X, τs) such
that C ⊆ U ⊆ U ′ and x ∈ V ⊆ V ′. Hence, (X, τs) is regular.
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Conversely, let C be a regular closed set in (X, τ) and x ∈ X − C. Then C is a
closed set in (X, τs) and x ∈ X − C. But since (X, τs) is regular, then there are
disjoint open sets U and V in (X, τs) such that C ⊆ U and x ∈ V . Since τs ⊆ τ ,
then U, V ∈ τ . Therefore, (X, τ) is almost-regular.

Corollary 1.3.1. [73] Almost-regularity is a semi-regular property.

Proof.

(X, τs) is almost-regular iff (X, (τs)s) is regular by Theorem 1.3.3
iff (X, τs) is regular by Proposition 1.3.2
iff (X, τ) is almost-regular by Theorem 1.3.3.

Corollary 1.3.2. [105]. A topological space (X, τ) is semi-regular and almost-
regular if and only if it is regular.

Proof. If (X, τ) is regular, then by Propositions 1.3.1 and 1.3.4, (X, τ) is semi-
regular and almost-regular. Conversely, if (X, τ) is almost-regular, then by Theorem
1.3.3, (X, τs) is regular but (X, τ) is semi-regular, then τs = τ . So, (X, τ) is
regular.

1.3.3 Extremally Disconnected Spaces

Definition 1.3.4. [120] A topological space (X, τ) is said to be extremally discon-
nected if for each U ∈ τ , U ∈ τ .

Example 1.3.3. 1:00:28 5.3.1 partII

(i) The co-finite topological space (R, τcof.) is extremally disconnected.

(ii) The left ray topological space (R, τleft.) is extremally disconnected.

Proposition 1.3.5. [18] A topological space (X, τ) is extremally disconnected if
and only if (X, τs) is extremally disconnected.
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Proof. Assume that (X, τ) is extremally disconnected. Let U ∈ τs, then U ∈ τ

since τs ⊆ τ . So, by Lemma 1.3.1 part (i), Clτs(U) = Clτ (U). But U ∈ τ implies
Clτ (U) ∈ τ . Thus, Clτ (U) = Intτ (Clτ (U)) ∈ τs. So, Clτs(U) ∈ τs. Therefore,
(X, τs) is extremally disconnected.

Conversely, suppose that (X, τs) is extremally disconnected. Let U ∈ τ , then
by Lemma 1.3.1 part (i), Clτ (U) = Clτs(U). Now, since Intτ Clτ (U) ∈ τs, then
Clτs (Intτ Clτ (U)) ∈ τs ⊆ τ . Again, by Lemma 1.3.1 part (i), Clτs (Intτ Clτ (U)) =
Clτ (Intτ Clτ (U)) since Intτ Clτ (U) ∈ τ . Hence, Clτ (Intτ Clτ (U)) ∈ τ . Since U ∈ τ ,
then by Proposition 1.2.7 part (ii), Clτ (U) ∈ RC(X, τ). So, Clτ (Intτ Clτ (U)) =
Clτ Intτ (Clτ (U)) = Clτ (U). Thus, Clτ (U) ∈ τ . Therefore, (X, τ) is extremally
disconnected.

Proposition 1.3.6. Let (X, τ) be a topological space. Then (X, τ) is extremally
disconnected if and only if RO(X, τ) = RC(X, τ).

Proof. Suppose that RO(X, τ) = RC(X, τ). Let U ∈ τ . Then by Proposition
1.2.7, U ∈ RC(X, τ), and hence U ∈ RO(X, τ). Thus, U ∈ τ . Therefore, (X, τ) is
extremally disconnected. Conversely, suppose that (X, τ) is extremally disconnected.
Now,

RO(X, τ) = {U
◦ : U ∈ τ} by Proposition 1.2.7 part (i)

= {U : U ∈ τ} since X is extremally disconnected
= RC(X, τ) by Proposition 1.2.7 part (ii).

1.3.4 Weakly-T2 Spaces

Definition 1.3.5. [108] A topological space (X, τ) is called weakly-T2 if each point
of X is an intersection of regular closed sets.

Proposition 1.3.7. [3] A topological space (X, τ) is weakly-T2 if and only if for
each x ̸= y in X, there exists a regular closed set F such that x ∈ F but y /∈ F .
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Proof. Suppose that X is weakly-T2. Let x ≠ y in X. Then y ̸∈ {x} but {x} =⋂{F ∈ RC(X) : x ∈ F} since X is weakly-T2. So, there exists F ∈ RC(X) with
x ∈ F such that y /∈ F .

Conversely, let x ∈ X. Suppose, by the way of a contradiction, that {x} ≠⋂{F ∈ RC(X) : x ∈ F}. Then there exists y ∈ ⋂{F ∈ RC(X) : x ∈ F} such
that x ̸= y. By hypothesis, there exists F ∈ RC(X) such that x ∈ F but y ̸∈ F .
This implies y ̸∈ ⋂{F ∈ RC(X) : x ∈ F}, which is a contradiction. Hence,
{x} = ⋂{F ∈ RC(X) : x ∈ F}. Therefore, (X, τ) is weakly-T2.

Theorem 1.3.4. [29] A topological space (X, τ) is weakly-T2 if and only if (X, τs)
is a T1-space.

Proof. Assume that (X, τ) is weakly-T2. Let x ∈ X. We show that {x} is closed
in (X, τs). Now, {x} = ⋂{F ∈ RC(X) : x ∈ F}. Since every regular open set in
(X, τ) is open in (X, τs), then by Theorem 1.2.4, every regular closed set in (X, τ)
is closed in (X, τs). So, {x} is an intersection of closed sets in (X, τs). Hence, {x}
is closed in (X, τs). Therefore, (X, τs) is T1.

Conversely, let x ∈ X. Suppose, by the way of contradiction, that {x} ≠ ⋂{F ∈
RC(X) : x ∈ F}. Then there exists y ∈ ⋂{F ∈ RC(X) : x ∈ F} such that
y ̸= x but (X, τs) is T1, so there exists V ∈ τs such that y ∈ V but x ̸∈ V . Since
y ∈ V ∈ τs, then y ∈ U ⊆ V for some U ∈ RO(X). As x ̸∈ V , then x ̸∈ U . Let
F = X − U , then F ∈ RC(X) and x ∈ F . So, y ∈ F = X − U , and hence y ̸∈ U ,
which is a contradiction. Therefore, (X, τ) is weakly-T2.

The following implications hold.

Proposition 1.3.8. [3] Hausdorff =⇒ weakly-T2 =⇒ T1.

Proof. Suppose that (X, τ) is Hausdorff. Then by Theorem 1.3.3, (X, τs) is Haus-
dorff. So, (X, τs) is T1. Hence, by Theorem 1.3.4, (X, τ) is weakly-T2. Next,
suppose that (X, τ) is weakly-T2. Then again by Theorem 1.3.4, (X, τs) is T1 but
τs ⊆ τ , so (X, τ) is T1.
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1.4 Prime Topological Spaces and Examples

The notion of prime spaces was defined in [38] where the sequential conver-
gence was studied. Some authors do not use the name prime spaces, they speak
simply about topological spaces having unique nonisolated point instead as in
[69].

1.4.1 Prime Spaces

Definition 1.4.1. [100] Let A be a subset of a topological space (X, τ) and a point
x ∈ X, then x is said to be an isolated point of A if there exists U ∈ U(x) such
that U ∩ A = {x}. The set of all isolated points of A is denoted by I(A).

Definition 1.4.2. [100] Let A be a subset of a topological space (X, τ) and a point
x ∈ X, then x is said to be a cluster (or an accumulation) point of A if for every
U ∈ U(x), U ∩ (A − {x}) ̸= ∅. The set of all cluster points of A is denoted by A

′ .

Theorem 1.4.1. [100] Let (X, τ) be a topological space and x ∈ X. Then x is an
isolated point of X if and only if {x} is open in X.

Definition 1.4.3. [38] A topological space is called a prime space, if it has precisely
one nonisolated (or cluster) point.

Proposition 1.4.1. Let F be a filter on a nonempty set Y and a point p ̸∈ Y . If
X = Y ∪ {p}, then the family τ = P(Y ) ∪ {F ∪ {p} : F ∈ F}, where P(Y ) is the
power set of Y , is a topology on X.

Proof. First, ∅ ∈ P(Y ) ⊆ τ and X = Y ∪ {p} ∈ τ since Y ∈ F. Next, let A, B ∈ τ .
If A, B ∈ P(Y ), then A ∩ B ∈ P(Y ) ⊆ τ . If A ∈ P(Y ) and B = F ∪ {p} for some
F ∈ F, then A ∩ B = A ∩ (F ∪ {p}) = A ∩ F ∈ P(Y ) ⊆ τ . If A = F1 ∪ {p}
and B = F2 ∪ {p} for some F1, F2 ∈ F, then A ∩ B = (F1 ∩ F2) ∪ {p} ∈ τ

since F1 ∩ F2 ∈ F. Finally, let U = {Uα : α ∈ ∆} ⊆ τ . If Uα ⊆ Y for any
α ∈ ∆, then ⋃

α∈∆
Uα ⊆ Y , and hence ⋃

α∈∆
Uα ∈ P(Y ) ⊆ τ . If for any α ∈ ∆,
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Uα = Fα ∪ {p}, Fα ∈ F, then ⋃
α∈∆

Uα = ⋃
α∈∆

(Fα ∪ {p}) =
( ⋃

α∈∆
Fα

)
∪ {p} but⋃

α∈∆
Fα ∈ F since ⋃

α∈∆
Fα ⊇ Fα and Fα ∈ F. So, ⋃

α∈∆
Uα ∈ τ . If U = {Uα ⊆ Y : α ∈

∆1} ∪ {Fα ∪ {p} : α ∈ ∆2} where ∆ = ∆1 ∪ ∆2, then ⋃
α∈∆

Uα = ⋃
α∈∆1

Uα ∪ ⋃
α∈∆2

Uα.

So, ⋃
α∈∆

Uα = ⋃
α∈∆1

Uα ∪ ⋃
α∈∆2

(Fα ∪ {p}) =
( ⋃

α∈∆1

Uα ∪ ⋃
α∈∆2

Fα

)
∪ {p}. Since for

any α ∈ ∆2, Fα ⊆ ⋃
α∈∆2

Uα ∪ ⋃
α∈∆2

Fα ⊆ Y , then ⋃
α∈∆2

Uα ∪ ⋃
α∈∆2

Fα ∈ F. Hence,⋃
α∈∆

Uα ∈ τ . Therefore, τ is a topology on X.

Proposition 1.4.2. [24, 77] The topological space (X, τ) defined in Proposition
1.4.1, is a prime space and is denoted by (X, τp).

Proof. If p ∈ I(X), then {p} ∈ τp. This implies {p} = F ∪ {p} for some F ∈ F, so
F ⊆ {p} but F ̸= ∅. Thus, p ∈ F ⊆ Y and thus, p ∈ Y , which is a contradiction.
Hence, p is not an isolated point of X. Next, let y ∈ Y , then y ∈ Y , and so {y} is
open in X. Thus, y ∈ I(X). Hence, (X, τp) has one nonisolated point, namely, p.
Therefore, (X, τp) is a prime space.

1.4.2 Completely Normal Spaces

Recall that a topological space (X, τ) is called normal if for every two disjoint
closed sets A and B in X, there exist open sets U and V in X such that A ⊆ U ,
B ⊆ V and U ∩ V = ∅ [101]. A family {Aα}α∈∆ of subsets of a set X is called
a cover of X if

⋃
α∈∆

Aα = X. If X is a topological space and all sets Aα are open

(closed), we say that the cover {Aα} is open (closed) [35].

Definition 1.4.4. [101] Let (X, τ) be a topological space and A, B ⊆ X. Then A

and B are said to be separated if A ∩ B = A ∩ B = ∅.

Definition 1.4.5. [101] A topological space (X, τ) is called completely normal if
for every two separated sets A and B in X, there exist open sets U and V in X

such that A ⊆ U , B ⊆ V and U ∩ V = ∅.

Theorem 1.4.2. The prime space (X, τp) is completely normal.
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Proof. Let A and B be two separated sets in X. That is, A ∩ B = A ∩ B = ∅. If
p ̸∈ A, then A ⊆ Y , and so A is open in X. Since A ∩ B = ∅, then B ⊆ X − A.
Hence, A and X − A are disjoint open sets in X such that A ⊆ A and B ⊆ X − A.
If p ∈ A, then p ̸∈ B since A ∩ B = ∅. So, X − B and B are disjoint open sets in
X such that A ⊆ X − B and B ⊆ B. Therefore, (X, τp) is completely normal.

1.4.3 Fully Normal Spaces

Definition 1.4.6. [45, 94] Let X be a set, U a cover of X and x ∈ X. Then
St(x,U) = ⋃{U ∈ U : x ∈ U} is said to be a star of x with respect to U.

Definition 1.4.7. [45, 94] Let X be a set, U and V covers of X. Then V is said
to be a star-refinement of U if for every x ∈ X, there exists U ∈ U such that
St(x,V) ⊆ U .

Example 1.4.1. Let X = {1, 2, 3}. Consider the cover U = {{1, 2}, {2}, {2, 3}}
of X. Then the cover V = {{1}, {2}, {3}} is a star-refinement of U since

{1, 2} ∈ U such that St(1,V) = {1} ⊆ {1, 2},

{2} ∈ U such that St(2,V) = {2} ⊆ {2}, and
{2, 3} ∈ U such that St(3,V) = {3} ⊆ {2, 3}.

While the cover U
′ = {{1, 2}, {2, 3}} is not a star-refinement of U since St(2,U

′) =
{1, 2} ∪ {2, 3} = {1, 2, 3} = X and X ̸⊆ U for all U ∈ U.

Definition 1.4.8. [45] A topological space (X, τ) is called fully normal if every
open cover of X has an open star-refinement.

Theorem 1.4.3. Any discrete space is fully normal.

Proof. Let X be a discrete space and U be any open cover of X. Consider
V = {{x} : x ∈ X}, then V is an open cover of X and St(x,U) = {x} for all x ∈ X.
Now, for all x ∈ X, there exists Ux ∈ U such that x ∈ Ux. Hence, for all x ∈ X,
Ux ∈ U is such that St(x,U) = {x} ⊆ Ux. Thus, V is an open star-refinement of U.
Therefore, X is fully normal.
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Theorem 1.4.4. The prime space (X, τp) is fully normal.

Proof. Let U be an open cover of X. Then X = ⋃
U∈U

U . So, for all x ∈ X, there
exists Ux ∈ U such that x ∈ Ux. Since Up is open in X and p ∈ Up, then there
exists F◦ ∈ F such that Up = F◦ ∪ {p}. Let V = {{y} : y ∈ Y } ∪ {F◦ ∪ {p}}, then
we claim that V is an open star-refinement of U. Clearly, V is an open cover of X.
Let x ∈ X, then x ∈ Y or x = p. Now, suppose that x ∈ Y , then either x ∈ F◦ or
x ̸∈ F◦. If x ∈ F◦, then St(x,V) = {x} ∪ (F◦ ∪ {p}) = F◦ ∪ {p} = Up and Up ∈ U.
If x ̸∈ F◦, then St(x,V) = {x} ⊆ Ux and Ux ∈ U. Next, suppose that x = p, then
St(x,V) = F◦ ∪ {p} ⊆ Up and Up ∈ U. Therefore, (X, τp) is fully normal.
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Chapter 2
Convergence of Filters

We study convergence of filters. We will start by introducing the definition of a
limit of a filter and define a cluster point of a filter. In addition, the connections
between a continuous function and limits of filters as well as cluster points of
filters are investigated. Hausdorff and compact spaces are characterized by our
present structure. A closed graph concept is defined and characterized by filters.

2.1 Limit and Cluster Points of Filters

Definition 2.1.1. [33] Let (X, τ) be a topological space, F be a filter on X and
x ∈ X. Then F τ -converges to x, written F −→ x, iff Uτ (x) ⊆ F. In such a case,
x is called the limit of F.

Notation 6. When referring to a topological space (X, τ), when no confusion may
arise, we will simply say that “converges” instead of “τ -converges”.

Definition 2.1.2. [33] Let (X, τ) be a topological space, F be a filter on X and
x ∈ X. Then F accumulates at x, written F � x, iff F(∩)Uτ (x) iff for each F ∈ F

and for each U ∈ Uτ (x), F ∩ U ≠ ∅. In such a case, x is called the cluster point of
F.
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Proposition 2.1.1. [120] Let F be a filter on a topological space (X, τ) and x ∈ X.
If F −→ x, then F � x.

Proof. Assume that F −→ x and U ∈ Uτ (x), then U ∈ F. Hence, U ∩ F ̸= ∅ for
all F ∈ F. Therefore, F � x.

The converse of proposition 2.1.1 need not be true as the following example
shows.

Example 2.1.1. Let X = {1, 2, 3} and τ = {∅, X, {1}, {2}, {1, 2}}. Let F =
{X, {1, 3}}. Then Uτ (1) = {{1}, {1, 2}, {1, 3}, X}. Clearly, F � 1 but F −̸→ 1.

Definition 2.1.3. [101] Let (X, τ) be a topological space, E ⊆ X and x ∈ X. We
say that x is an adherent point of E iff for all U ∈ τ(x), U ∩ E ̸= ∅.

Remark 2.1. [101] Let (X, τ) be a topological space, E ⊆ X and x ∈ X. Then
x ∈ E if and only if x is an adherent point of E.

Definition 2.1.4. [101] Let F be a filter on a topological space (X, τ). A point
x ∈ X is said to be an adherent point of F if x is an adherent point of every set in
F. The adherence of F, Adhτ (F), is the set of all adherent points of F.

Remark 2.2. [2] Let (X, τ) be a topological space. If F is a filter on X, then
Adhτ (F) = ⋂

F ∈F
F .

Theorem 2.1.1. [2] Let F be a filter on a topological space (X, τ) and x ∈ X.
Then x ∈ Adhτ (F) if and only if F � x.

Proof.

x ∈ Adhτ (F) iff x ∈
⋂

F ∈F

F

iff x ∈ F for all F ∈ F

iff V ∩ F ̸= ∅ for all V ∈ Uτ (x) and for all F ∈ F

iff F(∩)Uτ (x)
iff F � x.
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Theorem 2.1.2. [9] Let (X, τ) be a topological space, E ⊆ X and x ∈ X. Then
x ∈ E if and only if there exists a filter F on X such that E ∈ F and F −→ x.

Proof. Suppose that there exists a filter F on X such that E ∈ F and F −→ x. Let
U ∈ Uτ (x). But Uτ (x) ⊆ F since F −→ x. So, U ∈ F. Hence, U ∩ E ̸= ∅. Thus,
x ∈ E.

Conversely, suppose that x ∈ E, then U ∩ E ̸= ∅ for all U ∈ Uτ (x). Consider the
filter F = ⟨Uτ (x)

∣∣∣
E

⟩. Then by Proposition 1.1.6, E ∈ F and Uτ (x) ⊆ F. Therefore,
E ∈ F and F −→ x.

Theorem 2.1.3. [2, 95] Let (X, τ) be a topological space, E ⊆ X and x ∈ X.
Then x ∈ E if and only if there exists a filter F on X such that F meets E and
F −→ x.

Proof. Suppose that x ∈ E. Then by Theorem 2.1.2, there exists a filter F on X

such that E ∈ F and F −→ x. Since E ∈ F, then for all F ∈ F, F ∩ E ̸= ∅. That
is, F meets E.

Conversely, suppose that F is a filter on X such that F −→ x and F ∩ E ̸= ∅
for all F ∈ F. Since F −→ x, then U ∈ F for all U ∈ Uτ (x). So, by hypothesis,
U ∩ E ̸= ∅ for all U ∈ Uτ (x). Therefore, x ∈ E.

Theorem 2.1.4. [9] Let (X, τ) be a topological space and A ⊆ X. Then A is
closed if and only if whenever a filter F −→ x with A ∈ F, then x ∈ A.

Proof. Assume that a filter F −→ x and A ∈ F. Then by Theorem 2.1.2, x ∈ A.
But A = A since A is closed. So, x ∈ A. Conversely, let x ∈ A. Then by Theorem
2.1.2, there is a filter F on X such that F −→ x and A ∈ F. So by hypothesis,
x ∈ A. Thus, A ⊆ A. But A ⊆ A, and hence A = A. Therefore, A is closed.

Theorem 2.1.5. [9] Let (X, τ) be a topological space and A ⊆ X. Then A is open
in X if and only if whenever a filter F −→ x ∈ A, then A ∈ F.
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Proof. Suppose that A is open in X. If a filter F −→ x ∈ A, then A ∈ F since
A ∈ Uτ (x). Conversely, suppose, by the way of contradiction, that there exists
x ∈ A such that x /∈ A◦. Then x ∈ X − A◦ = X − A, so by Theorem 2.1.2, there
exists a filter F on X such that X − A ∈ F and F −→ x. Since F −→ x ∈ A, then
by hypothesis, A ∈ F. But then ∅ = A ∩ (X − A) ∈ F, which is a contradiction.
Thus, for all x ∈ A, x ∈ A◦. That is, A ⊆ A◦. Therefore, A is open in X.

Remark 2.3. [95] Let F and G be filters on a topological space (X, τ) and x ∈ X.
(i) The principal filter ⟨x⟩ −→ x.

(ii) If F −→ x and G −→ x, then F ∩ G −→ x.

Theorem 2.1.6. [40] Let (X, τ) be a topological space, F be a filter on X and
x ∈ X. Then F −→ x if and only if for every subfilter F

′ of F, F′ −→ x.

Proof. If every subfilter of F τ -converges to x ∈ X, then so does F because it is a
subfilter of itself. Conversely, if F −→ x and F

′ is a subfilter of F, then Uτ (x) ⊆ F

and F ⊆ F
′ . That is, Uτ (x) ⊆ F

′ . So, F′ −→ x.

Theorem 2.1.7. [2, 95] Let (X, τ) be a topological space and F be a filter on
X. Then F −→ x if and only if every subfilter G of F has a subfilter H such that
H −→ x.

Proof. Suppose, by the way of contradiction, that F −̸→ x, then there is an open
set U containing x such that U ̸∈ F. Then for all F ∈ F, F ∩ (X − U) ̸= ∅ (for
if, F ∩ (X − U) = ∅ for some F ∈ F, then F ⊆ U , and so U ∈ F, which is a
contradiction). So, G = ⟨F

∣∣∣
X−U

⟩ is a subfilter of F containing X −U by Proposition
1.1.6. By hypothesis, G has a subfilter H which τ -converges to x. Since U is an
open set containing x, then U ∈ H but X − U ∈ G ⊆ H. So, ∅ ∈ H, which is a
contradiction. The converse follows from Theorem 2.1.6.

Theorem 2.1.8. [9] Let (X, τ) be a topological space, F be a filter on X and
x ∈ X. Then F � x if and only if there exists a subfilter F′ of F such that F′ −→ x.

Proof. Suppose that there exists a subfilter F
′ of F such that F

′ −→ x. Then
F ⊆ F

′ and Uτ (x) ⊆ F
′ . So, if U ∈ Uτ (x) and F ∈ F, then U ∈ F

′ and F ∈ F
′ . So,

U ∩ F ∈ F
′ , and hence U ∩ F ̸= ∅. Therefore, F � x.
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Conversely, assume that F � x. We will construct a subfilter F
′ of F that

τ -converges to x. Since F � x, then F ∩ U ̸= ∅ for all F ∈ F and all U ∈ Uτ (x).
Let F

′ = F ∨ Uτ (x). Then F
′ is a filter on X such that F ⊆ F

′ and Uτ (x) ⊆ F
′ .

Thus, F′ is a subfilter of F and F
′ −→ x.

Theorem 2.1.9. [95] Let (X, τ) be a topological space, F′ be a subfilter of F on
X and x ∈ X. If F′

� x, then F � x.

Proof. Suppose that F
′
� x. Let U ∈ Uτ (x) and F ∈ F, but F

′ is a subfilter of F,
so F ∈ F

′ . Thus, U ∩ F ̸= ∅. Hence, F � x.

Theorem 2.1.10. [120] Let F be an ultrafilter on a topological space (X, τ) and
x ∈ X. Then F −→ x if and only if F � x.

Proof. If F −→ x, then by Proposition 2.1.1, F � x. Conversely, suppose that
F � x. Let U ∈ Uτ (x). Then U ∩ F ̸= ∅ for any F ∈ F. So, F meets U . But
F is an ultrafilter on X, then by the proof of Theorem 1.1.5, U ∈ F. Therefore,
F −→ x.

2.2 Convergence in Hausdorff Spaces

Theorem 2.2.1. [120] A topological space (X, τ) is Hausdorff if and only if each
filter F on X τ -converges to at most one point in X.

Proof. Suppose that X is a Hausdorff space and F is a filter on X such that F −→ x

and F −→ y. Assume that x ̸= y. But X is Hausdorff, so there exist U ∈ Uτ (x)
and V ∈ Uτ (y) such that U ∩ V = ∅. Now, since F −→ x, then Uτ (x) ⊆ F, and
so U ∈ F. Also, since F −→ y, then Uτ (y) ⊆ F, and so V ∈ F. Thus, U ∩ V ≠ ∅,
which is a contradiction. So, we must have x = y.

Conversely, suppose that X is not a Hausdorff space. Then there exists x ̸= y in
X such that U ∩V ̸= ∅ for all U ∈ Uτ (x) and all V ∈ Uτ (y). Let F = Uτ (x)∨Uτ (y),
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then F is a filter on X such that Uτ (x) ⊆ F and Uτ (y) ⊆ F. Thus, the filter F τ -
converges to both x and y. But then by hypothesis, x = y, which is a contradiction.
Therefore, X must be Hausdorff.

Theorem 2.2.2. [60] Let (X, τ) be a Hausdorff space, F be a filter on X and
x ∈ X. If F −→ x, then x is the unique cluster point of F.

Proof. If F −→ x, then by Proposition 2.1.1, F � x. Now, suppose that y ∈ X is a
cluster point of F with x ≠ y. But since X is Hausdorff, then there exist U ∈ Uτ (x)
and V ∈ Uτ (y) such that U ∩ V = ∅. Now, since F −→ x, then Uτ (x) ⊆ F, and
so U ∈ F. But then, U ∩ V ̸= ∅ since F � y, which is a contradiction. Therefore,
x = y.

2.3 Convergence and Functions

Recall that a function f : (X, τ) → (Y, σ) is continuous at x ∈ X if for every
open set V in Y containing f(x), there exists an open set U in X containing
x such that f(U) ⊆ V . If this condition is satisfied at each x ∈ X, then f is
said to be continuous on X. It is possible to define the continuous function f in
terms of neighborhoods. A function f is continuous at a point x ∈ X if for every
V ∈ Uσ(f(x)), there exists U ∈ Uτ (x) such that f(U) ⊆ V [92, 120].

Theorem 2.3.1. [120] Let f : (X, τ) → (Y, σ) be a function. Then f is continuous
at x ∈ X if and only if whenever F is a filter on X with F −→ x, then f(F) −→ f(x)
in Y .

Proof. Suppose that F −→ x in X. Let V ∈ Uσ(f(x)). Since f is continuous at
x ∈ X, then there exists U ∈ Uτ (x) such that f(U) ⊆ V . But since F −→ x, then
U ∈ F. Hence, V ∈ f(F). Thus, Uσ(f(x)) ⊆ f(F). That is, f(F) −→ f(x).

Conversely, let V ∈ Uσ(f(x)). Since Uτ (x) ⊆ Uτ (x), then Uτ (x) −→ x. By
hypothesis, f(Uτ (x)) −→ f(x). That is, Uσ(f(x)) ⊆ f(Uτ (x)). Therefore, there
exists U ∈ Uτ (x) such that f(U) ⊆ V . Therefore, f is continuous at x ∈ X.
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Theorem 2.3.2. Let f : (X, τ) → (Y, σ) be a function. Then f is continuous at
x ∈ X if and only if whenever F is a filter on X with F � x, then f(F) � f(x) in
Y .

Proof. Suppose that F � x in X and V ∈ Uσ(f(x)), then there exists U ∈ Uτ (x)
such that f(U) ⊆ V since f is continuous at x ∈ X. Since U ∈ Uτ (x) and
F � x, then U ∩ F ≠ ∅ for all F ∈ F, and so f(U ∩ F ) ̸= ∅ for all F ∈ F. But
V ∩ f(F ) ⊇ f(U) ∩ f(F ) ⊇ f(U ∩ F ) for all F ∈ F. Hence, V ∩ f(F ) ̸= ∅ for all
F ∈ F. Therefore, f(F) � f(x) in Y .

Conversely, suppose, by the way of contradiction, that f is not continuous at
x ∈ X, then there exists V ∈ Uσ(f(x)) such that f(U) ̸⊆ V for any V ∈ Uτ (x).
So, U ̸⊆ f−1(V ) for any U ∈ Uτ (x). Let B = {U − f−1(V ) : U ∈ Uτ (x)},
then B is a filter base in X. Let F = ⟨B⟩X , then we claim that F � x but
f(F) �̸ f(x). Let U ∈ Uτ (x) and F ∈ F, then F ⊇ B for some B ∈ B. This
implies that F ⊇ W − f−1(V ) for some W ∈ Uτ (x). Since U ∩ W ∈ Uτ (x), then
(U ∩ W ) − f−1(V ) ̸= ∅ but U ∩ F ⊇ U ∩ (W − f−1(V )) ̸= ∅. Hence, F � x.
Next, since X ∈ τ(x), then B = X − f−1(V ) ∈ B ⊆ F, so f(B) ∈ f(F). We
claim that V ∩ f(B) = ∅. For if f(b) ∈ V for some b ∈ B, then b ∈ f−1(V ) and
b ∈ X −f−1(V ), so b ∈ (X −f−1(V ))∩f−1(V ) = ∅, which is a contradiction. Since
V ∈ Uσ(f(x)), f(B) ∈ f(F) and V ∩ f(B) = ∅, then f(F) �̸ f(x) in Y .

Lemma 2.3.1. [64] Let {Xα : α ∈ ∆} be a family of topological spaces and consider
the product space ∏

α∈∆
Xα. Let Aα ⊆ Xα for each α ∈ ∆ and πα be the αth projection

function. Then ∏
α∈∆

Aα = ⋂
α∈∆

π−1
α (Aα).

Theorem 2.3.3. [9] Let {Xα : α ∈ ∆} be a family of topological spaces and let F

be a filter on X = ∏
α∈∆

Xα. Then F −→ x in X if and only if πα(F) −→ πα(x) in
Xα for all α ∈ ∆.

Proof. Assume that F −→ x in X. Since πα is continuous for all α ∈ ∆, then by
Theorem 2.3.1, πα(F) −→ πα(x) for all α ∈ ∆.

Conversely, suppose that πα(F) −→ πα(x) for all α ∈ ∆. Let U be any neigh-
borhood of x in X. Then x ∈

n⋂
i=1

π−1
αi

(Ui) ⊆ U , where Ui ∈ U(παi
(x)) for all
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i = 1, . . . , n. But παi
(F) −→ παi

(x) for all i = 1, . . . , n, and so Ui ∈ παi
(F) for

all i = 1, . . . , n, and hence for all i = 1, . . . , n, there exists Fi ∈ F such that
παi

(Fi) ⊆ Ui. Then Fi ⊆ π−1
αi

(Ui) for all i = 1, . . . , n. So,
n⋂

i=1
Fi ⊆

n⋂
i=1

π−1
αi

(Ui).

Since
n⋂

i=1
Fi ∈ F, then

n⋂
i=1

π−1
αi

(Ui) ∈ F. So, U ∈ F and thus, F −→ x in X.

Theorem 2.3.4. Let {Xα : α ∈ ∆} be a family of topological spaces and let F be
a filter on X = ∏

α∈∆
Xα. If F � x in X, then πα(F) � πα(x) in Xα for all α ∈ ∆.

Proof. Assume that F � x ∈ X. Since πα is continuous for every α ∈ ∆, then by
Theorem 2.3.2, πα(F) � πα(x) for every α ∈ ∆.

2.4 Compactness

2.4.1 Characterizations of Compactness

Definition 2.4.1. [9] A topological space (X, τ) is called compact iff each open
cover of X has a finite subcover.

Definition 2.4.2. [92] A subset A of a topological space (X, τ) is said to be
(i) a compact subspace if the space (A, τA) is compact.
(ii) a compact relative to X if for every cover {Vα : α ∈ ∆} of A by open sets in

X, there exists a finite subset Ω of ∆ such that A ⊆ ⋃
α∈Ω

Vα.

Theorem 2.4.1. [92, 120] A set A of a topological space (X, τ) is a compact
subspace if and only if A is a compact relative to X.

Proof. Let {Uα : α ∈ ∆} be a cover of A by open sets of X. Since Uα ∈ τ for
each α ∈ ∆, then A ∩ Uα ∈ τA for each α ∈ ∆. Hence, A ∩ Uα is open in A for
each α ∈ ∆. Now, since A ⊆ ⋃

α∈∆
Uα, then A = A ∩

( ⋃
α∈∆

Uα

)
= ⋃

α∈∆
(A ∩ Uα). So,

{A ∩ Uα : α ∈ ∆} ⊆ τA is a cover of A. But A is compact, then there exists a finite
subset Ω of ∆ such that A = ⋃

α∈Ω
(A ∩ Uα). Hence, A ⊆ ⋃

α∈Ω
Uα. Therefore, A is

compact relative to X.
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Conversely, suppose that A is compact relative to X. Let {Uα : α ∈ ∆} ⊆ τA

be a cover of A. Then for each α ∈ ∆, Uα = Vα ∩ A, where Vα ∈ τ . Thus,
{Vα : α ∈ ∆} ⊆ τ is a cover of A. Since A is a compact relative to X. Then there
exists a finite subset Ω of ∆ such that A ⊆ ⋃

α∈Ω
Vα. Thus, A = A ∩ ( ⋃

α∈Ω
Vα) =⋃

α∈Ω
(A ∩ Vα) = ⋃

α∈Ω
Vα. Therefore, A is a compact subspace of X.

The property of a topological space being compact is not a semi-regular prop-
erty, as the following example shows.

Example 2.4.1. Consider the topological space (R, τ), where τ is the left ray
topology. Then (R, τ) is not compact. But τs = {∅,R}, so (R, τs) is compact.

We are now ready to make characterizations of compact spaces using the con-
vergence of filters.

Theorem 2.4.2. [120] For a topological space (X, τ), the following are equivalent:

(i) X is compact.

(ii) Each filter on X has a cluster point.

(iii) Each ultrafilter on X τ -converges.

(iv) For each family C of closed sets of X such that ⋂
C∈C

C = ∅, there exists a finite

subfamily C
′ of C such that ⋂

C∈C′
C = ∅.

Proof. aaa

(i) =⇒ (ii) Assume that there is a filter F on X such that F �̸ x for all x ∈ X. This
means that for all x ∈ X, there exist Gx ∈ τ(x) and Fx ∈ F such that
Fx ∩ Gx = ∅. Consider U = {Gx : x ∈ X}. Clearly, U is open cover of X. But
X is compact, so there exist x1, . . . , xn ∈ X such that X =

n⋃
i=1

Gxi
. Now, for

every i = 1, . . . , n, choose Fxi
such that Fxi

∩ Gxi
= ∅ and let F◦ =

n⋂
i=1

Fxi
.

Then F◦ ∈ F and F◦ ⊆ Fxi
for all i = 1, . . . , n. So,

F◦ = F◦ ∩ X = F◦ ∩ (
n⋃

i=1
Gxi

) =
n⋃

i=1
(F◦ ∩ Gxi

) ⊆
n⋃

i=1
(Fxi

∩ Gxi
) = ∅.
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This implies F◦ = ∅, which is a contradiction. Therefore, F must have a
cluster point in X.

(ii) =⇒ (iii) Let F be an ultrafilter on X. Then by hypothesis, F � x ∈ X . But then,
F −→ x by Theorem 2.1.10 and and since F is an ultrafilter on X.

(iii) =⇒ (iv) Let C =
{
Fα : α ∈ ∆

}
be a family of closed subsets of X such that ⋂

α∈∆
Fα = ∅.

Suppose, by the way of contradiction, that for each finite subset Ω of ∆,⋂
α∈Ω

Fα ≠ ∅. Let B = { ⋂
α∈Ω

Fα : Ω is a finite subset of ∆}, then B is a filter
base in X. Hence, by Theorem 1.1.4, the filter F = ⟨B⟩X is contained in
some ultrafilter F

′ on X. So, by hypothesis, F′ −→ x ∈ X. But then F
′
� x.

Hence, F � x by Theorem 2.1.9. Therefore, we have constructed a filter F

on X which has x ∈ X as a cluster point. Now, x ̸∈ ∅ = ⋂
α∈∆

Fα. So, x /∈ Fα◦

for some α◦ ∈ ∆. This implies that X − Fα◦ ∈ τ(x). But Fα◦ ∈ F by the
construction of F and F � x, so (X −Fα◦) ∩Fα◦ ̸= ∅, which is a contradiction.
Therefore, there exists a finite subset Ω of ∆ such that ⋂

α∈Ω
Fα ̸= ∅.

(iv) =⇒ (i) Let U be an open cover of X. Then C = {X − U : U ∈ U} is a family
of closed subsets of X with ⋂

U∈U
(X − U) = X − ⋃

U∈U
U = X − X = ∅. So,

by hypothesis, there exist U1, . . . , Un ∈ U such that
n⋂

i=1
(X − Ui) = ∅. So,

∅ =
n⋂

i=1
(X − Ui) = X −

n⋃
i=1

Ui. Hence, X =
n⋃

i=1
Ui. Therefore, X is compact.

Theorem 2.4.3. [92, 101] Let X be a topological space and A ⊆ X. Then the
following are equivalent:

(i) A is compact.

(ii) Every filter on X which meets A accumulates at some point of A.

(iii) Every ultrafilter on X which meets A τ -converges to some point of A.

(iv) For every family C of closed sets of X such that
( ⋂

C∈C
C

)
∩ A = ∅, there exists

a finite subfamily C
′ of C such that

( ⋂
C∈C′

C
)

∩ A = ∅.

Proof. Similar to the proof of Theorem 2.4.2.

Theorem 2.4.4. [120] A closed subset of a compact space X is compact.
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Proof. Let X be compact and A ⊆ X be closed. Let F be an ultrafilter on X which
meets A. Then by Theorem 2.4.2, F −→ x for some x ∈ X since X is compact.
Now, since F is an ultrafilter on X and F meets A, then A ∈ F. So, we have
F −→ x and A ∈ F but A is closed, so by Theorem 2.1.4, x ∈ A. Hence, every
ultarfilter F on X which meets A τ -converges to some point of A. Therefore, A is
compact relative to X by Theorem 2.4.3.

Theorem 2.4.5. [120] Let X be a Hausdorff space and A ⊆ X. If A is compact,
then A is closed.

Proof. Let A be a compact subset of X and X be a Hausdorff space. Let x ∈ A.
Then by Theorem 2.1.3, there exists a filter on X which meets A such that F −→ x.
But since A is compact, then by Theorem 2.4.3, F � a for some a ∈ A. But also
by Theorem 2.1.8, F has a subfilter F′ such that F′ −→ a. Also, by Theorem 2.1.6,
F

′ −→ x since F
′ is a subfilter of F and F −→ x. Now, X is Hausdorff implies

x = a by Theorem 2.2.1. Therefore, x ∈ A. So, A ⊆ A. Hence, A = A. Therefore,
A is closed.

Theorem 2.4.6. [120] Let f : (X, τ) → (Y, σ) be an onto continuous function. If
X is compact, then Y is compact.

Proof. Let f : X → Y be continuous, A ⊆ X be compact and G be a filter on Y .
Since f is onto, then f−1(G) is a filter on X but X is compact, then f−1(G) �
x ∈ X. As f is continuous and by Theorem 2.3.2, then ff−1(G) � f(x) ∈ Y but
G ⊆ ff−1(G), so by Theorem 2.1.9, G � f(x). Therefore, Y is compact.

Corollary 2.4.1. Let f : (X, τ) → (Y, σ) be a continuous function. If A ⊆ X is
compact, then f(A) ⊆ Y is compact.

Proof. Since f : (X, τ) → (Y, σ) is continuous, then f
∣∣∣
A

: A → f(A) is continuous
and onto, so by Theorem 2.4.6, f(A) is compact.

Theorem 2.4.7. [120] The product X = ∏
α∈∆

Xα is compact if and only if each
space Xα, α ∈ ∆ is compact.
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Proof. Assume that X is compact. Since the projection πα is continuous and onto
for all α ∈ ∆, then by Corollary 2.4.1, Xα = πα(X) is compact for all α ∈ ∆.

Conversely, let F be an ultrafilter on X. Since πα is onto for all α ∈ ∆, then by
Theorem 1.1.6, πα(F) is an ultrafilter on Xα for all α ∈ ∆. But Xα is compact
for all α ∈ ∆. Thus, by Theorem 2.4.2, πα(F) −→ xα ∈ Xα for all α ∈ ∆. Let
x = (xα)α∈∆, then x ∈ X and πα(x) = xα for all α ∈ ∆. So, πα(F) −→ πα(x) for
all α ∈ ∆. Hence, F −→ x by Theorem 2.3.3. Therefore, X = ∏

α∈∆
Xα is compact

by Theorem 2.4.2.

2.4.2 Closed Graphs

For two sets X and Y and any function f : X → Y , the subset Γf = {(x, f(x)) :
x ∈ X} of the product X × Y is called the graph of f [63].

Proposition 2.4.1. Let f : X → Y be a function. If A ⊆ X and B ⊆ Y , then
(A × B) ∩ Γf = ∅ if and only if f(A) ∩ B = ∅.

Proof. Suppose that (A×B)∩Γf = ∅. Suppose on the contrary that f(A)∩B ̸= ∅,
then there exists b ∈ f(A) ∩ B. So, there exists a ∈ A such that b = f(a). But
then, (a, b) ∈ (A × B) ∩ Γf , which is a contradiction. Thus, f(A) ∩ B = ∅.

Conversely, assume that f(A) ∩ B = ∅. Suppose on the contrary that (A × B) ∩
Γf ̸= ∅, then there exists (a, b) ∈ (A×B)∩Γf , so a ∈ A, b ∈ B and f(a) = b, hence
b ∈ f(A) ∩ B and this implies f(A) ∩ B ̸= ∅, which is a contradiction. Therefore,
(A × B) ∩ Γf = ∅

Definition 2.4.3. [63] A function f : (X, τ) → (Y, σ) is said to have a closed graph
if Γf is a closed subset of X × Y .

Proposition 2.4.2. A function f : (X, τ) → (Y, σ) has a closed graph if and only
if for all (x, y) ∈ X × Y , with (x, y) /∈ Γf , there exist U ∈ τ(x) and V ∈ σ(y) such
that (U × V ) ∩ Γf = ∅.

37



P.E. Long [63] has obtained the following characterization of functions with
closed graph.

Theorem 2.4.8. [63] Let f : (X, τ) → (Y, σ) be a function, then f has a closed
graph if and only if for each x ∈ X and each y ∈ Y , with (x, y) /∈ Γf , there exist
U ∈ τ(x) and V ∈ σ(y) such that f(U) ∩ V = ∅.

Proof. This follows from Propositions 2.4.2 and 2.4.1.

A useful characterization of functions with closed graphs in terms of filters is
given in the following theorem.

Theorem 2.4.9. [119] A function f : (X, τ) → (Y, σ) has a closed graph if and only
if whenever F is a filter on X with F −→ x and f(F) −→ y in Y , then (x, y) ∈ Γf .

Proof. Assume that f has a closed graph. Let F −→ x and f(F) −→ y. Suppose
on the contrary that (x, y) /∈ Γf . Since f has a closed graph, then by Theorem 2.4.8,
there exist U ∈ τ(x) and V ∈ σ(y) such that f(U) ∩ V = ∅. But since F −→ x and
U ∈ τ(x), then U ∈ F, and hence f(U) ∈ f(F). On the other hand, f(F) −→ y and
V ∈ σ(y), so V ∈ f(F). Thus, f(U) ∩ V ̸= ∅, which is a contradiction. Therefore,
(x, y) ∈ Γf .

Conversely, suppose on the contrary that f does not have a closed graph. Then
there exists (x, y) ∈ X ×Y with (x, y) /∈ Γf such that f(U)∩V ̸= ∅ for all U ∈ τ(x)
and all V ∈ σ(y). This implies that U ∩ f−1(V ) ̸= ∅ for all U ∈ τ(x) and all
V ∈ σ(y). Let F = {F ⊆ X : F ⊇ U ∩ f−1(V ), U ∈ τ(x), V ∈ σ(y)}, then F is a
filter on X. We claim that F −→ x and f(F) −→ y. First, let U◦ ∈ τ(x). Then
U◦ ⊇ U◦ ∩ f−1(V ) for each V ∈ σ(y). Hence, U◦ ∈ F. Next, let V ∈ σ(y). Then
V ⊇ f(f−1(V )) ⊇ f(U ∩ f−1(V )) for each U ∈ τ(x), but U ∩ f−1(V ) ∈ F for each
U ∈ τ(x). So, V ∈ f(F). Therefore, we have constructed a filter F −→ x on X for
which f(F) −→ y in Y . By hypothesis, (x, y) ∈ Γf , which is a contradiction. Thus,
f must be of closed graph.

The graph of a continuous function need not be closed as it is shown in the
next example.
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Example 2.4.2. Consider the function f : (R, τ) → (R, σ), where τ and σ are the
left ray and right ray topologies on R, respectively, given by f(x) = −x. Then f is
continuous. But the graph Γf is not closed since (1, 1) ̸∈ Γf but for any a > 1 and
for any b < 1, we have (x, −x) ∈ ((−∞, a) × (b, ∞)) ∩ Γf where x < min{a, −b}.

We are now ready to give a sufficient condition on the codomain of a continu-
ous function f to insure that it has a closed graph.

Theorem 2.4.10. [39] Let f : (X, τ) → (Y, σ) be continuous and (Y, σ) be
Hausdorff. Then f has a closed graph.

Proof. Suppose that F is a filter on X with F −→ x ∈ X and f(F) −→ y ∈ Y .
Since f is continuous, then by Theorem 2.3.1, f(F) −→ f(x) in Y . But Y is
Hausdorff implies f(x) = y by Theorem 2.2.1. So, (x, y) ∈ Γf . Hence, by Theorem
2.4.9, f has a closed graph.

Example 2.4.3. Consider the identity function f : (R, τ) → (R, σ), where τ and σ

are the usual and discrete topologies on R, respectively. Then f has a closed graph
but f is not continuous.

We are now ready to give a sufficient condition on the codomain of a function
f has a closed graph to insure that it is continuous.

Theorem 2.4.11. [54] Let (Y, σ) be a compact space. For every topological space
(X, τ), each function f : (X, τ) → (Y, σ) with a closed graph is continuous.

Proof. Assume that (Y, σ) is a compact space. Let (X, τ) be any topological space
and f : (X, τ) → (Y, σ) be a function which has a closed graph. We show that
f is continuous. Let x ∈ X and V ∈ σ(f(x)). For each y ∈ Y − V , we have
y ̸= f(x), this means for each y ∈ Y − V , (x, y) ̸∈ Γf . But Γf is closed, then by
Theorem 2.4.8, for any y ∈ Y − V , there exist Uy ∈ τ(x) and Vy ∈ σ(y) such that
f(Uy) ∩ Vy = ∅. Let V = {V } ∪ {Vy : y ∈ Y − V }, then V is an open cover for
Y . But Y is compact, then V has a finite subcover, say V

′ =
{
V, Vy1 , . . . , Vyn

}
.

So, Y = V ∪
n⋃

i=1
Vyi

. Let Ux =
n⋂

i=1
Uyi

. Then Ux ∈ τ(x) and Ux ⊆ Uyi
for each
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i = 1, . . . , n. So, f(Ux) ∩ (
n⋃

i=1
Vyi

) =
n⋃

i=1
(f(Ux) ∩ Vyi

) ⊆
n⋃

i=1

(
f(Uyi

) ∩ Vyi

)
= ∅. This

implies that, f(Ux) ⊆ Y −
n⋃

i=1
Vyi

= (V ∪
n⋃

i=1
Vyi

) −
n⋃

i=1
Vyi

= V −
n⋃

i=1
Vyi

⊆ V . Thus,
f is continuous at the arbitrary point x ∈ X, and so f is continuous on X.

Theorem 2.4.12. Let F be a filter on a topological space (Y, σ) and X = Y ∪ {p}
with p ̸∈ Y . If Adhσ(F) = ∅, then the prime space (X, τp) is Hausdorff.

Proof. Let x1 ̸= x2 in X = Y ∪ {p}. If x1, x2 ∈ Y , then {x1} and {x2} are disjoint
open sets in X containing x1 and x2, respectively. So assume that one of x1 and x2

is p, say x1 = p and x2 ∈ Y . Since x2 ∈ Y and Adhσ(F) = ∅, then x2 ̸∈ Adhσ(F),
and so by Theorem 2.1.1, F �̸ x2, then there exist U ∈ σ(x2) and F ∈ F such that
U ∩ F = ∅, so x2 ̸∈ F . Hence, F ∪ {p} ∈ τp(x1) and {x2} ∈ τp(x2). Moreover,
(F ∪ {p}) ∩ {x2} = F ∩ {x2} = ∅. Therefore, (X, τp) is a Hausdorff space.

Lemma 2.4.1. Let X = Z ∪{p} where Z is a set with p ̸∈ Z, (Y, σ) be a topological
space and y ∈ Y . Let g : Z → (Y, σ) be a function and F be a filter on Z. Define
a function g̃ : (X, τp) → (Y, σ) by g̃(z) = g(z) for any z ∈ Z and g̃(p) = y. Then
g(F) −→ y in (Y, σ) if and only if g̃ is continuous on X.

Proof. Suppose that g(F) −→ y in Y and U ∈ σ. If p ̸∈ g̃−1(U), then g̃−1(U) ⊆ Z,
and so g̃−1(U) ∈ τp. If p ∈ g̃−1(U), then y = g̃(p) ∈ U . So, U ∈ σ(y) but since
f(F) −→ y, then there exists F ∈ F such that U ⊇ g(F ). But g(F ) = g̃(F ). So,
g̃−1(U) ⊇ g̃−1g̃(F ) ⊇ F but p ̸∈ F , so F ⊆ g̃−1(U) − {p}. Let F◦ = g̃−1(U) − {p},
then F◦ ∈ F since F ⊆ F◦ ⊆ Z, F ∈ F and F is a filter on Z. Hence, g̃−1(U) =
F◦ ∪ {p} ∈ τp. Therefore, g̃ is continuous on X.

Conversely, suppose that g̃ is continuous on X. Since F is a filter on Y and
Y ⊂ X, then F is a filter base in X. Let G = ⟨F⟩X . Then G −→ p in (X, τp)
and g̃(G) = g(F) but g̃ is continuous on X, then g̃(G) −→ g̃(p) = y in (Y, σ), so
g(F) −→ y in (Y, σ).

Our final result shows that the condition of theorem 2.4.11 characterizes com-
pact spaces if the spaces (X, τ) are chosen from a particular class of topological
spaces. In [54], a class of topological spaces containing the class of Hausdorff
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completely normal and fully normal spaces is denoted by S. Then we use the
class S to obtain the following characterization of compact spaces.

Theorem 2.4.13. [54] A T1-space (Y, σ) is compact if and only if for every
topological space (X, τ) ∈ S, each function f : (X, τ) → (Y, σ) with a closed graph
is continuous.

Proof. The first direction follows by Theorem 2.4.11. Conversely, assume that Y is
not compact, then there is a filter F on Y such that Adhσ(F) = ∅. Let X = Y ∪{p}
where p ̸∈ Y . Consider the topological space (X, τp). Then by Theorem 2.4.12,
(X, τp) is Hausdorff. Also, by Theorems 1.4.2 and 1.4.4, (X, τp) is completely normal
and fully normal. This implies that (X, τp) ∈ S. Fix a point b ∈ Y and define
ĩdY : (X, τp) → (Y, σ) by ĩdY (x) = idY (x) = x for any x ∈ Y and ĩdY (p) = b. Let
(x, y) ∈ X × Y and (x, y) ̸∈ ΓĩdY

. Consider the case when x ̸= p. Since ĩdY (x) ̸= y

and Y is T1, then Uy = Y − {ĩdY (x)} ∈ σ(y). Hence, {x} ∈ τp(x), Uy ∈ σ(y) and
ĩdY ({x}) ∩ Uy = {ĩdY (x)} ∩ (Y − {ĩdY (x)}) = ∅. Consider the case when x = p.
Then b = ĩdY (p) ̸= y. Again, since Y is T1, then there exists Vy ∈ σ(y) such that
b ̸∈ Vy. Moreover, since Adhσ(F) = ∅, then by Theorem 2.1.1, we have F �̸ y,
so there exist Wy ∈ σ(y) and F ∈ F such that F ∩ Wy = ∅. Let Zy = Vy ∩ Wy.
Then Zy ∈ σ(y), b ̸∈ Zy and F ∩ Zy = ∅. Hence, F ∪ {p} ∈ τp(x), Zy ∈ σ(y) and
ĩdY (F ∪ {p}) ∩ Zy = (idY (F ) ∪ {b}) ∩ Zy = F ∩ Zy = ∅. We have shown, in both
cases, that for each (x, y) ∈ (X × Y ) − ΓĩdY

, there exist Ux ∈ τp(x) and Gy ∈ σ(y)
such that ĩdY (Ux) ∩ Gy = ∅. Thus, by Theorem 2.4.8, ĩdY has a closed graph.
By hypothesis, ĩdY is continuous, and so by Lemma 2.4.1, idY (F) −→ b in (Y, σ)
implies F −→ b in (Y, σ), thus by Proposition 2.1.1, F � b, and hence by Theorem
2.1.1, Adhσ(F) ̸= ∅, which is a contradiction. Therefore, (Y, σ) is compact.
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Chapter 3
δ-Convergence of Filters

We study δ-convergence of filters. We will start by introducing the definition
of a δ-limit of a filter and define a δ-cluster point of a filter. Some interesting
results in semi-regular spaces have been achieved. Various functions: almost-
continuous, super-continuous, and δ-continuous are all characterized by filters.
As well, the connections between these functions and δ-limits (δ-cluster points)
of filters are investigated. Several important notions, such as Hausdorffness,
near-compactness, and almost-strongly closed graph can be characterized with
the help of filters.

3.1 δ-Limit and δ-Cluster Points of Filters

For a topological space (X, τ), let Uτs(x) be the τs-neighborhood filter of x

where τs is the semi-regularization of τ . We will see immediately that, in semi-
regular spaces, δ-convergence of filters is equivalent to convergence of filters and
in this case equivalence is also valid for cluster and δ-cluster points.

Definition 3.1.1. [115] Let (X, τ) be a topological space, F be a filter on X and
x ∈ X. Then F δ-converges to x, written F

δ−→ x, iff Uτs(x) ⊆ F. In such a case,
x is called the δ-limit of F.
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Notation 7. For a topological space (X, τ) and x ∈ X, when there is no confusion,
we will just write the τs-neighborhood filter of x, “ Us(x)” instead of “ Uτs(x)”.

Proposition 3.1.1. Let (X, τ) be a topological space, F be a filter on X and
x ∈ X. F

δ−→ x in (X, τ) if and only if F −→ x in (X, τs).

Proof. Since Us(x) is the τs-neighborhood filter of x, then clearly, by Definition
3.1.1, F δ−→ x if and only if F −→ x in (X, τs).

Definition 3.1.2. [115] Let (X, τ) be a topological space and F be a filter on X

and x ∈ X. Then F δ-accumulates at x, written F
δ
� x, iff F(∩)Us(x) iff for each

F ∈ F and for each G ∈ Us(x), F ∩ G ̸= ∅. Equivalently, for each F ∈ F and for
each U ∈ τ(x), we have F ∩ U

◦ ̸= ∅. In such a case, x is called the δ-cluster point
of F.

Proposition 3.1.2. [112] Let F be a filter on a topological space (X, τ) and x ∈ X.

(i) If F δ−→ x, then F
δ
� x.

(ii) If F −→ x, then F
δ−→ x.

(iii) If F � x, then F
δ
� x.

Proof. (i) Assume that F
δ−→ x. Let G ∈ Us(x) and F ∈ F. Since F

δ−→ x and
G ∈ Us(x), then G ∈ F. So, G ∩ F ̸= ∅. Therefore, F δ

� x.

(ii) Assume that F −→ x, then U(x) ⊆ F, but Us(x) ⊆ U(x) (since τs ⊆ τ), so
Us(x) ⊆ F and thus F

δ−→ x.

(iii) Suppose that F � x. Let G ∈ Us(x) and F ∈ F, then G ∈ U(x) since
Us(x) ⊆ U(x). But F � x, so G ∩ F ̸= ∅. Thus, F δ

� x.

The converse of each statement in proposition 3.1.2 need not be true as the
following examples show.

Example 3.1.1. Let X = R with the usual topology. Let F = {A ⊆ R : [0, 1) ⊆ A}

be the filter on X generated by [0, 1). Then F
δ
� 0 but F

δ

−̸→ 0.
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Example 3.1.2. Let X = {1, 2}, τX = {∅, X, {1}} and F = {X, {2}}. Then
U(1) = {X, {1}} and Us(1) = {X}. Clearly, F δ−→ 1 but F −̸→ 1.

Example 3.1.3. In Example 3.1.2, F δ
� 1 but F �̸ 1.

Definition 3.1.3. [115] Let (X, τ) be a topological space, E ⊆ X and x ∈ X.
Then x is a δ-adherent point of E iff for all U ∈ τ(x), U

◦ ∩ E ≠ ∅. Equivalently,
for all G ∈ RO(x), G ∩ E ̸= ∅. The set of all δ-adherent points of a set E is called
the δ-closure of the set E and is denoted by δ-Cl(E).

Proposition 3.1.3. [61] For any subset E of a topological space X, E ⊆ δ-Cl(E).

Proof. Let x ∈ E and U be open in X containing x. Then U ∩ E ≠ ∅. But U ⊆ U
◦.

so U ∩ E ⊆ U
◦ ∩ E. Thus, U

◦ ∩ E ̸= ∅. Therefore, x ∈ δ-Cl(E).

Theorem 3.1.1. [115] Let (X, τ) be a topological space and E ⊆ X. If E is open
in X, then E = δ-Cl(E).

Proof. E ⊆ δ-Cl(E) by Proposition 3.1.3. Let x ∈ δ-Cl(E), then U
◦ ∩ E ̸= ∅ for

all U ∈ τ(x), and so U ∩ E ̸= ∅ for all U ∈ τ(x) but by Corollary 1.2.1, U ∩ E ≠ ∅
for all U ∈ τ(x). So, x ∈ E. Hence, δ-Cl(E) ⊆ E.

Definition 3.1.4. [115] A subset E of a topological space (X, τ) is called δ-closed
if δ-Cl(E) = E. The complement of a δ-closed set is called a δ-open set.

Proposition 3.1.4. [115] The family of all δ-open sets in (X, τ) is a new topology
on X denoted by τδ.

Proposition 3.1.5. Let (X, τ) be a topological space. Then τδ = τs.

Proof. First, we claim that δ-Cl(A) = Clτs(A) for any A ⊆ X. Now, x ∈ δ-Cl(A)
if and only if for all U ∈ τ(x), U

◦ ∩ A ̸= ∅ if and only if for all G ∈ RO(x),
G ∩ A ̸= ∅ if and only if x ∈ Clτs(A). Therefore, for any A ⊆ X, A ∈ τδ if and only
if δ-Cl(X − A) = X − A = Clτs(X − A) = X − A if and only if A ∈ τs.
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Definition 3.1.5. [115] Let F be a filter on a topological space (X, τ). A point
x ∈ X is said to be a δ-adherent point of F if x is a δ-adherent point of every set
in F. The δ-adherence of F, δ-Adh(F), is the set of all δ-adherent points of F.

Remark 3.1. [115] Let X be a topological space. If F is a filter on X, then
δ-Adh(F) = ⋂

F ∈F
δ-Cl(F ).

Theorem 3.1.2. [115] Let F be a filter on a topological space (X, τ) and x ∈ X.
Then x ∈ δ-Adh(F) if and only if F δ

� x.

Proof.

x ∈ δ-Adh(F) iff x ∈
⋂

F ∈F

δ-Cl(F )

iff x ∈ δ-Cl(F ) for all F ∈ F

iff U
◦ ∩ F ̸= ∅ for all U ∈ τ(x) and all F ∈ F

iff F(∩)Us(x)

iff F
δ
� x.

Theorem 3.1.3. Let (X, τ) be a topological space, E ⊆ X and x ∈ X. Then
x ∈ δ-Cl(E) if and only if there exists a filter F on X such that E ∈ F and F

δ−→ x.

Proof. Assume that there exists a filter F on X such that E ∈ F and F
δ−→ x. Let

U ∈ τ(x), then U
◦ ∈ F, so U

◦ ∩ E ̸= ∅. Therefore, x ∈ δ-Cl(E).

Conversely, suppose that x ∈ δ-Cl(E), then U ∩E ̸= ∅ for all U ∈ Us(x). Consider
the filter F = ⟨Us(x)

∣∣∣
E

⟩. Then by Proposition 1.1.6, E ∈ F and Us(x) ⊆ F. Hence,
E ∈ F and F

δ−→ x.

Theorem 3.1.4. Let (X, τ) be a topological space, E ⊆ X and x ∈ X. Then
x ∈ δ-Cl(E) if and only if there exists a filter F on X which meets E such that
F

δ−→ x.
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Proof. Suppose that x ∈ δ-Cl(E). Then by Theorem 3.1.3, there exists a filter F

on X such that E ∈ F and F
δ−→ x. Since E ∈ F, then for all F ∈ F, F ∩ E ≠ ∅.

Hence, F meets E.

Conversely, suppose that F is a filter on X such that F
δ−→ x and F ∩ E ̸= ∅

for all F ∈ F. Since F
δ−→ x, then U

◦ ∈ F for all U ∈ τ(x). So, by hypothesis,
U

◦ ∩ E ̸= ∅ for all U ∈ τ(x). Therefore, x ∈ δ-Cl(E).

Theorem 3.1.5. Let (X, τ) be a topological space and A ⊆ X. Then A is δ-closed
if and only if whenever a filter F

δ−→ x with A ∈ F, then x ∈ A.

Proof. Assume that a filter F
δ−→ x and A ∈ F. Then by Theorem 3.1.3, x ∈

δ-Cl(A). But δ-Cl(A) = A since A is δ-closed. So, x ∈ A. Conversely, let
x ∈ δ-Cl(A). Then by Theorem 3.1.3, there is a filter F on X such that F

δ−→ x

and A ∈ F. So by hypothesis, x ∈ A. Thus, δ-Cl(A) ⊆ A. But A ⊆ δ-Cl(A).
Therefore, δ-Cl(A) = A, and hence A is δ-closed.

Theorem 3.1.6. Let (X, τ) be a topological space and A ⊆ X. Then A is δ-open
in X if and only if whenever a filter F

δ−→ x ∈ A, then A ∈ F.

Proof. Suppose that A is δ-open in X. If a filter F
δ−→ x ∈ A, then A ∈ F

since A ∈ Us(x). Conversely, suppose, by the way of contradiction, that A is not
δ-open, then X − A is not δ-closed, so there exists x ∈ δ-Cl(X − A) such that
x /∈ X − A. So, x ∈ A. Now, by Theorem 3.1.3, there exists a filter F on X such
that X − A ∈ F and F

δ−→ x. Since F
δ−→ x ∈ A, then by hypothesis, A ∈ F. But

then ∅ = A ∩ (X − A) ∈ F, which is a contradiction. Therefore, A is δ-open.

Remark 3.2. Let F and G be filters on a topological space (X, τ) and x ∈ X.

(i) The principal filter ⟨x⟩ δ−→ x.

(ii) If F δ−→ x and G
δ−→ x, then F ∩ G

δ−→ x.

Theorem 3.1.7. Let X be a topological space, F be a filter on X and x ∈ X.
Then F

δ−→ x if and only if for every subfilter F
′ of F, F′ δ−→ x.
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Proof. If every subfilter of F δ-converges to x ∈ X, then so does F because it is a
subfilter of itself. Conversely, suppose that F

δ−→ x and F′ is a subfilter of F, then
Us(x) ⊆ F and F ⊆ F

′ . So, Us(x) ⊆ F
′ . Therefore, F′ δ−→ x.

Theorem 3.1.8. Let (X, τ) be a topological space, F be a filter on X and x ∈ X.
Then F

δ−→ x if and only if every subfilter G of F has a subfilter H such that
H

δ−→ x.

Proof. Suppose, by the way of contradiction, that F
δ

−̸→ x, then there is a regular
open set U in X containing x such that U ̸∈ F. Then (X − U) ∩ F ̸= ∅ for all
F ∈ F. So, G = ⟨F

∣∣∣
X−U

⟩ is a subfilter of F containing X − U . By hypothesis, G has
a subfilter H which δ-converges to x. Since U is a regular open set in X containing
x, then U ∈ H but X − U ∈ G ⊆ H. So, ∅ ∈ H, which is a contradiction. The
converse follows from Theorem 3.1.7.

Theorem 3.1.9. [115] Let F be a filter on a topological space (X, τ) and x ∈ X.
Then F

δ
� x if and only if there exists a subfilter F

′ of F such that F
′ δ−→ x.

Proof. Let F be a filter on X. Suppose that there exists a subfilter F
′ of F such

that F
′ δ−→ x. Then F ⊆ F

′ and Us(x) ⊆ F
′ . Let F ∈ F and U ∈ Us(x), then

F ∈ F
′ and U ∈ F

′ . So, F ∩ U ̸= ∅. Hence, F δ
� x.

Conversely, assume that F
δ
� x. We will construct a subfilter F′ of F that

δ-converges to x. Since F
δ
� x, then F ∩ G ̸= ∅ for all F ∈ F and all G ∈ Us(x).

Let F
′ = F ∨ Us(x). Then F

′ is a filter on X such that F ⊆ F
′ and Us(x) ⊆ F

′ .
Thus, F′ is a subfilter of F such that F

′ δ−→ x.

Theorem 3.1.10. Let (X, τ) be a topological space, F′ be a subfilter of F on X

and x ∈ X. If F′ δ
� x, then F

δ
� x.

Proof. Suppose that F
′ δ
� x. Let U ∈ Us(x) and F ∈ F but F ⊆ F

′ , then F ∈ F
′ .

Hence, U ∩ F ̸= ∅. Therefore, F δ
� x.

Theorem 3.1.11. [115] Let F be an ultrafilter on a topological space X and x ∈ X.
Then F

δ−→ x if and only if F δ
� x.
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Proof. If F
δ−→ x, then F

δ
� x by Proposition 3.1.2. Conversely, suppose that

F
δ
� x. Let G ∈ RO(x). Then G ∩ F ̸= ∅ for any F ∈ F. So, F meets G. But

F is an ultrafilter on X, then by the proof of Theorem 1.1.5, G ∈ F. Therefore,
F

δ−→ x.

3.2 δ-Convergence in Hausdorff Spaces

Theorem 3.2.1. [61] A topological space (X, τ) is Hausdorff if and only if each
filter F on X δ-converges to at most one point in X.

Proof. (X, τ) is Hausdorff if and only if (X, τs) is Hausdorff by Proposition 1.3.3
if and only if every filter on X τs-converges to at most one point in (X, τs) by
Theorem 2.2.1 if and only if every filter on X δ-converges to at most one point in
(X, τ) by Proposition 3.1.1.

Theorem 3.2.2. [61] Let (X, τ) be a Hausdorff space, F be a filter on X and
x ∈ X. If F δ−→ x, then x is the unique δ-cluster point of F.

Proof. If F
δ−→ x, then x is a δ-cluster point of F by Proposition 3.1.2. Now,

suppose that y ∈ X is a δ-cluster point of F with x ̸= y. But since (X, τ) is
Hausdorff, then by Proposition 1.3.3, (X, τs) is Hausdorff, so there exist U ∈ Us(x)
and V ∈ Us(y) such that U ∩V = ∅. But since F δ−→ x, then Us(x) ⊆ F and U ∈ F.
But then, U ∩ V ̸= ∅ since y is a δ-cluster point of F, which is a contradiction.
Therefore, x = y.

3.3 δ-Convergence in Semi-regular Spaces

We will see immediately that, in semi-regular spaces, δ-convergence of filters
is equivalent to convergence of filters and in this case equivalence is also valid
for cluster and δ-cluster points.
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Theorem 3.3.1. Let (X, τ) be a semi-regular space, F be a filter on X and x ∈ X.
Then F

δ−→ x if and only if F −→ x.

Proof. If F −→ x, then F
δ−→ x by Proposition 3.1.2. Conversely, suppose that

F
δ−→ x. Let U ∈ τ(x). Since X is semi-regular, then there exists V ∈ τ(x) such

that V
◦ ⊆ U . Since V ∈ τ(x), then V

◦ ∈ RO(x) but ⟨RO(x)⟩ ⊆ F. So, V
◦ ∈ F

and thus, U ∈ F. Therefore, F −→ x.

Theorem 3.3.2. [115] Let X be a semi-regular space and E ⊆ X. Then E =
δ-Cl(E).

Proof. By Proposition 3.1.3, E ⊆ δ-Cl(E). Next, let x ∈ δ-Cl(E), then by Theorem
3.1.3, there exists a filter F on X such that E ∈ F and F

δ−→ x. But X is semi-
regular, so F −→ x by Theorem 3.3.1. Thus, by Theorem 2.1.2, x ∈ E.

Theorem 3.3.3. Let X be a semi-regular space, F be a filter on X and x ∈ X.
Then F

δ
� x if and only if F � x.

Proof. If F � x, then F
δ
� x by Proposition 3.1.2. Conversely, suppose that

F
δ
� x, then by Theorem 3.1.9, F has a subfilter F

′ such that F
′ δ−→ x. But X is

semi-regular, so F
′ −→ x by Theorem 3.3.1. Thus, F has a subfilter F

′ such that
F

′ −→ x. Hence, F � x by Theorem 2.1.8.

Theorem 3.3.4. Let (X, τ) be a topological space. Then X is a semi-regular
space if and only if for each x ∈ X and for each filter F on X, F −→ x whenever
F

δ−→ x.

Proof. Let x ∈ X. Since Us(x) δ−→ x, then by hypothesis, Us(x) −→ x. So,
U(x) ⊆ Us(x). Now, let A ∈ τ , then A ∈ U(x) for any x ∈ A, and so A ∈ Us(x)
for any x ∈ A. Thus, A ∈ τs. Hence, τ ⊆ τs but τs ⊆ τ , so τ = τs. Therefore, X is
semi-regular. The converse follows from Theorem 3.3.1.
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3.4 δ-Convergent Filters and Functions

We will investigate the case of δ-limits of filters under the three types of conti-
nuity. We will do the same investigation for δ-cluster points of filters.

3.4.1 Almost-Continuous Functions

We introduce almost-continuous functions in order to study this class of func-
tions, we state several characterizations of almost-continuous functions and the
notion of a function that has an almost-strongly closed graph.

Definition 3.4.1. [48] A function f : (X, τ) → (Y, σ) is almost-continuous at
x ∈ X if for every open set V in Y containing f(x), there exists an open set U in
X containing x such that f(U) ⊆ V

◦. Equivalently, for each G ∈ ROσ(f(x)), there
exists U ∈ τ(x) such that f(U) ⊆ G. If this condition is satisfied at each x ∈ X,
then f is said to be almost-continuous on X.

Theorem 3.4.1. [106] A function f : (X, τ) → (Y, σ) is almost-continuous if and
only if the inverse image of any regular open set in Y is open in X.

Proof. The proof is a direct consequence of Definition 3.4.1.

Remark 3.3. Every continuous function is almost-continuous.

Theorem 3.4.2. Let f : (X, τ) → (Y, σ) be a function. Then f is almost-
continuous at x ∈ X if and only if whenever F is a filter on X with F −→ x , then
f(F) δ−→ f(x) in Y .

Proof. Assume that F −→ x in X and V ∈ σ(f(x)). Since f is almost-continuous
at x, then there exists U ∈ τ(x) such that f(U) ⊆ V

◦. But since F −→ x, then
U ∈ F. Thus, V

◦ ∈ f(F). So, f(F) δ−→ f(x) in Y .

Conversely, let V ∈ σ(f(x)). Since Uτ (x) ⊆ Uτ (x), then Uτ (x) −→ x. By
hypothesis, we have f (Uτ (x)) δ−→ f(x). That is, Uσs (f(x)) ⊆ f (Uτ (x)). But
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V
◦ ∈ Uσs(f(x)), then V

◦ ∈ f(Uτ (x)), so there exists U ∈ τ(x) such that f(U) ⊆ V
◦.

Therefore, f is almost-continuous at x ∈ X.

Theorem 3.4.3. Let f : (X, τ) → (Y, σ) be a function. Then f is almost-
continuous at x ∈ X if and only if whenever F is a filter on X with F � x, then
f(F) δ

� f(x) in Y .

Proof. Suppose that F � x ∈ X and V ∈ σ(f(x)). Since f is almost-continuous at
x, then there exists U ∈ τ(x) such that f(U) ⊆ V

◦. But U ∩ F ̸= ∅ for all F ∈ F

since F � x. So, ∅ ≠ f(U ∩ F ) ⊆ f(U) ∩ f(F ) ⊆ V
◦ ∩ f(F ) for all F ∈ F. That is,

V
◦ ∩ f(F ) ̸= ∅ for all F ∈ F. Hence, f(F) δ

� f(x) in Y .

Conversely, suppose, by the way of contradiction, that f is not almost-continuous
at x ∈ X, then there exists G ∈ ROσ(f(x)) such that f(U) ̸⊆ G for any U ∈ τ(x).
So, U ̸⊆ f−1(G) for any U ∈ τ(x). This implies, V ̸⊆ f−1(G) for any V ∈ Uτ (x).
Thus, V ∩ F ≠ ∅ for any V ∈ Uτ (x) where F = X − f−1(G). By Proposition
1.1.6, F = ⟨Uτ (x)

∣∣∣
F

⟩ is a filter on X such that F ∈ F and Uτ (x) ⊆ F. This implies

F −→ x and by Proposition 2.1.1, F � x. We claim that f(F)
δ

�̸ f(x). Since F ∈ F,
then f(F ) ∈ f(F). Now, G ∩ f(F ) = G ∩ f(X − f−1(G)) = G ∩ f(f−1(Y − G)) ⊆
G ∩ (Y − G) = ∅. Hence, we have G ∈ ROσ(f(x)), f(F ) ∈ f(F) and G ∩ f(F ) = ∅.
Therefore, f(F)

δ

�̸ f(x) in Y .

3.4.2 Super-Continuous Functions

Definition 3.4.2. [96] A function f : (X, τ) → (Y, σ) is super-continuous at x ∈ X

if for every open set V in Y containing f(x), there exists an open set U in X

containing x such that f(U◦) ⊆ V . Equivalently, for each V ∈ σ(f(x)), there exists
H ∈ ROτ (x) such that f(H) ⊆ V . If this condition is satisfied at each x ∈ X, then
f is said to be super-continuous on X.

Theorem 3.4.4. [76] Let f : (X, τ) → (Y, σ) be a function. Then f is super-
continuous at x ∈ X if and only if whenever F is a filter on X with F

δ−→ x, then
f(F) −→ f(x) in Y .
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Proof. Assume that F
δ−→ x in X and V ∈ U (f(x)). Since f is super-continuous

at x, then there exists U ∈ τ(x) such that f(U◦) ⊆ V . But F
δ−→ x, so U

◦ ∈ F.
Thus, V ∈ f(F), Therefore, f(F) −→ f(x) in Y .

Conversely, let V ∈ σ(f(x)). Since Uτs(x) ⊆ Uτs(x), then Uτs(x) δ−→ x. By
hypothesis, we have f (Uτs(x)) −→ f(x). So, Uσ (f(x)) ⊆ f (Uτs(x)). But V ∈
Uσ(f(x)), then V ∈ f(Uτs (x)), so there exists U ∈ τ(x) such that f(U◦) ⊆ V .
Therefore, f is super-continuous at x ∈ X.

Theorem 3.4.5. Let f : (X, τ) → (Y, σ) be a function. Then f is super-continuous
at x ∈ X if and only if whenever F is a filter on X with F

δ
� x, then f(F) � f(x)

in Y .

Proof. Suppose that F
δ
� x in X and V ∈ σ(f(x)). Since f is super-continuous at

x, then there exists U ∈ τ(x) such that f(U◦) ⊆ V . But U
◦ ∩ F ̸= ∅ for all F ∈ F

since F
δ
� x. So, ∅ ̸= f(U◦ ∩ F ) ⊆ f(U◦) ∩ f(F ) ⊆ V ∩ f(F ) for all F ∈ F. That

is, V ∩ f(F ) ̸= ∅ for all F ∈ F. Hence, f(F) � f(x) in Y .

Conversely, suppose, by the way of contradiction, that f is not super-continuous
at x ∈ X, then there exists V ∈ σ(f(x)) such that f(U) ̸⊆ V for any U ∈ ROτ (x).
So, U ̸⊆ f−1(V ) for any U ∈ ROτ (x). Let B = {U − f−1(V ) : U ∈ ROτ (x)}, then
B is a filter base in X. Let F = ⟨B⟩X , then F is a filter on X. We claim that F δ

� x

but f(F) �̸ f(x). Let U ∈ ROτ (x) and F ∈ F, then F ⊇ B for some B ∈ B. This
implies that F ⊇ W −f−1(V ) for some W ∈ ROτ (x). Since U ∩W ∈ ROτ (x), then
(U ∩ W ) − f−1(V ) ̸= ∅ but U ∩ F ⊇ U ∩ (W − f−1(V )) = (U ∩ W ) − f−1(V ) ̸= ∅.
Hence, F

δ
� x. Next, since X ∈ τ(x), then B = X − f−1(V ) ∈ B ⊆ F, so

f(B) ∈ f(F). We claim that V ∩ f(B) = ∅. For if f(b) ∈ V for some b ∈ B,
then b ∈ f−1(V ) and b ∈ X − f−1(V ), so b ∈ f−1(V ) ∩ (X − f−1(V )) = ∅ which
is a contradiction. Since V ∈ σ(f(x)), f(B) ∈ f(F) and V ∩ f(B) = ∅, then
f(F) �̸ f(x) in Y .

3.4.3 δ-Continuous Functions

Definition 3.4.3. [86] A function f : (X, τ) → (Y, σ) is δ-continuous at x ∈ X

if for every open set V in Y containing f(x), there exists an open set U in X
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containing x such that f(U◦) ⊆ V
◦. Equivalently, for each G ∈ ROσ(f(x)), there

exists H ∈ ROτ (x) such that f(H) ⊆ G. If this condition is satisfied at each x ∈ X,
then f is said to be δ-continuous on X.

A δ-continuous function preserves δ-convergence.

Theorem 3.4.6. [86] Let f : (X, τ) → (Y, σ) be a function. Then f is δ-continuous
at x ∈ X if and only if whenever F is a filter on X with F

δ−→ x, then f(F) δ−→ f(x)
in Y .

Proof. Assume that F
δ−→ x in X and V ∈ σ(f(x)). Since f is δ-continuous at x,

then there exists U ∈ τ(x) such that f(U◦) ⊆ V
◦. But since F

δ−→ x, then U
◦ ∈ F.

So, V
◦ ∈ f(F). Thus, f(F) δ−→ f(x) in Y .

Conversely, let V ∈ σ(f(x)). Since Uτs(x) ⊆ Uτs(x), then Uτs(x) δ−→ x. By
hypothesis, we have f (Uτs(x)) δ−→ f(x). That is, Uσs (f(x)) ⊆ f (Uτs(x)). But
V

◦ ∈ Uσs (f(x)), then V
◦ ∈ f(Us (x)), so there exists U ∈ τ(x) such that f(U◦) ⊆

V
◦. Therefore, f is δ-continuous at x ∈ X.

Theorem 3.4.7. Let f : (X, τ) → (Y, σ) be a function. Then f is δ-continuous at
x ∈ X if and only if whenever F is a filter on X with F

δ
� x, then f(F) δ

� f(x) in
Y .

Proof. Suppose that F
δ
� x in X and V ∈ σ(f(x)). Since f is δ-continuous at x,

there exists U ∈ τ(x) such that f(U◦) ⊆ V
◦. But U

◦ ∩ F ≠ ∅ for all F ∈ F since
F

δ
� x. So, ∅ ̸= f(U◦ ∩ F ) ⊆ f(U◦) ∩ f(F ) ⊆ V

◦ ∩ f(F ) for all F ∈ F. Hence,
V

◦ ∩ f(F ) ̸= ∅ for all F ∈ F. Therefore, f(F) δ
� f(x) in Y .

Conversely, suppose, by the way of contradiction, that f is not δ-continuous at
x ∈ X, then there exists V ∈ ROσ(f(x)) such that f(U) ̸⊆ V for any U ∈ ROτ (x).
So, U ̸⊆ f−1(V ) for any U ∈ ROτ (x). Let B = {U − f−1(V ) : U ∈ ROτ (x)}, then
B is a filter base in X. Let F = ⟨B⟩X , then F is a filter on X. We claim that F δ

� x

but f(F)
δ

�̸ f(x). Let U ∈ ROτ (x) and F ∈ F, then F ⊇ B for some B ∈ B. This
implies that F ⊇ W −f−1(V ) for some W ∈ ROτ (x). Since U ∩W ∈ ROτ (x), then
(U ∩ W ) − f−1(V ) ̸= ∅ but U ∩ F ⊇ U ∩ (W − f−1(V )) = (U ∩ W ) − f−1(V ) ̸= ∅.
Hence, F

δ
� x. Next, since X ∈ ROτ (x), then B = X − f−1(V ) ∈ B ⊆ F, so
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f(B) ∈ f(F). We claim that V ∩ f(B) = ∅. For if f(b) ∈ V for some b ∈ B,
then b ∈ f−1(V ) and b ∈ X − f−1(V ), so b ∈ f−1(V ) ∩ (X − f−1(V )) = ∅, which
is a contradiction. Since V ∈ ROσ(f(x)), f(B) ∈ f(F) and V ∩ f(B) = ∅, then
f(F)

δ

�̸ f(x) in Y .

The following two examples show that the concepts of δ-continuity and conti-
nuity are independent of each other.

Example 3.4.1. [86] Consider the identity function idR : (R, τ) → (R, σ), where
τ and σ are the usual and co-countable topologies on R, respectively. Then idR is
δ-continuous but not continuous.

Example 3.4.2. [86] Let X = Y = {a, b, c}, τ = {∅, {a}, {c}, {a, b}, {a, c}, X} and
σ = {∅, {a}, {c}, {a, c}, Y }. Consider the identity function idX : (X, τ) → (Y, σ).
Then idX is continuous but not δ-continuous since {a} ∈ RO(Y, σ) but f−1({a}) =
{a} ̸∈ RO(X, τ).

In the following proposition, we give the relation between the different types
of continuity which have already been used.

Proposition 3.4.1. [8, 86, 106] Super-continuity =⇒ δ-continuity =⇒ almost-
continuity.

3.4.4 More on Functions and δ-Convergence

Definition 3.4.4. [120] A function f : (X, τ) → (Y, σ) is open if for each U ∈ τ ,
f(U) ∈ σ.

Definition 3.4.5. [106] A function f : (X, τ) → (Y, σ) is almost-open if for each
G ∈ RO(X), f(G) ∈ σ.

Theorem 3.4.8. [64] A function f : (X, τ) → (Y, σ) is open if and only if
f(A◦) ⊆ (f(A))◦ for any A ⊆ X.
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Proposition 3.4.2. Every open continuous function is δ-continuous.

Proof. Let V be an open set in Y containing f(x). Then by continuity of f ,
there exists an open set U in X containing x such that f(U) ⊆ V . Also, by
continuity of f , we have f(U) ⊆ f(U) ⊆ V . So (f(U))◦ ⊆ V

◦. But f is open, so
f(U◦) ⊆ (f(U))◦ ⊆ V

◦. Therefore, f is δ-continuous.

Theorem 3.4.9. [86] Let f : X → Y be a function and X be semi-regular. Then
f is almost-continuous if and only if f is δ-continuous.

Proof. Let x ∈ X and F be a filter on X such that F
δ−→ x, then F −→ x by

semi-regularity of X. Since f is almost-continuous, then f(F) δ−→ f(x) by Theorem
3.4.2. Therefore, f is δ-continuous at x by Theorem 3.4.6. Thus, f is δ-continuous
on X since x was arbitrary. The converse from Proposition 3.4.1 part(i).

Theorem 3.4.10. [106] Let f : X → Y be a function and Y be semi-regular. Then
f is almost-continuous if and only if f is continuous.

Proof. Let x ∈ X and F be a filter on X such that F −→ x. Since f is almost-
continuous, then f(F) δ−→ f(x) by Theorem 3.4.2. But then f(F) −→ f(x) by
semi-regularity of Y . Therefore, f is continuous at x. Thus, f is continuous on X

since x was arbitrary. The converse follows from Proposition 3.4.1 part(ii).

Corollary 3.4.1. [86] Let f : X → Y be a function and Y be semi-regular. If f is
δ-continuous, then f is continuous.

Proof. This follows from Theorem 3.4.10 and the fact that every δ-continuous is
almost-continuous.

Theorem 3.4.11. [96] Let f : X → Y be a function and X be semi-regular. If f

is super-continuous, then f is continuous.

Proof. Let x ∈ X and F be a filter on X such that F −→ x, then F
δ−→ x by

semi-regularity of X. Since f is super-continuous, then f(F) −→ f(x) by Theorem
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3.4.4. Therefore, f is continuous at x. Thus, f is continuous on X since x was
arbitrary.

Corollary 3.4.2. [86] If (X, τ) and (Y, σ) are semi-regular spaces, then the fol-
lowing concepts on a function f : (X, τ) → (Y, σ): δ-continuity, continuity and
almost-continuity are equivalent.

Lemma 3.4.1. [64] Let {Xα : α ∈ ∆} be a family of topological spaces and consider
the product space ∏

α∈∆
Xα. Let Aα ⊆ Xα for each α ∈ ∆. Then

(i) ∏
α∈∆

Aα = ∏
α∈∆

Aα.

(ii) If ∆ is finite, then
( ∏

α∈∆
Aα

)◦
= ∏

α∈∆
A◦

α.

Theorem 3.4.12. [51] Let {Xα : α ∈ ∆} be a family of topological spaces and let
F be a filter on X = ∏

α∈∆
Xα. Then F

δ−→ x in X if and only if πα(F) δ−→ πα(x) in
Xα for all α ∈ ∆.

Proof. Assume that F
δ−→ x in X. Since πα is open continuous for all α ∈ ∆,

then by Proposition 3.4.1, πα is δ-continuous for all α ∈ ∆. So, by Theorem 3.4.6,
πα(F) δ−→ πα(x) for all α ∈ ∆.

Conversely, suppose that πα(F) δ−→ πα(x) for all α ∈ ∆. Let U be any neighbor-
hood of x in X. Then x ∈

n⋂
i=1

π−1
αi

(Ui) ⊆ U , where Ui ∈ U(παi
(x)) for all i = 1, . . . , n.

So, U
◦
i ∈ παi

(F) for all i = 1, . . . , n, and hence for all i = 1, . . . , n, there exists
Fi ∈ F such that παi

(Fi) ⊆ U
◦
i . Then, Fi ⊆ π−1

αi

(
U

◦
i

)
for all i = 1, . . . , n. So,

n⋂
i=1

Fi ⊆
n⋂

i=1
π−1

αi

(
U

◦
i

)
. Since

n⋂
i=1

Fi ∈ F, then
n⋂

i=1
π−1

αi

(
U

◦
i

)
∈ F. But by Lemmas

2.3.1 and 3.4.1,
n⋂

i=1
π−1

αi

(
U

◦
i

)
=

n∏
i=1

U
◦
i =

n∏
i=1

Ui

◦
=

n⋂
i=1

π−1
αi

(Ui)
◦

⊆ U
◦. So, U

◦ ∈ F.

Therefore, F δ−→ x in X.

Theorem 3.4.13. Let {Xα : α ∈ ∆} be a family of topological spaces and let F be
a filter on X = ∏

α∈∆
Xα. If F δ

� x in X, then πα(F) δ
� πα(x) in Xα for all α ∈ ∆.

Proof. Assume that F δ
� x. Since πα is δ-continuous for all α ∈ ∆, then by Theorem

3.4.3, πα(F) δ
� πα(x) for all α ∈ ∆.
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3.5 Nearly Compact Spaces

In [103], M. K. Singal and Asha Mathur introduced a new class of topolog-
ical spaces called the nearly compact spaces. This class of spaces is properly
contained between the compact spaces and the quasi-H-closed spaces. Several
characterizations and properties of these spaces were obtained.

3.5.1 Characterizations of Nearly Compact Spaces

Definition 3.5.1. [32] A topological space (X, τ) is called nearly compact iff each
open cover of X has a finite subfamily whose interiors of the closures of its members
cover the space X.

Definition 3.5.2. [32] A subset A of a topological space X is said to be
(i) a nearly compact subspace if the space (A, τA) is nearly compact.
(ii) an N-closed relative to X if for every cover {Vα : α ∈ ∆} of A by open sets

in X, there exists a finite subset Ω of ∆ such that A ⊆ ⋃
α∈Ω

V
◦
α.

Recall that, let X be a topological space and A ⊆ Y ⊆ X. If Y is open in X,
then IntY (A) = A◦ ∩ Y [92].

Lemma 3.5.1. Let (X, τ) be a topological space and A ⊆ X. If A is open in X,
then IntAClA(U ∩ A) = U

◦ ∩ A for any U ⊆ X.

Proof. Let A be open in X and U ⊆ X, then A ⊆ A
◦ and by Theorem 1.2.5,

U ∩ A
◦ = U

◦ ∩ A
◦. Now,

IntAClA(U ∩ A) = IntA(U ∩ A ∩ A)
= (U ∩ A ∩ A)◦ ∩ A

= U ∩ A
◦ ∩ A◦ ∩ A

= U
◦ ∩ A

◦ ∩ A

= U
◦ ∩ A.

57



Theorem 3.5.1. [32] Let (X, τ) be a topological space and A ⊆ X be open. Then
A is nearly compact if and only if A is an N -closed relative to X.

Proof. Let U = {Uα : α ∈ ∆} be a cover of A by open sets in X, then {Uα ∩ A :
α ∈ ∆} is a cover of A by open sets in A. But A is nearly compact, then there
exist α1, . . . , αn ∈ ∆ such that A =

n⋃
i=1

IntAClA(Uαi
∩ A). By Lemma 3.5.1 and

since A is open in X, then IntAClA(Uαi
∩ A) = U

◦
αi

∩ A for all i = 1, . . . , n, so
A =

n⋃
i=1

(U◦
αi

∩ A). Hence, A ⊆
n⋃

i=1
U

◦
αi

. Therefore, A is N -closed relative to X.

Conversely, let {Vα : α ∈ ∆} be a cover of A by open sets in A. Since Vα

is open in A for every α ∈ ∆ and A is open in X, then Vα is open in X for
every α ∈ ∆. So, {Vα : α ∈ ∆} is a cover of A by open sets in X. But A is
N -closed relative to X, then there exist α1, . . . , αn ∈ ∆ such that A ⊆

n⋃
i=1

V
◦
αi

.

So, A =
n⋃

i=1
(V ◦

αi
∩ A) but by Lemma 3.5.1 and since A is open in X, then

V
◦
αi

∩ A = IntAClA(Vαi
∩ A) = IntAClAVαi

for any i = 1, . . . , n since Vαi
⊆ A for

any i = 1, . . . , n. Hence, A =
n⋃

i=1
IntAClAVαi

. Therefore, A is nearly compact.

Theorem 3.5.2. [104] For a topological space (X, τ), the following are equivalent:

(i) X is nearly compact.

(ii) Every regular open cover of X has a finite subcover.

(iii) Every δ-open cover of X has a finite subcover.

Proof. aaa

(i) =⇒ (ii) Let U be a regular open cover of X. Then it is an open cover of X, but X

is nearly compact, so there exist U1, . . . , Un ∈ U such that
n⋃

i=1
Ui

◦ = X but

for each i = 1, . . . , n, Ui is regular open, hence for each i = 1, . . . , n, Ui
◦ = Ui.

Thus,
n⋃

i=1
Ui = X. Therefore, U′ = {U1, . . . , Un} is a finite subcover of U.

(ii) =⇒ (iii) Let A be a δ-open cover of X, then by Proposition 3.1.5, for each A ∈ A,
A ∈ τs. Now, for each x ∈ X = ⋃

A∈A
A, there exists Ax ∈ A such that

x ∈ Ax. But for each x ∈ X, Ax ∈ τs(x). Hence, for each x ∈ X, there
exists Ux ∈ RO(X) such that x ∈ Ux ⊆ Ax. Thus, U = {Ux : x ∈ X} is
a regular open cover of X. By hypothesis, U has a finite subcover, that
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is, there exist x1, . . . xn ∈ X such that
n⋃

i=1
Uxi

= X. But Uxi
⊆ Axi

for

each i = 1, . . . , n. Thus, X =
n⋃

i=1
Uxi

⊆
n⋃

i=1
Axi

⊆ X. Hence, X =
n⋃

i=1
Axi

.

Therefore, A′ = {Ax1 , . . . , Axn} is a finite subcover of A.

(iii) =⇒ (i) Let U be an open cover of X. Then A = {U
◦ : U ∈ U} ⊆ RO(X) ⊆ τδ.

Since U is open for all U ∈ U, then U ⊆ U
◦ for all U ∈ U. Thus, X =⋃

U∈U
U ⊆ ⋃

U∈U
U

◦ ⊆ X. So, X = ⋃
U∈U

U
◦. Hence, A is a δ-open cover of X. By

hypothesis, there exist U1, . . . , Un ∈ U such that
n⋃

i=1
Ui

◦ = X. Therefore, X is
nearly compact.

Proposition 3.5.1. Every compact space is nearly compact.

Proof. Assume that X is compact. Let U be a regular open cover of X, then it
is an open cover of X but X is compact, so U has a finite subcover. Hence, by
Theorem 3.5.2, X is nearly compact.

The converse of the above proposition need not be true, as the following ex-
ample shows.

Example 3.5.1. Consider the topological space (R, τ) where τ is the left ray
topology. Then RO(R, τ) = {∅,R}. So, every regular open cover of (R, τ) has a
finite subcover. Thus, by Theorem 3.5.2, (R, τ) is nearly compact. Yet, (R, τ) is
not compact.

We are now ready to make characterizations of nearly compact spaces using
the δ-convergence of filters.

Theorem 3.5.3. [70, 112] For a topological space (X, τ), the following are equiva-
lent:

(i) X is nearly compact.

(ii) Every filter on X has a δ-cluster point.

(iii) Every ultrafilter on X δ-converges.
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(iv) For every family C of regular closed sets of X such that ⋂
C∈C

C = ∅, there

exists a finite subfamily C
′ of C such that ⋂

C∈C′
C = ∅.

Proof. aaa

(i) =⇒ (ii) Assume that there exists a filter F on X such that F
δ

�̸ x for all x ∈ X.
This means that for all x ∈ X, there exists Ux ∈ RO(x) and Fx ∈ F such
that Fx ∩ Ux = ∅. Consider U = {Ux : x ∈ X}. Then U is a regular open
cover of X. But X is nearly compact, then by Theorem 3.5.2, there exist
x1, . . . , xn ∈ X such that X =

n⋃
i=1

Uxi
. Now, for all i = 1, . . . , n, choose Fxi

such that Fxi
∩ Uxi

= ∅ and let F◦ =
n⋂

i=1
Fxi

. Then, F◦ ∈ F and

F◦ = F◦ ∩ X = F◦ ∩ (
n⋃

i=1
Uxi

) =
n⋃

i=1
(F◦ ∩ Uxi

) ⊆
n⋃

i=1
(Fxi

∩ Uxi
) = ∅.

This implies F◦ = ∅, which is a contradiction. Therefore, F must have a
δ-cluster point in X.

(ii) =⇒ (iii) Let F be an ultrafilter on X. Then by hypothesis, F has a δ-cluster point
x ∈ X. But then, F δ-converges to x by Theorem 3.1.11 and since F is an
ultrafilter on X.

(iii) =⇒ (iv) Let C = {Fα : α ∈ ∆} be a family of regular closed subsets of X such that⋂
α∈∆

Fα = ∅. Suppose, by the way of contradiction, that for each finite subset
Ω of ∆, ⋂

α∈Ω
Fα ̸= ∅. Let B = { ⋂

α∈Ω
Fα : Ω is a finite subset of ∆}. Then B is a

filter base in X. Hence, by Theorem 1.1.4, the filter F = ⟨B⟩X is contained in
some ultrafilter F

′ on X. So, by hypothesis, F′ δ−→ x ∈ X. But then F
′ δ
� x.

Hence, F δ
� x by Theorem 3.1.10. Therefore, we have constructed a filter F

on X which has x ∈ X as a δ-cluster point. Now, since x /∈ ∅ = ⋂
α∈∆

Fα. So,

x /∈ Fα◦ for some α◦ ∈ ∆. But X − Fα◦ ∈ RO(x) and Fα◦ ∈ F. Since F
δ
� x,

then (X − Fα◦) ∩ Fα◦ ̸= ∅, which is a contradiction. Therefore, there exists a
finite subset Ω of ∆ such that ⋂

α∈Ω
Fα ̸= ∅.

(iv) =⇒ (i) Let U be a regular open cover of X. Then C = {X − U : U ∈ U} is a family
of regular closed subsets of X with ⋂

U∈U
(X − U) = X − ⋃

U∈U
U = X − X = ∅.

So, by hypothesis, there exist U1, . . . , Un ∈ U such that
n⋂

i=1
(X − Ui) = ∅. So,
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∅ =
n⋂

i=1
(X − Ui) = X −

n⋃
i=1

Ui. Hence, X =
n⋃

i=1
Ui. Thus, every regular open

cover of X has a finite subcover. Therefore, by Theorem 3.5.2, X is nearly
compact.

Theorem 3.5.4. Let X be a topological space and A ⊆ X. Then the following
are equivalent:

(i) A is N -closed relative to X.

(ii) Every filter on X which meets A δ-accumulates at some point of A.

(iii) Every ultrafilter on X which meets A δ-converges to some point of A.

(iv) For every family C of regular closed sets of X such that
( ⋂

C∈C
C

)
∩ A = ∅,

there exists a finite subfamily C
′ of C such that

( ⋂
C∈C′

C
)

∩ A = ∅.

Proof. Similar to the proof of Theorem 3.5.3.

Theorem 3.5.5. [73] Let (X, τ) be a topological space. Then (X, τ) is nearly
compact if and only if (X, τs) is compact.

Proof. (X, τ) is nearly compact if and only if every ultrafilter δ-converges if and
only if every ultrafilter τs-converges if and only if (X, τs) is compact.

Corollary 3.5.1. [103] Let (X, τ) be a semi-regular space. Then (X, τ) is nearly
compact if and only if (X, τ) is compact.

Proof. If (X, τ) is semi-regular, then τs = τ . Thus, by Theorem 3.5.5, (X, τ) is
nearly compact if and only if (X, τs) is compact if and only if (X, τ) is compact.

Theorem 3.5.6. The property of a topological space being nearly compact is a
semi-regular property. That is, (X, τ) is nearly compact if and only if (X, τs) is
nearly compact.
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Proof.

(X, τs) is nearly compact iff (X, (τs)s) is compact by Theorem 3.5.5
iff (X, τs) is compact by Proposition 1.3.2
iff (X, τ) is nearly compact by Theorem 3.5.5.

Theorem 3.5.7. A δ-closed subset of a nearly compact space X is N -closed relative
to X.

Proof. Let X be nearly compact and A ⊆ X be δ-closed. Let F be an ultrafilter
on X which meets A. Then by Theorem 3.5.3, F δ−→ x for some x ∈ X. Now,
since F is an ultrafilter on X and F meets A, then A ∈ F. So, we have F

δ−→ x

and A ∈ F but A is δ-closed, so by Theorem 3.1.5, x ∈ A. Hence, every ultarfilter
F on X which meets A δ-converges to some point of A. Therefore, A is N -closed
relative to X by Theorem 3.5.4.

Corollary 3.5.2. [70] Every regular closed subset of a nearly compact space is
N-closed relative to X.

Proof. This follows from Theorem 3.5.7 and the fact that every regular closed set
is δ-closed.

Theorem 3.5.8. Let X be a Hausdorff space and A ⊆ X. If A is an N -closed
relative to X, then A is δ-closed.

Proof. Let A be an N -closed relative to X and X be a Hausdorff space. Let
x ∈ δ-Cl(A). Then by Theorem 3.1.4, there exists a filter on X which meets A

such that F
δ−→ x. But since A is an N -closed relative to X, then by Theorem

3.5.4, F δ
� a for some a ∈ A. But also by Theorem 3.1.9, F has a subfilter F

′ such
that F

′ δ−→ a. Also, by Theorem 3.1.7, F′ δ−→ x since F
′ is a subfilter of F and

F
δ−→ x. Now, X is Hausdorff implies x = a by Theorem 3.2.1. Therefore, x ∈ A.

So, δ-Cl(A) ⊆ A. Hence, δ-Cl(A) = A. Therefore, A is δ-closed.
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3.5.2 Near-Compactness and Functions

Theorem 3.5.9. Let f : (X, τ) → (Y, σ) be a δ-continuous function. If A ⊆ X is
an N -closed relative to X, then f(A) ⊆ Y is an N -closed relative to Y .

Proof. Let f : (X, τ) → (Y, σ) be δ-continuous. Let A ⊆ X be an N -closed relative
to X. Let G be a filter on Y which meets f(A). Then f−1(G) is a filter on X which
meets A. But A is an N -closed relative to X. Then by Theorem 3.5.4, f−1(G) δ

� a

for some a ∈ A. But f is δ-continuous, then Theorem 3.4.3, ff−1(G) δ
� f(a) but

G ⊆ ff−1(G). So, by Theorem 3.1.10, G δ
� f(a). Therefore, f(A) is an N -closed

relative to Y by Theorem 3.5.4.

Theorem 3.5.10. [103] Let f : (X, τ) → (Y, σ) be an almost-continuous function.
If A ⊆ X is compact, then f(A) ⊆ Y is an N -closed relative to Y .

Proof. Let f : (X, τ) → (Y, σ) be almost-continuous. Let A ⊆ X be compact. Let
G be a filter on Y which meets f(A). Then f−1(G) is a filter on X which meets
A. But A is compact in X. Then by Theorem 2.4.3, f−1(G) � a for some a ∈ A.
But f is almost-continuous, then Theorem 3.4.7, ff−1(G) δ

� f(a) but G ⊆ ff−1(G).
So, by Theorem 3.1.10, G δ

� f(a). Therefore, f(A) is an N -closed relative to Y by
Theorem 3.5.4.

Theorem 3.5.11. Let f : (X, τ) → (Y, σ) be a super-continuous function. If
A ⊆ X is an N -closed relative to X, then f(A) ⊆ Y is compact.

Proof. Let f : (X, τ) → (Y, σ) be strongly super-continuous. Let A ⊆ X be an
N -closed relative to X. Let G be a filter on Y which meets f(A). Then f−1(G) is a
filter on X which meets A. But A is an N -closed relative to X. Then by Theorem
3.5.4, f−1(G) δ

� a for some a ∈ A. But f is super-continuous, then Theorem 3.4.5,
ff−1(G) � f(a) but G ⊆ ff−1(G). So, by Theorem 3.1.10, G � f(a). Therefore,
f(A) is compact by Theorem 2.4.3.

Theorem 3.5.12. [104] A topological space (X, τ) is nearly compact if and only if
it is an almost-continuous image of a compact space.
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Proof. If (X, τ) is an almost-continuous image of a compact space, then by Theorem
3.5.10, (X, τ) is nearly compact. Conversely, let (X, τ) be nearly compact, then
(X, τs) is compact by Theorem 3.5.5. Consider the identity function idX : (X, τs) →
(X, τ), then idX is an onto almost-continuous function. Thus, there exist a compact
space and an almost-continuous function such that (X, τ) is the image of that
compact space under this almost-continuous function.

Theorem 3.5.13. [61] The product X = ∏
α∈∆

Xα is nearly compact if and only if
each space Xα, α ∈ ∆ is nearly compact.

Proof. Assume that X is nearly compact. For each α ∈ ∆, the projection function
πα is δ-continuous and onto. From Theorem 3.5.9, it follows that Xα = πα(X) is
nearly compact for all α ∈ ∆.

Conversely, let F be an ultrafilter on X. Since πα is onto for each α ∈ ∆, then
by Theorem 1.1.6, πα(F) is an ultrafilter on Xα for all α ∈ ∆. But Xα is nearly
compact for all α ∈ ∆. Hence πα(F) δ−→ xα ∈ Xi for all α ∈ ∆, by Theorem 3.5.3.
Let x = (xα)α∈∆, then x ∈ X and πα(x) = xα for all α ∈ ∆. So, πα(F) δ−→ πα(x)
for all α ∈ ∆. Hence, by Theorem 3.4.12, F δ−→ x. Therefore, X = ∏

α∈∆
Xα is

nearly compact by Theorem 3.5.3.

3.5.3 Almost-Strongly Closed Graphs

Definition 3.5.3. [51] A function f : (X, τ) → (Y, σ) is said to have an almost-
strongly closed graph if for each (x, y) /∈ Γf , there exist U ∈ τ(x) and G ∈ ROσ(y)
such that (U × G) ∩ Γf = ∅ .

Theorem 3.5.14. A function f : (X, τ) → (Y, σ) has an almost-strongly closed
graph if and only if for every x ∈ X and y ∈ Y such that y ̸= f(x), there exist
U ∈ τ(x) and G ∈ ROσ(y) such that f(U) ∩ G = ∅.

Proof. This follows from Definition 3.5.3 and Proposition 2.4.1.

Remark 3.4. A function with an almost-strongly closed graph has a closed graph,
but the converse is not true as shown by the following example.
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Example 3.5.2. Consider the function f : (R, τ) → (R, σ), where τ and σ are the
usual and co-finite topologies on R, respectively, given by f(x) = 2 for each x ∈ R.
Then f has a closed graph but it doesn’t have an almost-strongly closed graph.

We first characterize the concept of almost-strongly closed graph in terms of
δ-convergence of filters.

Theorem 3.5.15. [51] A function f : (X, τ) → (Y, σ) has an almost-strongly
closed graph if and only if whenever F is a filter on X with F −→ x in X and
f(F) δ−→ y in Y , then (x, y) ∈ Γf .

Proof. Assume that f has an almost-strongly closed graph. Let F −→ x and
f(F) δ−→ y. Suppose on the contrary that (x, y) /∈ Γf . Then by hypothesis, there
exist U ∈ τ(x) and G ∈ ROσ(y) such that f(U) ∩ G = ∅. But since F −→ x and
U ∈ τ(x), then U ∈ F, and hence f(U) ∈ f(F). On the other hand, f(F) δ−→ y

and G ∈ ROσ(y), so G ∈ f(F). Thus, f(U) ∩ G ̸= ∅, which is a contradiction.
Therefore, (x, y) ∈ Γf .

Conversely, suppose on the contrary that f does not have an almost-strongly
closed graph. Then there exist x ∈ X and y ∈ Y with (x, y) /∈ Γf such that
f(U)∩G ̸= ∅ for all U ∈ τ(x) and all G ∈ ROσ(y). This implies that U∩f−1(G) ̸= ∅
for all U ∈ τ(x) and all G ∈ ROσ(y). Let F = {F ⊆ X : F ⊇ U ∩ f−1(G), U ∈
τ(x), G ∈ ROσ(y)}, then F is a filter on X. We claim that F −→ x and f(F) δ−→ y.
First, let U◦ ∈ τ(x). Then U◦ ⊇ U◦ ∩ f−1(G) for each G ∈ ROσ(y). Hence, U◦ ∈ F.
Next, let G◦ ∈ ROσ(y). Then G◦ ⊇ f(f−1(G◦)) ⊇ f(U ∩ f−1(G◦)) for each
U ∈ τ(x), but U ∩ f−1(G◦) ∈ F for each U ∈ τ(x). So, G◦ ∈ f(F). Therefore, we
have constructed a filter F −→ x in X for which f(F) δ−→ y in Y . By hypothesis,
(x, y) ∈ Γf , which is a contradiction. Thus, f must be of almost-strongly closed
graph.

Corollary 3.5.3. Let f : (X, τ) → (Y, σ) be any function, where Y is a semi-regular
space. Then the following are equivalent:

(i) f has an almost-strongly closed graph.

(ii) If a filter F −→ x in X and f(F) δ−→ y in Y , then (x, y) ∈ Γf .

(iii) If a filter F −→ x in X and f(F) −→ y in Y , then (x, y) ∈ Γf .
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(iv) f has a closed graph.

Proof. 3aa

(i) =⇒ (ii) Follows from Theorem 3.5.15.

(ii) =⇒ (iii) Follows from Theorem 3.3.1 and the fact that Y is a semi-regular space.

(iii) =⇒ (iv) Follows from Theorem 2.4.9.

(iv) =⇒ (i) Suppose that f has a closed graph. Let F be a filter on X with F −→ x in
X and f(F) δ−→ y in Y . Since Y is semi-regular, then by Theorem 3.3.1,
f(F) −→ y. But f has a closed graph, so by Theorem 2.4.9, (x, y) ∈ Γf .
Therefore, f has an almost-strongly closed graph by Theorem 3.5.15.

The graph of an almost-continuous function need not be almost-strongly closed
as it is shown in the next example.

Example 3.5.3. In Example 2.4.2, we have the function f is continuous, and hence
f is almost-continuous. But the graph Γf is not almost-strongly closed graph since
(1, 1) ̸∈ Γf but for any U ∈ τ(1) and G ∈ ROσ(1), we have (1, −1) ∈ (U × G) ∩ Γf .

We now turn to gathering some more facts about the functions with almost-
strongly closed graph and their relations to other functions. In theorem 2.4.10,
we have proved that a continuous function has closed graph if the codomain is
Hausdorff. We are now ready to give a sufficient condition on the codomain of
an almost-continuous function f to insure that it has an almost-strongly closed
graph.

Theorem 3.5.16. [41] Let f : (X, τ) → (Y, σ) be almost-continuous, where (Y, σ)
is Hausdorff. Then f has an almost-strongly closed graph.

Proof. Suppose that F is a filter on X with F −→ x in X and f(F) δ−→ y in Y .
Since f is almost-continuous, then by Theorem 3.4.2, f(F) δ−→ f(x) in Y . But
Y is Hausdorff implies f(x) = y by Theorem 3.2.1. So, (x, y) ∈ Γf . Hence, by
Theorem 3.5.15, f has an almost-strongly closed graph.
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Example 3.5.4. Consider the identity function f : (R, τ) → (R, σ), where τ

and σ are the usual and discrete topologies on R, respectively. Then f has an
almost-strongly closed graph but f is not almost-continuous.

We are now ready to give a sufficient condition on the codomain of a function
f has an almost-strongly closed graph to insure that it is almost-continuous.

Theorem 3.5.17. [51] Let (Y, σ) be a nearly compact space. For every topological
space (X, τ), each function f : (X, τ) → (Y, σ) with an almost-strongly closed
graph is almost-continuous.

Proof. Let x ∈ X and V ∈ σ(f(x)). For each y ∈ Y − V , we have y ̸= f(x),
this means for each y ∈ Y − V , (x, y) ̸∈ Γf . But f has an almost-strongly closed
graph, then by Theorem 3.5.14, there exist Uy ∈ τ(x) and Vy ∈ σ(y) such that
f(Uy) ∩ V

◦
y = ∅. Let V = {V } ∪ {Vy : y ∈ Y − V }. Then V is an open cover

for Y . But Y is nearly compact, then there exist y1, . . . , yn ∈ Y − V such that
Y = V

◦ ∪
n⋃

i=1
V

◦
yi

. Let U =
n⋂

i=1
Uyi

. Then U ∈ τ(x) and U ⊆ Uyi
for all i = 1, . . . , n.

Now,
f(U) ∩

( n⋃
i=1

V
◦
yi

) =
n⋃

i=1

(
f(U) ∩ V

◦
yi

)
⊂

n⋃
i=1

(
f(Uyi

) ∩ V
◦
yi

)
= ∅.

This implies that, f(U) ⊆ Y −
n⋃

i=1
V

◦
yi

⊆ V
◦. Thus, f is almost-continuous at the

arbitrary point x ∈ X, and so f is almost-continuous.

Lemma 3.5.2. Let X = Z ∪{p} where Z is a set with p ̸∈ Z, (Y, σ) be a topological
space and y ∈ Y . Let g : Z → (Y, σ) be a function and F be a filter on Z. Define
a function g̃ : (X, τp) → (Y, σ) by g̃(z) = g(z) for any z ∈ Z and g̃(p) = y. Then
g(F) δ−→ y in (Y, σ) if and only if g̃ is almost-continuous on X.

Proof. Similar to the proof of Lemma 2.4.1.

Theorem 3.5.18. [51] Let (Y, σ) be a Hausdorff space. Then (Y, σ) is nearly
compact if and only if for any space (X, τ) ∈ S, each function f : (X, τ) → (Y, σ),
that has an almost-strongly closed graph, is almost-continuous.
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Proof. The first direction follows from Theorem 3.5.17. Conversely, Suppose, by
the way of contradiction, that Y is not nearly compact, then there is a filter F

on Y such that δ-Adh(F) = ∅. Let X = Y ∪ {p} where p ̸∈ Y . Consider the
topological space (X, τp). Then by Theorem 2.4.12, (X, τp) is Hausdorff. Also, by
Theorems 1.4.2 and 1.4.4, (X, τp) is completely normal and fully normal. This
implies that (X, τp) ∈ S. Fix a point b ∈ Y and define ĩdY : (X, τp) → (Y, σ) by
ĩdY (x) = idY (x) = x for any x ∈ Y and ĩdY (p) = b. Let (x, y) ∈ X × Y and
(x, y) ̸∈ ΓĩdY

. Consider the case when x ̸= p. Since ĩdY (x) ̸= y and (Y, σ) is
Hausdorff, then there exists Vy ∈ σ(y) such that ĩdY (x) ̸∈ V y. So, ĩdY (x) ̸∈ V

◦
y.

Hence, {x} ∈ τp(x), Vy ∈ σ(y) and ĩdY ({x}) ∩ V
◦
y = {ĩdY (x)} ∩ V

◦
y = ∅. Consider

the case when x = p. Then b = ĩdY (p) ̸= y. Again, since (Y, σ) is Hausdorff, then
there exists Vy ∈ σ(y) such that b ̸∈ V y. So, b ̸∈ V

◦
y. Moreover, since δ-Adh(F) = ∅,

then by Theorem 3.1.2, we have F
δ

�̸ y, so there exist Wy ∈ σ(y) and F ∈ F such
that F ∩ W

◦
y = ∅. Let Zy = Vy ∩ Wy. Then Zy ∈ σ(y), b /∈ Z

◦
y and F ∩ Z

◦
y = ∅.

Thus, F ∪{p} ∈ τp(x), Zy ∈ σ(y) and ĩdY (F ∪{p}) ∩ Z
◦
y = (idY (F ) ∪{b}) ∩ Z

◦
y = ∅.

We have shown, in both cases, that for each (x, y) ∈ (X × Y ) − ΓĩdY
, there exist

Ux ∈ τp(x) and Gy ∈ σ(y) such that ĩdY (Ux) ∩ G
◦
y = ∅. Thus, by Theorem 3.5.14,

ĩdY has an almost-strongly closed graph. By hypothesis, ĩdY is almost-continuous,
and so by Lemma 3.5.2, idY (F) δ−→ b in (Y, σ) implies F δ−→ b in (Y, σ), and hence
by Proposition 3.1.2 part (i), F δ

� b, so by Theorem 3.1.2, δ-Adh(F) ̸= ∅, which is
a contradiction. Therefore, (Y, σ) is nearly compact.
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Chapter 4
θ-Convergence of Filters

We study θ-convergence of filters. We will start by introducing the definition of
a θ-limit of a filter and define a θ-cluster point of a filter. A number of results in
regular spaces have been achieved. weakly-θ-continuous, strongly-θ-continuous,
and θ-continuous functions are all characterized. As well, the connections be-
tween these functions and θ-limits (θ-cluster points) of filters are investigated.
Several important notions, such as Urysohn and quasi-H-closed spaces, can be
characterized with the help of filters. The concept of a strongly closed graph is
defined and characterized by filters.

4.1 θ-Limit and θ-Cluster Points of Filters

Definition 4.1.1. [48] Let (X, τ) be a topological space. For each x ∈ X, let
Cτ (x) = {U : x ∈ U ∈ τ}. Then Cτ (x) is a filter base in X. Let ⟨Cτ (x)⟩ be the
filter generated by Cτ (x). We call ⟨Cτ (x)⟩ the θ-neighborhood filter of x.

Notation 8. For a topological space (X, τ) and x ∈ X, when there is no confusion,
we will just write the filter base “ C(x)” instead of “ Cτ (x)”.

Definition 4.1.2. [115] Let (X, τ) be a topological space, F be a filter on X and
x ∈ X. We say that F θ-converges to x, written F

θ−→ x iff ⟨C(x)⟩ ⊆ F. In such a
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case, x is called the θ-limit of F.

Definition 4.1.3. [115] Let (X, τ) be a topological space, F be a filter on X and
x ∈ X. Then F θ-accumulates at x, written F

θ
� x, iff F(∩)[C(x)]. Equivalently,

for each F ∈ F and for each G ∈ [C(x)], F ∩ G ̸= ∅. In such a case, x is called the
θ-cluster point of F.

Proposition 4.1.1. Let X be a topological space and x ∈ X. Since C(x) is a filter
base, then F

θ
� x if and only if for each F ∈ F and for each G ∈ C(x), F ∩ G ̸= ∅.

Proposition 4.1.2. Let (X, τ) be a topological space, F be a filter on (X, τ) and
x ∈ X.

(i) If F θ−→ x then F
θ
� x.

(ii) If F −→ x, then F
θ−→ x.

(iii) If F � x, then F
θ
� x.

Proof. (i) Let G ∈ C(x). Since F
θ−→ x, then G ∈ F. But then, G ∩ F ̸= ∅ for

all F ∈ F. So, F θ
� x.

(ii) Let G ∈ C(x), then G = U for some open U in X containing x. Since F −→ x,
then U ∈ F. But since U ⊆ U = G, then G ∈ F. Therefore, F θ−→ x.

(iii) Let G ∈ C(x) and F ∈ F, then G = U for some open U in X containing x.
Since F � x, then U ∩ F ̸= ∅. But then, G ∩ F = U ∩ F ⊇ U ∩ F ̸= ∅. So,
F

θ
� x.

The converse of each statement in proposition 4.1.2 need not be true as the
following example shows.

Example 4.1.1. Let X = {a, b, c}, τX = {∅, X, {a}, {b}, {a, b}} and F = {X, {a, c}}.
Then

U(a) = {{a}, {a, b}, {a, c}, X}, ⟨C(a)⟩ = {{a, c}, X}
U(b) = {{b}, {a, b}, {b, c}, X}, ⟨C(b)⟩ = {{b, c}, X}
U(c) = {X}, ⟨C(c)⟩ = {X}.
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Now, we can sum-up in the following table:

Limits of F θ-Limits of F Cluster points of F θ-Cluster points of F
a a a

b
c c c c

Table 4.1 – Limits, θ-limits, cluster points and θ-cluster points

From Table 4.1, we have

(i) F
θ
� b but F

θ

−̸→ b.

(ii) F
θ−→ a but F −̸→ a.

(iii) F
θ
� b but F �̸ b.

Definition 4.1.4. [115] Let (X, τ) be a topological space, E ⊆ X and x ∈ X.
Then x is a θ-adherent point of E iff for all G ∈ C(x), G ∩ E ≠ ∅. Equivalently, for
every open set U in X containing x, U ∩ E ̸= ∅. The set of all θ-adherent points of
a set E is called the θ-closure of the set E and denoted by θ-Cl(E).

Definition 4.1.5. [115] A subset E of a topological space (X, τ) is called θ-closed
if θ-Cl(E) = E. The complement of a θ-closed set is called a θ-open set.

Proposition 4.1.3. [58] For any subset E of a topological space X, E ⊆ θ-Cl(E).

Proof. Let x ∈ E and U be open in X containing x. Then U ∩ E ≠ ∅. But U ⊆ U .
so U ∩ E ⊆ U ∩ E. Thus, U ∩ E ̸= ∅. Therefore, x ∈ θ-Cl(E).

Theorem 4.1.1. [115] Let (X, τ) be a topological space and E ⊆ X. If E is open
in X, then E = θ-Cl(E).

Proof. E ⊆ θ-Cl(E) by Proposition 4.1.3. Let x ∈ θ-Cl(E), then U ∩ E ̸= ∅ for
all U ∈ τ(x). By Corollary 1.2.1, U ∩ E ̸= ∅ for all U ∈ τ(x). So, x ∈ E. Hence,
θ-Cl(E) ⊆ E.
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Proposition 4.1.4. [67] Let A be a subset of a topological space X. Then A is
θ-open in X if and only if for each x ∈ A, there exists an open set V in X such
that x ∈ V ⊆ V ⊆ A.

Proof. suppose that A is θ-open in X. Let x ∈ A. Then x /∈ X − A = θ-Cl(X − A).
So, there exists an open set V in X containing x such that V ∩ (X − A) = ∅. So,
V ⊆ A. Hence, there exists an open set V in X such that x ∈ V ⊆ V ⊆ A.

Conversely, suppose, by the way of contradiction, that A is not θ-open. Then
there exists x ∈ θ-Cl(X −A) such that x /∈ X −A. So, x ∈ A. By hypothesis, there
exists an open set V in X such that x ∈ V ⊆ V ⊆ A. But x ∈ θ-Cl(X − A) implies
V ∩ (X − A) ̸= ∅, which is a contradiction since V ∩ (X − A) ⊆ A ∩ (X − A) = ∅.
Therefore, A is θ-open in X.

Proposition 4.1.5. The family of all θ-open sets in (X, τ) is a new topology on
X denoted by τθ.

Proposition 4.1.6. [115] For any subset E of a topological space (X, τ), E ⊆
δ-Cl(E) ⊆ θ-Cl(E).

Proof. Let x ∈ E and U ∈ τ(x). Then U ∩ E ̸= ∅. But U ⊆ U
◦ since U is open.

So U ∩ E ⊆ U
◦ ∩ E. Hence, U

◦ ∩ E ≠ ∅. Thus, x ∈ δ-Cl(E). Next, let x ∈ δ-Cl(E)
and let U ∈ τ(x). Then U

◦ ∩ E ≠ ∅. But U
◦ ⊆ U , then U ∩ E ̸= ∅. Thus,

x ∈ θ-Cl(E).

Remark 4.1. Let (X, τ) be a topological space. Then τθ ⊆ τδ ⊆ τ .

Proof. Let U ∈ τθ. Then X − U = θ-Cl(X − U). By Propositions 3.1.3 and 4.1.6,
we have X −U ⊆ δ-Cl(X −U) ⊆ θ-Cl(X −U) = X −U . So, X −U = δ-Cl(X −U).
Thus, U ∈ τδ. Next, as τδ = τs and τs ⊆ τ , then τδ ⊆ τ .

Theorem 4.1.2. [67] Let (X, τ) be a topological space. Then (X, τ) is almost-
regular if and only if τs = τθ.
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Proof. Let U be a regular open set in X and let x ∈ U . Then by almost-regularity of
X, there is an open set V in X such that x ∈ V ⊆ V ⊆ U . Hence, by Proposition
4.1.4, U is θ-open in X. So, RO(X, τ) ⊆ τθ, and hence τs ⊆ τθ but τθ ⊆ τs.
Therefore, τs = τθ.

Conversely, suppose that τs = τθ. Let U be a regular open set in X containing x.
Then U ∈ τs = τθ. So, by Proposition 4.1.4, there is an open set V in X such that
x ∈ V ⊆ V ⊆ U . Let W = V

◦. Then W is regular open in X, x ∈ V ⊆ V
◦ = W ,

and so x ∈ W ⊆ W = V
◦ ⊆ V ⊆ U . Hence, there is a regular open set W in X

such that x ∈ W ⊆ W ⊆ U . Therefore, X is almost-regular.

Definition 4.1.6. [115] Let F be a filter on a topological space (X, τ). A point
x ∈ X is said to be a θ-adherent point of F if x is a θ-adherent point of every set
in F. The θ-adherence of F, θ-Adh(F), is the set of all θ-adherent points of F.

Remark 4.2. [115] Let X be a topological space. If F is a filter on X, then
θ-Adh(F) = ⋂

F ∈F
θ-Cl(F ).

Theorem 4.1.3. [115] Let F be a filter on a topological space X and x ∈ X. Then
x ∈ θ-Adh(F) if and only if F θ

� x.

Proof.

x ∈ θ-Adh(F) iff x ∈
⋂

F ∈F

θ-Cl(F )

iff x ∈ θ-Cl(F ) for all F ∈ F

iff G ∩ F ̸= ∅ for all G ∈ C(x) and all F ∈ F

iff F(∩)[C(x)] by Proposition 4.1.1.

iff F
θ
� x.

Theorem 4.1.4. Let X be a topological space, E ⊆ X and x ∈ X. Then
x ∈ θ-Cl(E) if and only if there exists a filter F on X such that E ∈ F and F

θ−→ x.
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Proof. Suppose that there exists a filter F on X such that E ∈ F and F
θ−→ x.

We will show that x ∈ θ-Cl(E). Let G ∈ C(x). But ⟨C(x)⟩ ⊆ F, so G ∈ F. Hence,
G ∩ E ̸= ∅. Therefore, x ∈ θ-Cl(E).

Conversely, suppose that x ∈ θ-Cl(E), then G ∩ E ̸= ∅ for all G ∈ C(x). So,
G ∩ E ≠ ∅ for all G ∈ G where G = ⟨C(x)⟩. Consider the filter F = ⟨G

∣∣∣
E

⟩. Then by
Proposition 1.1.6, E ∈ F and ⟨C(x)⟩ = G ⊆ F. Therefore, E ∈ F and F

θ−→ x.

Theorem 4.1.5. Let X be a topological space, E ⊆ X and x ∈ X. Then
x ∈ θ-Cl(E) if and only if there exists a filter F on X, which meets E such that
F

θ−→ x.

Proof. Suppose that x ∈ θ-Cl(E). Then by Theorem 4.1.4, there exists a filter F

on X such that E ∈ F and F
θ−→ x. Since E ∈ F, then for all F ∈ F, F ∩ E ≠ ∅.

That is, F meets E. Conversely, suppose that F is a filter on X such that F
θ−→ x

and F ∩ E ̸= ∅ for all F ∈ F. Since F
θ−→ x, then G ∈ F for all G ∈ C(x). So, by

hypothesis, G ∩ E ̸= ∅ for all G ∈ C(x). Therefore, x ∈ θ-Cl(E).

Theorem 4.1.6. Let (X, τ) be a topological space and A ⊆ X. Then A is θ-closed
if and only if whenever a filter F

θ−→ x with A ∈ F, then x ∈ A.

Proof. Assume that a filter F
θ−→ x and A ∈ F. Then by Theorem 4.1.4, x ∈

θ-Cl(A). But θ-Cl(A) = A since A is θ-closed. So, x ∈ A. Conversely, let
x ∈ θ-Cl(A). Then by Theorem 4.1.4, there is a filter F on X such that F

θ−→ x

and A ∈ F. So by hypothesis, x ∈ A. Thus, θ-Cl(A) ⊆ A. But A ⊆ θ-Cl(A).
Therefore, θ-Cl(A) = A, and hence A is θ-closed.

Theorem 4.1.7. Let (X, τ) be a topological space and A ⊆ X. Then A is θ-open
in X if and only if whenever a filter F

θ−→ x ∈ A, then A ∈ F.

Proof. Suppose that A is θ-open in X. let F be a filter on X such that F θ−→ x ∈ A.
Since x ∈ A, then by Proposition 4.1.4, A ∈ ⟨C(x)⟩. Hence, A ∈ F. Conversely,
suppose, by the way of contradiction, that A is not θ-open, then X − A is not
θ-closed, so there exists x ∈ θ-Cl(X − A) such that x /∈ X − A. So, x ∈ A. Now,
by Theorem 4.1.4, there exists a filter F on X such that X − A ∈ F and F

θ−→ x.
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Since F
θ−→ x ∈ A, then by hypothesis, A ∈ F. But then ∅ = A ∩ (X − A) ∈ F,

which is a contradiction. Therefore, A is θ-open.

Remark 4.3. Let F and G be filters on a topological space (X, τ) and x ∈ X.

(i) The principal filter ⟨x⟩ θ−→ x.

(ii) If F θ−→ x and G
θ−→ x, then F ∩ G

θ−→ x.

Theorem 4.1.8. Let X be a topological space, F be a filter on X and x ∈ X.
Then F

θ−→ x if and only if for every subfilter F
′ of F, F′ θ−→ x.

Proof. If every subfilter of F θ-converges to x ∈ X, then so does F because it is a
subfilter of itself. Conversely, suppose that F

θ−→ x and F′ is a subfilter of F, then
⟨C(x)⟩ ⊆ F and F ⊆ F

′ . So, ⟨C(x)⟩ ⊆ F
′ . Therefore, F′ θ−→ x.

Theorem 4.1.9. Let (X, τ) be a topological space, F be a filter on X and x ∈ X.
Then F

θ−→ x if and only if every subfilter G of F has a subfilter H such that
H

θ−→ x.

Proof. Suppose, by the way of contradiction, that F
θ

−̸→ x, then there is an open
set U in X containing x such that U ̸∈ F. Then (X − U) ∩ F ̸= ∅ for all F ∈ F. So,
G = ⟨F

∣∣∣
X−U

⟩ is a subfilter of F containing X − U . By hypothesis, G has a subfilter
H which θ-converges to x. Since U is open in X containing x, then U ∈ H but
X − U ∈ G ⊆ H. So, ∅ ∈ H which is a contradiction. Therefore, F θ−→ x. The
converse follows from Theorem 4.1.8.

Theorem 4.1.10. [115] Let X be a topological space, F be a filter on X and
x ∈ X. Then F

θ
� x if and only if there exists a subfilter F′ of F such that F′ θ−→ x.

Proof. Suppose there exists a subfilter F
′ of F such that F

′ θ−→ x. Then F ⊆ F
′

and ⟨C(x)⟩ ⊆ F
′ . Let F ∈ F and G ∈ C(x), then F ∈ F

′ and G ∈ F
′ . So, F ∩G ̸= ∅.

Hence, F θ
� x.

Conversely, assume that F
θ
� x. We will construct a subfilter F′ of F such that

F
′ θ−→ x. Since F

θ
� x, then F ∩ G ̸= ∅ for all F ∈ F and all G ∈ C(x). This
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implies F ∩ G ≠ ∅ for all F ∈ F and all G ∈ ⟨C(x)⟩. Let F′ = F ∨ ⟨C(x)⟩. Then F
′

is a filter on X such that F ⊆ F
′ and ⟨C(x)⟩ ⊆ F

′ . Thus, F′ is a subfilter of F and
F

′ θ−→ x.

Theorem 4.1.11. Let X be a topological space, F′ be a subfilter of F and x ∈ X.
If F′ θ

� x, then F
θ
� x.

Proof. Suppose that F
′ θ
� x. Let G ∈ C(x) and F ∈ F, But F ⊆ F

′ , so F ∈ F
′ .

Thus, G ∩ F ̸= ∅. Hence, F θ
� x.

Theorem 4.1.12. [115] Let F be an ultrafilter on a topological space X and x ∈ X.
Then F

θ−→ x if and only if F θ
� x.

Proof. If F θ−→ x, then F
θ
� x by Proposition 4.1.2 part (i). Conversely, suppose

that F
θ
� x. Let G ∈ C(x). Then G ∩ F ̸= ∅ for any F ∈ F. So, F meets G. But

F is an ultrafilter on X, then by the proof of Theorem 1.1.5, G ∈ F. Therefore,
F

θ−→ x.

4.2 θ-Convergence in Urysohn Spaces

Definition 4.2.1. [120] A topological space X is called Urysohn if for each x1 ≠ x2

in X, there exist open sets U and V in X containing x1 and x2, respectively, such
that U ∩ V = ∅. Equivalently, for each x1 ≠ x2 in X, there exist G1 ∈ C(x1) and
G2 ∈ C(x2) such that G1 ∩ G2 = ∅.

The following implications hold.

Proposition 4.2.1. [31] Urysohn =⇒ Hausdorff =⇒ weakly-T2.

Now, we offer the following characterization.

Theorem 4.2.1. [61] A topological space X is Urysohn if and only if each filter F

on X θ-converges to at most one point in X.
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Proof. Suppose that X is a Urysohn space and F is a filter on X such that F θ−→ x

and F
θ−→ y. Assume that x ≠ y. But X is Urysohn, so there exists G ∈ C(x)

and H ∈ C(y) such that G ∩ H = ∅. Now, since F
θ−→ x, then ⟨C(x)⟩ ⊆ F, and so

G ∈ F. Also, since F
θ−→ y, then ⟨C(y)⟩ ⊆ F, and so H ∈ F. Thus, G ∩ H ̸= ∅,

which is a contradiction. So, we must have x = y.

Conversely, suppose, by the way of contradiction, that X is not an Urysohn
space. So, there exist x ̸= y in X such that G ∩ H ̸= ∅ for all G ∈ C(x) and for all
H ∈ C(y). Since C(x) and C(y) are filter bases for ⟨C(x)⟩ and ⟨C(y)⟩, respectively,
then G∩H ̸= ∅ for all G ∈ ⟨C(x)⟩ and for all H ∈ ⟨C(y)⟩. Then F = ⟨C(x)⟩∨⟨C(y)⟩
is a filter on X such that ⟨C(x)⟩ ⊆ F and ⟨C(y)⟩ ⊆ F. Thus, the filter F θ-converges
to both x and y. But then, by hypothesis, x = y, which is a contradiction. So, X

must be Urysohn.

Theorem 4.2.2. [61] Let X be an Urysohn space, F be a filter on X and x ∈ X.
If F θ−→ x, then x is the unique θ-cluster point of F.

Proof. If F θ−→ x, then x is a θ-cluster point of F by Proposition 4.1.2 part (i).
Now, suppose that y ∈ X is a θ-cluster point of F with x ̸= y. But X is Urysohn.
So, there exist G ∈ C(x) and H ∈ C(y) such that G ∩ H = ∅. Now, since F

θ−→ x,
then ⟨C(x)⟩ ⊆ F, and so G ∈ F. But then, G ∩ H ̸= ∅ since F

θ
� y and H ∈ C(y),

which is a contradiction. Therefore, x = y.

4.3 θ-Convergence in Regular Spaces

We will see immediately that, in regular spaces, θ-convergence of filters is
equivalent to convergence of filters and in this case equivalence is also valid for
cluster and θ-cluster points.

Theorem 4.3.1. Let (X, τ) be a regular space, F be a filter on X and x ∈ X.
Then F

θ−→ x if and only if F −→ x.

Proof. If F −→ x, then by Propostion 4.1.2 part (ii), F θ−→ x. Conversely, suppose
that F

θ−→ x. Let U ∈ τ(x). Since X is regular, then there exists V ∈ τ(x) such
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that V ⊆ U . Since V ∈ τ(x), then V ∈ C(x) but ⟨C(x)⟩ ⊆ F. So, V ∈ F and thus,
U ∈ F. Therefore, F −→ x.

Theorem 4.3.2. [115] Let X be a regular space and E ⊆ X. Then E = θ-Cl(E).

Proof. By Proposition 4.1.3, E ⊆ θ-Cl(E). Next, let x ∈ θ-Cl(E), then by Theorem
4.1.4, there exists a filter on X such that E ∈ F and F

θ−→ x. But X is regular,
so F −→ x by Theorem 4.3.1. Thus, by Theorem 2.1.2, x ∈ E.

Theorem 4.3.3. Let (X, τ) be a regular space, F be a filter on X and x ∈ X.
Then F

θ
� x if and only if F � x.

Proof. If F � x, then by Proposition 4.1.2 part (iii), F θ
� x. Conversely, suppose

that F
θ
� x. Let U ∈ τ(x) and F ∈ F. Since X is regular, then there exists

V ∈ τ(x) such that V ⊆ U . But V ∈ C(x) and F
θ
� x, so V ∩ F ̸= ∅, thus,

U ∩ F ̸= ∅. Therefore, F � x.

Theorem 4.3.4. Let (X, τ) be a topological space. Then X is a regular space if
and only if for each x ∈ X and for each filter F on X, F −→ x whenever F

θ−→ x.

Proof. Suppose that for each filter F on X, F −→ x whenever F
θ−→ x. To show

that X is regular, let x ∈ X be an arbitrary. Since ⟨C(x)⟩ θ−→ x, then by hypothesis,
⟨C(x)⟩ −→ x. That is, U(x) ⊆ ⟨C(x)⟩, so for all U ∈ U(x), there exists H ∈ C(x)
such that H ⊆ U . This implies, for all U ∈ τ(x), there exists V ∈ τ(x) such that
V ⊆ U . Thus, X is regular. The converse follows from Theorem 4.3.1.

4.4 θ-Convergent Filters and Functions

We will investigate the case of θ-limits of filters under the three types of conti-
nuity. We will do the same investigation for θ-cluster points of filters.
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4.4.1 Weakly-θ-Continuous Functions

We introduce weakly-θ-continuous functions in order to study this class of
functions, we state several characterizations of weakly-θ-continuous functions
and the notion of a function that has a strongly closed graph.

Definition 4.4.1. [28, 81] A function f : (X, τ) → (Y, σ) is weakly-θ-continuous
at x ∈ X if for every open set V in Y containing f(x), there exists an open set U

in X containing x such that f(U) ⊆ V . Equivalently, for all G ∈ Cσ(f(x)), there
exists U ∈ τ(x) such that f(U) ⊆ G. If this condition is satisfied at each x ∈ X,
then f is said to be weakly-θ-continuous on X.

We now present the following theorem (to be proved later in section 6.3, the-
orem 6.3.5).

Theorem 4.4.1. [106] Every almost-continuous function is weakly-θ-continuous.

Theorem 4.4.2. [28] Let f : (X, τ) → (Y, σ) be a function. Then f is weakly-θ-
continuous at x ∈ X if and only if whenever F is a filter on X with F −→ x, then
f(F) θ−→ f(x) in Y .

Proof. Assume that F −→ x and G ∈ Cσ(f(x)). Since f is weakly-θ-continuous at
x, then there exists U ∈ τ(x) such that f(U) ⊆ G. But F −→ x, then U ∈ F, so
G ∈ f(F). Hence, ⟨Cσ(f(x))⟩ ⊆ f(F). Therefore, f(F) θ−→ f(x) in Y .

Conversely, let G ∈ Cσ(f(x)). Since Uτ (x) ⊆ Uτ (x), then Uτ (x) −→ x. By
hypothesis, we have f(Uτ (x)) θ−→ f(x). That is, ⟨Cσ(f(x))⟩ ⊆ f(Uτ (x)). Hence,
there exists U ∈ τ(x) such that f(U) ⊆ G. Therefore, f is weakly-θ-continuous at
x ∈ X.

Theorem 4.4.3. Let f : (X, τ) → (Y, σ) be a function. Then f is weakly-θ-
continuous at x ∈ X if and only if whenever F is a filter on X with F � x, then
f(F) θ

� f(x) in Y .

Proof. Suppose that F � x in X and G ∈ Cσ(f(x)). Since f is weakly-θ-continuous,
then there exists U ∈ τ(x) such that f(U) ⊆ G. But U ∩ F ̸= ∅ for all F ∈ F

79



since F � x. So, ∅ ≠ f(U ∩ F ) ⊆ f(U) ∩ f(F ) ⊆ G ∩ f(F ) for all F ∈ F. That is,
G ∩ f(F ) ̸= ∅ for all F ∈ F. Hence, f(F) θ

� f(x).

Conversely, suppose, by the way of contradiction, that f is not weakly-θ-
continuous at x ∈ X, then there exists K ∈ Cσ(f(x)) such that f(U) ̸⊆ K

for any U ∈ τ(x). So, U ̸⊆ f−1(K) for any U ∈ τ(x). This implies, V ̸⊆ f−1(K)
for any V ∈ Uτ (x). Thus, V ∩F ̸= ∅ for any V ∈ Uτ (x) where F = X −f−1(K). By
Proposition 1.1.6, F = ⟨Uτ (x)

∣∣∣
F

⟩ is a filter on X such that F ∈ F and Uτ (x) ⊆ F.

This implies F −→ x and by Proposition 2.1.1, F � x. We claim that f(F)
θ

�̸ f(x).
Since F ∈ F, then f(F ) ∈ f(F). Now, K ∩ f(F ) = K ∩ f(X − f−1(K)) =
K∩f(f−1(Y −K)) ⊆ K∩(Y −K) = ∅. Hence, we have K ∈ Cσ(f(x)), f(F ) ∈ f(F)
and K ∩ f(F ) = ∅. Therefore, f(F)

θ

�̸ f(x) in Y .

4.4.2 Strongly-θ-Continuous Functions

Definition 4.4.2. [66] A function f : (X, τ) → (Y, σ) is strongly-θ-continuous at
x ∈ X if for every open set V in Y containing f(x), there exists an open set U in
X containing x such that f(U) ⊆ V . Equivalently, for every V ∈ σ(f(x)), there
exists H ∈ Cτ (x) such that f(H) ⊆ V . If this condition is satisfied at each x ∈ X,
then f is said to be strongly-θ-continuous on X.

Theorem 4.4.4. Let f : (X, τ) → (Y, σ) be a function. Then f is strongly-θ-
continuous at x ∈ X if and only if whenever F is a filter on X with F

θ−→ x, then
f(F) −→ f(x) in Y .

Proof. Assume that F
θ−→ x in X and V ∈ Uσ(f(x)). Since f is strongly-θ-

continuous at x, then there exists H ∈ Cτ (x) such that f(H) ⊆ V . But since
F

θ−→ x, then H ∈ F, and hence V ∈ f(F). Thus, Uσ(f(x)) ⊆ f(F), Therefore,
f(F) −→ f(x).

Conversely, let V ∈ Uσ(f(x)). Since ⟨Cτ (x)⟩ ⊆ ⟨Cτ (x)⟩, then ⟨Cτ (x)⟩ θ−→ x. By
hypothesis, we have f(⟨Cτ (x)⟩) −→ f(x). So, Uσ(f(x)) ⊆ f(⟨Cτ (x)⟩). Therefore,
there exists H ∈ Cτ (x) such that f(H) ⊆ V . That is, f is strongly-θ-continuous at
x ∈ X.
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Theorem 4.4.5. Let f : (X, τ) → (Y, σ) be a function. Then f is strongly-θ-
continuous at x ∈ X if and only if whenever F is a filter on X with F

θ
� x, then

f(F) � f(x) in Y .

Proof. Suppose that F
θ
� x in X and V ∈ Uσ(f(x)). Since f is strongly-θ-

continuous at x, then there exists H ∈ Cτ (x) such that f(H) ⊆ V . But H ∩ F ̸= ∅
for all F ∈ F since F

θ
� x. So, ∅ ≠ f(H ∩ F ) ⊆ f(H) ∩ f(F ) ⊆ V ∩ f(F ) for all

F ∈ F. That is, V ∩ f(F ) ̸= ∅ for all F ∈ F. Hence, f(F) � f(x) in Y .

Conversely, suppose, by the way of contradiction, that f is not strongly-θ-
continuous at x ∈ X, then there exists V ∈ σ(f(x)) such that f(U) ̸⊆ V for any
U ∈ τ(x). So, U ̸⊆ f−1(V ) for any U ∈ τ(x). Let B = {U − f−1(V ) : U ∈ τ(x)},
then B is a filter base in X. Let F = ⟨B⟩X , then F is a filter on X. We claim that
F

θ
� x but f(F) �̸ f(x). Let U ∈ τ(x) and F ∈ F, then F ⊇ B for some B ∈ B.

This implies that F ⊇ W − f−1(V ) for some W ∈ τ(x). Since U ∩ W ∈ τ(x), then
U ∩ W − f−1(V ) ̸= ∅ but U ∩ F ⊇ U ∩ (W − f−1(V )) = (U ∩ W ) − f−1(V ) and
U ∩ W ⊇ U ∩ W . So, U ∩ F ⊇ U ∩ W − f−1(V ) ̸= ∅. Hence, F θ

� x. Next, since
X ∈ τ(x), then B = X − f−1(V ) = X − f−1(V ) ∈ B ⊆ F, so f(B) ∈ f(F). We
claim that V ∩ f(B) = ∅. For if f(b) ∈ V for some b ∈ B, then b ∈ f−1(V ) and
b ∈ X −f−1(V ), so b ∈ f−1(V )∩ (X −f−1(V )) = ∅, which is a contradiction. Since
V ∈ σ(f(x)), f(B) ∈ f(F) and V ∩ f(B) = ∅, then f(F) �̸ f(x) in Y .

4.4.3 θ-Continuous Functions

Definition 4.4.3. [37] A function f : (X, τ) → (Y, σ) is θ-continuous at x ∈ X

if for every open set V in Y containing f(x), there exists an open set U in X

containing x such that f(U) ⊆ V . Equivalently, for all G ∈ Cσ(f(x)), there exists
H ∈ Cτ (x) such that f(H) ⊆ G. If this condition is satisfied at each x ∈ X, then
f is said to be θ-continuous on X.

A θ-continuous function preserves θ-convergence.

Theorem 4.4.6. [28, 82] Let f : (X, τ) → (Y, σ) be a function. Then f is θ-
continuous at x ∈ X if and only if whenever F is a filter on X with F

θ−→ x, then
f(F) θ−→ f(x) in Y .
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Proof. Assume that F
θ−→ x and G ∈ Cσ(f(x)). Since f is θ-continuous at x, then

there exists H ∈ Cτ (x) such that f(H) ⊆ G. Also, since F
θ−→ x and H ∈ Cτ (x),

then H ∈ F. So, G ∈ f(F). Thus, ⟨Cσ(f(x))⟩ ⊆ f(F). That is, f(F) θ−→ f(x).

Conversely, let G ∈ Cσ(f(x)). Since ⟨Cτ (x)⟩ ⊆ ⟨Cτ (x)⟩, then ⟨Cτ (x)⟩ θ−→ x.
By hypothesis, we have f(⟨Cτ (x)⟩) θ−→ f(x). That is, ⟨Cσ(f(x))⟩ ⊆ f(⟨Cτ (x)⟩).
Hence, there exists H ∈ Cτ (x) such that f(H) ⊆ G. Therefore, f is θ-continuous
at x ∈ X.

Theorem 4.4.7. Let f : (X, τ) → (Y, σ) be a function. Then f is θ-continuous at
x ∈ X if and only if whenever F is a filter on X with F

θ
� x, then f(F) θ

� f(x) in
Y .

Proof. Suppose that F
θ
� x and G ∈ Cσ(f(x)). Since f is θ-continuous, then there

exists H ∈ Cτ (x) such that f(H) ⊆ G. But H ∩ F ̸= ∅, for all F ∈ F since F
θ
� x.

So, ∅ ≠ f(H ∩ F ) ⊆ f(H) ∩ f(F ) ⊆ G ∩ f(F ) for all F ∈ F. That is, G ∩ f(F ) ̸= ∅
for all F ∈ F. Hence, f(F) θ

� f(x).

Conversely, suppose, by the way of contradiction, that f is not θ-continuous at
x ∈ X, then there exists V ∈ σ(f(x)) such that f(U) ̸⊆ V for any U ∈ τ(x). So,
U ̸⊆ f−1(V ) for any U ∈ τ(x). Let B = {U − f−1(V ) : U ∈ τ(x)}, then B is a
filter base in X. Let F = ⟨B⟩X , then F is a filter on X. We claim that F

θ
� x

but f(F)
θ

�̸ f(x). Let U ∈ τ(x) and F ∈ F, then F ⊇ B for some B ∈ B. This
implies that F ⊇ W − f−1(V ) for some W ∈ τ(x). Since U ∩ W ∈ τ(x), then
U ∩ W − f−1(V ) ̸= ∅ but U ∩ F ⊇ U ∩ (W − f−1(V )) = (U ∩ W ) − f−1(V ) and
U ∩ W ⊇ U ∩ W . So, U ∩ F ⊇ U ∩ W − f−1(V ) ̸= ∅. Hence, F θ

� x. Next, since
X ∈ τ(x), then B = X − f−1(V ) = X − f−1(V ) ∈ B ⊆ F, so f(B) ∈ f(F). We
claim that V ∩ f(B) = ∅. For if f(b) ∈ V for some b ∈ B, then b ∈ f−1(V ) and
b ∈ X −f−1(V ), so b ∈ f−1(V )∩ (X −f−1(V )) = ∅, which is a contradiction. Since
V ∈ σ(f(x)), f(B) ∈ f(F) and V ∩ f(B) = ∅, then f(F)

θ

�̸ f(x) in Y .

In the following proposition, we give the relation between the different types
of continuity which have already been used.

Proposition 4.4.1. Strongly-θ-continuity =⇒ continuity =⇒ θ-continuity =⇒
weakly-θ-continuity.
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4.4.4 More on Functions and θ-Convergence

Theorem 4.4.8. Let f : X → Y be a function and X be regular. Then f is
continuous if and only if f is strongly-θ-continuous.

Proof. Suppose that f is continuous and X is regular. Let x ∈ X, and F be a filter
on X such that F θ−→ x. Since X is regular, then by Theorem 4.3.1, F −→ x. But
f is continuous at x, so by Theorem 2.3.1, f(F) −→ f(x). Hence, by Theorem
4.4.4, f is strongly-θ-continuous at x. Therefore, f is strongly-θ-continuous since x

was arbitrary. The converse follows from Proposition 4.4.1.

Theorem 4.4.9. Let f : X → Y be a function and Y be regular. Then f is
weakly-θ-continuous if and only if f is continuous.

Proof. Suppose that f is weakly-θ-continuous and Y is regular. Let x ∈ X and
F be a filter on X such that F −→ x. Since f is weakly-θ-continuous, then
f(F) θ−→ f(x) by Theorem 4.4.2. But Y is regular, then by Theorem 4.3.1,
f(F) −→ f(x). Therefore, by Theorem 2.3.1, f is continuous at x. Thus, f is
continuous since x was arbitrary. The converse follows from Proposition 4.4.1.

Corollary 4.4.1. Let f : X → Y be a function and Y be regular. Then f is
θ-continuous if and only if f is continuous.

Proof. This follows from Theorem 4.4.9 and the fact that every θ-continuous
function is weakly-θ-continuous.

Theorem 4.4.10. [51] Let {Xα : α ∈ ∆} be a family of topological spaces and let
F be a filter on X = ∏

α∈∆
Xα. Then F

θ−→ x in X if and only if πα(F) θ−→ πα(x) in
Xα for all α ∈ ∆.

Proof. Assume that F θ−→ x in X. Since πα is continuous for all α ∈ ∆, then πα is
θ-continuous for all α ∈ ∆. So, by Theorem 4.4.6, πα(F) θ−→ πα(x) for all α ∈ ∆.

Conversely, suppose that πα(F) θ−→ πα(x) for all α ∈ ∆. Let U be any neigh-
borhood of x in X. Then x ∈

n⋂
i=1

π−1
αi

(Ui) ⊆ U , where Ui ∈ U(παi
(x)) for all
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i = 1, . . . , n. So, U i ∈ παi
(F) for all i = 1, . . . , n, and hence for all i = 1, . . . , n,

there exists Fi ∈ F such that παi
(Fi) ⊆ U i. Then, Fi ⊆ π−1

αi

(
U i

)
for all i = 1, . . . , n.

So,
n⋂

i=1
Fi ⊆

n⋂
i=1

π−1
αi

(
U i

)
. Since

n⋂
i=1

Fi ∈ F, then
n⋂

i=1
π−1

αi

(
U i

)
∈ F. But by Lemmas

2.3.1 and 3.4.1,
n⋂

i=1
π−1

αi

(
U i

)
=

n∏
i=1

U i =
n∏

i=1
Ui =

n⋂
i=1

π−1
αi

(Ui) ⊆ U . So, U ∈ F.

Therefore, F θ−→ x in X.

Theorem 4.4.11. Let {Xα : α ∈ ∆} be a family of topological spaces and let F be
a filter on X = ∏

α∈∆
Xα. If F θ

� x in X, then πα(F) θ
� πα(x) in Xα for all α ∈ ∆.

Proof. Assume that F
θ
� x. Since πα is continuous for all α ∈ ∆, then πα is

θ-continuous for all α ∈ ∆. By Theorem 4.4.5, πα(F) θ
� πα(x) for all α ∈ ∆.

4.5 Quasi-H-Closed Spaces

4.5.1 Characterizations of Quasi-H-Closed Spaces

Definition 4.5.1. [43, 74] A topological space X is called quasi-H-closed iff every
open cover of X has a finite subfamily whose closures cover X. A quasi-H-closed
Hausdorff space is called an H-closed space.

Recall that a set U is regular open if U
◦ = U . In view of the fact that for any

open set U , U
◦ is regular open by Proposition 1.2.7 part (i), it follows immedi-

ately that the open sets in Definition 4.5.1 may be replaced with regular open
sets and an equivalent definition obtained.

Theorem 4.5.1. [18] The property of a topological space being quasi-H-closed is
a semi-regular property. That is, (X, τ) is quasi-H-closed if and only if (X, τs) is
quasi-H-closed.

Proof. Let U ⊆ τs be a cover of X, then U ⊆ τ is a cover of X but (X, τ) is
quasi-H-closed, so there exist U1, . . . , Un ∈ U such that X =

n⋃
i=1

Clτ (Ui). But since
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Ui ∈ τ for any i = 1, . . . , n, then by Lemma 1.3.1 part (i), Clτ (Ui) = Clτs(Ui) for
any i = 1, . . . , n, thus X =

n⋃
i=1

Clτs(Ui). Hence, (X, τs) is quasi-H-closed.

Conversely, let U ⊆ RO(X, τ) be a cover of X. Then U ⊆ τs is a cover of
X but (X, τs) is quasi-H-closed, so there exist U1, . . . , Un ∈ U such that X =
n⋃

i=1
Clτs(Ui). But since Ui ∈ τ for any i = 1, . . . , n, then by Lemma 1.3.1 part (i),

Clτs(Ui) = Clτ (Ui) for any i = 1, . . . , n, thus X =
n⋃

i=1
Clτ (Ui). Hence, (X, τ) is

quasi-H-closed.

Definition 4.5.2. [34] A subset A of a topological space X is said to be
(i) a quasi-H-closed subspace if the space (A, τA) is quasi-H-closed.
(ii) a quasi-H-closed relative to X if for every cover {Vα : α ∈ ∆} of A by open

sets in X, there exists a finite subset Ω of ∆ such that A ⊆ ⋃
α∈Ω

V α.

If the space X is Hausdorff and A ⊆ X is a quasi-H-closed subspace (quasi-H-
closed relative to X), then A is called an H-closed subspace (H-closed relative
to X).

Remark 4.4. Every quasi-H-closed subspace of a topological space X is a quasi-
H-closed relative to X, but the converse doesn’t hold in general [93, p. 161].

Proposition 4.5.1. Every compact space is quasi-H-closed.

Proof. If X is compact and U is any open cover for X, then there exist U1, . . . , Un ∈
U such that X =

n⋃
i=1

Ui. So, X =
n⋃

i=1
Ui ⊆

n⋃
i=1

U i ⊆ X. Thus, X =
n⋃

i=1
U i. Hence,

X is quasi-H-closed.

It should be noted that the converse of the above proposition need not be true,
as the following example shows.

Example 4.5.1. Let X = R with the left ray topology. Let U be any open cover
of R. Then for any U ∈ U, we have U = R. Select U◦ ∈ U so that U◦ ̸= ∅. Then
U◦ = R. So, {U◦} is a finite subfamily of U such that U◦ = R. Thus, X with this
topology is quasi-H-closed. Yet, X is not compact.
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We are now ready to make characterizations of quasi-H-closed spaces using
our main concept, namely, the θ-convergence of filters.

Theorem 4.5.2. [47, 74, 115] For a topological space (X, τ), the following are
equivalent:

(i) X is quasi-H-closed.

(ii) Every filter on X has a θ-cluster point.

(iii) Every ultrafilter on X θ-converges.

(iv) For every family C of closed sets of X such that ⋂
C∈C

C = ∅, there exists a

finite subfamily C
′ of C such that ⋂

C∈C′
C◦ = ∅.

Proof. aaa

(i) =⇒ (ii) Assume that there exists a filter F on X such that F
θ

�̸ x for all x ∈ X.
This means that for all x ∈ X, there exist Gx ∈ τ(x) and Fx ∈ F such that
Fx ∩ Gx = ∅. Let U = {Gx : x ∈ X}, then U is an open cover of X. But X is
quasi-H-closed, so there exist x1, . . . , xn ∈ X such that X =

n⋃
i=1

Gxi
. Now, for

all i = 1, . . . , n, choose Fxi
∈ F such that Fxi

∩ Gxi
= ∅ and let F◦ =

n⋂
i=1

Fxi
.

Then, F◦ ∈ F and F◦ ⊆ Fxi
for each i = 1, . . . , n. So,

F◦ = F◦ ∩ X = F◦ ∩ (
n⋃

i=1
Gxi

) =
n⋃

i=1
(F◦ ∩ Gxi

) ⊆
n⋃

i=1
(Fxi

∩ Gxi
) = ∅.

This implies F◦ = ∅, which is a contradiction. Therefore, F θ
� x for some

x ∈ X.

(ii) =⇒ (iii) Let F be an ultrafilter on X. Then, by hypothesis, F θ
� x ∈ X. But then,

F
θ−→ x by Theorem 4.1.12 and since F is an ultrafilter on X.

(iii) =⇒ (iv) Let C = {Fα : α ∈ ∆} be a family of closed subsets of X with ⋂
α∈∆

Fα = ∅.
Suppose, by the way of contradiction, that for each finite subset Ω of ∆,⋂
α∈Ω

F ◦
α ̸= ∅. Let B = { ⋂

α∈Ω
F ◦

α : Ω is a finite subset of ∆}. Then, B is a filter

base in X. Hence, the filter F = ⟨B⟩X is contained in some ultrafilter F′ in X

by Theorem 1.1.4. So, by hypothesis, F′ θ−→ x ∈ X. But then F
′ θ
� x. Hence

F
θ
� x by Theorem 4.1.11. Therefore, we have constructed a filter F on X

which has x ∈ X as a θ-cluster point. Now, x /∈ ∅ = ⋂
α∈∆

Fα, then x /∈ Fα◦ for
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some α◦ ∈ ∆. So, U◦ = X − Fα◦ ∈ τ(x). But F ◦
α◦ ∈ F by the construction of

F. So, U◦ ∩ F ◦
α◦ ̸= ∅ since F

θ
� x. On the other hand,

U◦ ∩ F ◦
α◦ = X − F α◦ ∩ F ◦

α◦ = (X − F ◦
α◦) ∩ F ◦

α◦ = ∅,

which is a contradiction. Therefore, there exists a finite subset Ω of ∆ such
that ⋂

α∈Ω
Fα ̸= ∅.

(iv) =⇒ (i) Let U be an open cover of X. Then C = {X − U : U ∈ U} is a family
of closed subsets of X with ⋂

U∈U
(X − U) = X − ⋃

U∈U
U = X − X = ∅. So,

by hypothesis, there exist U1, . . . , Un ∈ U such that
n⋂

i=1
(X − Ui)◦ = ∅. So,

∅ =
n⋂

i=1
(X − Ui)◦ =

n⋂
i=1

(X − U i) = X −
n⋃

i=1
U i. Hence, X =

n⋃
i=1

U i. Therefore,
X is quasi-H-closed.

Theorem 4.5.3. [28, 97] Let X be a topological space and A ⊆ X. Then the
following are equivalent:

(i) A is a quasi-H-closed relative to X.

(ii) Every filter on X which meets A θ-accumulates at some point of A.

(iii) Every ultrafilter on X which meets A θ-converges to some point of A.

(iv) For every family C of closed sets of X such that
( ⋂

C∈C
C

)
∩ A = ∅, there exists

a finite subfamily C
′ of C such that

( ⋂
C∈C′

C◦
)

∩ A = ∅.

Proof. Similar to the proof of Theorem 4.5.2.

Theorem 4.5.4. Let X be a regular space. Then X is quasi-H-closed if and only
if X is compact.

Proof. Assume that X is quasi-H-closed. Let F be a filter on X. Then F has a
θ-cluster point x ∈ X by Theorem 4.5.2. But X is regular. So, x is a cluster point
of F by Theorem 4.3.3. But then, X is compact by Theorem 2.4.7. The converse
follows from Proposition 4.5.1.
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Theorem 4.5.5. A θ-closed subset of a quasi-H-closed space X is a quasi-H-closed
relative to X.

Proof. Let X be quasi-H-closed and A ⊆ X be θ-closed. Let F be an ultrafilter on
X which meets A. Then by Theorem 4.5.2, F θ−→ x for some x ∈ X since X is
quasi-H-closed. Now, since F is an ultrafilter on X and F meets A, then A ∈ F.
So, we have F

θ−→ x and A ∈ F but A is θ-closed, so by Theorem 4.1.6, x ∈ A.
Hence, every ultarfilter F on X which meets A θ-converges to some point of A

Therefore, A is is a quasi-H-closed relative to X by Theorem 4.5.3.

We point out that Uryshon spaces need not be regular. This fact makes the
following theorem far from being trivial.

Theorem 4.5.6. Let X be an Urysohn space and A ⊆ X. If A is a quasi-H-closed
relative to X, then A is θ-closed.

Proof. Let A be a quasi-H-closed relative to X and X be an Urysohn space. Let
x ∈ θ-Cl(A). Then, by Theorem 4.1.5, there exists a filter on X which meets A

such that F θ−→ x. But since A is a quasi-H-closed relative to X, then by Theorem
4.5.3, F θ

� a for some a ∈ A. But also by Theorem 4.1.10, F has a subfilter F′ such
that F

′ θ−→ a. Also, by Theorem 4.1.8, F′ θ−→ x since F
′ is a subfilter of F and

F
θ−→ x. Now, X is Urysohn implies x = a by Theorem 4.2.1. Therefore, x ∈ A.

So, θ-Cl(A) ⊆ A. Hence, A ⊆ θ-Cl(A) ⊆ A. Thus, θ-Cl(A) = A. Therefore, A is
θ-closed.

4.5.2 Quasi-H-Closedness and Functions

Theorem 4.5.7. Let f : X → Y be a θ-continuous function. If A ⊆ X is a
quasi-H-closed relative to X, then f(A) ⊆ Y is a quasi-H-closed relative to Y .

Proof. Let f : (X, τ) → (Y, σ) be θ-continuous. Let A ⊆ X be a quasi-H-closed
relative to X. Let G be a filter on Y which meets f(A). Then f−1(G) is a filter
on X which meets A. But A is a quasi-H-closed relative to X. Then by Theorem
4.5.3, f−1(G) θ

� a for some a ∈ A. But f is θ-continuous, then Theorem 4.4.7,

88



ff−1(G) θ
� f(a) but G ⊆ ff−1(G). So, by Theorem 4.1.11, G θ

� f(a). Therefore,
f(A) is a quasi-H-closed relative to Y by Theorem 4.5.3.

Theorem 4.5.8. Let f : X → Y be a weakly-θ-continuous function. If A ⊆ X is
compact, then f(A) ⊆ Y is a quasi-H-closed relative to Y .

Proof. Let f : (X, τ) → (Y, σ) be weakly-θ-continuous. Let A ⊆ X be compact. Let
G be a filter on Y which meets f(A). Then f−1(G) is a filter on X which meets A.
But A is compact in X. Then by Theorem 2.4.3, f−1(G) � a for some a ∈ A. But
f is weakly-θ-continuous, then Theorem 4.4.3, ff−1(G) θ

� f(a) but G ⊆ ff−1(G).
So, by Theorem 4.1.11, G θ

� f(a). Therefore, f(A) is a quasi-H-closed relative to
Y by Theorem 4.5.3.

Theorem 4.5.9. Let f : X → Y be a strongly-θ-continuous function. If A ⊆ X is
a quasi-H-closed relative to X, then f(A) ⊆ Y is compact.

Proof. Let f : (X, τ) → (Y, σ) be strongly-θ-continuous. Let A ⊆ X be a quasi-H-
closed relative to X. Let G be a filter on Y which meets f(A). Then f−1(G) is
a filter on X which meets A. But A is a quasi-H-closed relative to X. Then by
Theorem 4.5.3, f−1(G) θ

� a for some a ∈ A. But f is strongly-θ-continuous, then
Theorem 4.4.5, ff−1(G) � f(a) but G ⊆ ff−1(G). So, by Theorem 2.1.9, G � f(a).
Therefore, f(A) is compact by Theorem 2.4.3.

Theorem 4.5.10. [43] The product X = ∏
α∈∆

Xα is quasi-H-closed if and only if
each space Xα, α ∈ ∆ is quasi-H-closed.

Proof. Assume that X is quasi-H-closed. The projection πα is continuous and onto
for all α ∈ ∆. But any continuous function is θ-continuous. So, πα is θ-continuous
for all α ∈ ∆. From Theorem 4.5.7, it follows that πα(X) = Xα is quasi-H-closed
for all α ∈ ∆.

Conversely, let F be an ultrafilter on X. Since πα is onto for all α ∈ ∆, then
by Theorem 1.1.6, πα(F) is an ultrafilter on Xα for all α ∈ ∆. But Xα is quasi-
H-closed for all α ∈ ∆, so πα(F) θ−→ xα ∈ Xα for all α ∈ ∆, by Theorem 4.5.2.
Let x = (xα)α∈∆, then x ∈ X and πα(x) = xα for all α ∈ ∆. So, πα(F) θ−→ πα(x)
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for all α ∈ ∆. Hence, F θ−→ x by Theorem 4.4.10. Therefore, X = ∏
α∈∆

Xα is
quasi-H-closed by Theorem 4.5.2.

4.5.3 Strongly Closed Graphs

Definition 4.5.3. [65] A function f : (X, τ) → (Y, σ) is said to have a strongly
closed graph if for each (x, y) /∈ Γf , there exist U ∈ τ(x) and G ∈ Cσ(y) such that
(U × G) ∩ Γf = ∅.

Theorem 4.5.11. [65] Let f : X → Y be a function, then f has a strongly closed
graph if and only if for each x ∈ X and each y ∈ Y , with (x, y) /∈ Γf , there exist
U ∈ τ(x) and G ∈ Cσ(y) such that f(U) ∩ G = ∅.

Proof. The straightforward proof follows from Definition 4.5.3 and is omitted.

Of course, a function with a strongly closed graph has a closed graph, but the
converse is not true as shown by the following example.

Example 4.5.2. [65] Let X be the closed unit interval [0, 1] and let Y be the upper
half-plane {(x, y) : y ≥ 0} with the half-disc topology [109, p. 96]. Define a function
f : (X, τ) → (Y, σ) by f(x) = (x, 0) if x ̸= 0 and f(0) = (1, 1). Then f has a
closed graph but it doesn’t have a strongly closed graph.

The following theorem and corollary give a characterization of functions with
strongly closed graph in terms of θ-convergence of filters.

Theorem 4.5.12. [52] A function f : (X, τ) → (Y, σ) has a strongly closed graph
if and only if whenever F is a filter on X with F −→ x and f(F) θ−→ y in Y , then
(x, y) ∈ Γf .

Proof. Assume that f has a strongly closed graph. Let F −→ x and f(F) θ−→ y.
Suppose on the contrary that (x, y) /∈ Γf . Since f has a strongly closed graph, then
by Theorem 4.5.11, there exist U ∈ τ(x) and G ∈ Cσ(y) such that f(U) ∩ G = ∅.
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But since F −→ x and U ∈ τ(x), then U ∈ F, and hence f(U) ∈ f(F). On the
other hand, f(F) θ−→ y and G ∈ Cσ(y), so G ∈ f(F). Thus, f(U) ∩ G ̸= ∅, which
is a contradiction. Therefore, (x, y) ∈ Γf .

Conversely, suppose on the contrary that f does not have a strongly closed graph,
then there exists x ∈ X, y ∈ Y with (x, y) /∈ Γf such that f(U) ∩ G ≠ ∅ for all
U ∈ τ(x) and all G ∈ Cσ(y). This implies that U ∩f−1(G) ̸= ∅ for all U ∈ τ(x) and
all G ∈ Cσ(y). Let F = {F ⊆ X : F ⊇ U ∩ f−1(G), U ∈ τ(x), G ∈ Cσ(y)}, then F

is a filter on X. We claim that F −→ x and f(F) θ−→ y. First, let U◦ ∈ τ(x). Then
U◦ ⊇ U◦ ∩ f−1(G) for each G ∈ Cσ(y). Hence, U◦ ∈ F. Next, let G◦ ∈ Cσ(y). Then
G◦ ⊇ f(f−1(G◦)) ⊇ f(U ∩ f−1(G◦)) for each U ∈ τ(x), but U ∩ f−1(G◦) ∈ F for
each U ∈ τ(x). So, G◦ ∈ f(F). Therefore, we have constructed a filter F −→ x in
X for which f(F) θ−→ y in Y . By hypothesis, (x, y) ∈ Γf which is a contradiction.
Therefore, Γf is a strongly closed graph.

Corollary 4.5.1. [41] Let f : (X, τ) → (Y, σ) be any function, where Y is a regular
space. Then the following are equivalent:

(i) f has a strongly closed graph.

(ii) If a filter F −→ x in X and f(F) θ−→ y in Y , then (x, y) ∈ Γf .

(iii) If a filter F −→ x in X and f(F) −→ y in Y , then (x, y) ∈ Γf .

(iv) f has a closed graph.

Proof. 3aa

(i) =⇒ (ii) Follows from Theorem 4.5.12.

(ii) =⇒ (iii) Follows from Theorem 4.3.1 and the fact that Y is a regular space.

(iii) =⇒ (iv) Follows from Theorem 2.4.9.

(iv) =⇒ (i) Suppose that f has a closed graph. Let F be a filter on X with F −→ x and
f(F) θ−→ y. Since Y is regular, then by Theorem 4.3.1, f(F) −→ y. But
f has a closed graph, so by Theorem 2.4.9, (x, y) ∈ Γf . Therefore, f has a
strongly closed graph by Theorem 4.5.12.

The graph of a weakly-θ-continuous function need not be strongly closed as it
is shown in the next example.
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Example 4.5.3. In Example 2.4.2, we have the function f is continuous, and
hence f is weakly-θ-continuous. But the graph Γf is not strongly closed graph since
(1, 1) ̸∈ Γf but for any U ∈ τ(1) and W ∈ Cσ(1), we have (1, −1) ∈ (U × W ) ∩ Γf .

We are now ready to give a sufficient condition on the codomain of a weakly-
θ-continuous function f to insure that it has a strongly closed graph.

Theorem 4.5.13. [44, 65] If f : (X, τ) → (Y, σ) is weakly-θ-continuous and (Y, σ)
is Urysohn, then f has a strongly closed graph.

Proof. Suppose that F is a filter on X with F −→ x ∈ X and f(F) θ−→ y ∈ Y .
Since f is weakly-θ-continuous, then by Theorem 4.4.2, f(F) θ−→ f(x). But Y is
Urysohn implies f(x) = y by Theorem 4.2.1. So, (x, y) ∈ Γf . Hence, by Theorem
4.5.12, f has a strongly closed graph.

Example 4.5.4. Consider the identity function f : (R, τ) → (R, σ), where τ and
σ are the usual and discrete topologies on R, respectively. Then f has a strongly
closed graph but f is not weakly-θ-continuous.

We are now ready to give a sufficient condition on the codomain of a function
f has a strongly closed graph to insure that it is weakly-θ-continuous.

Theorem 4.5.14. [47] Let (Y, σ) be an H-closed space. For every topological
space (X, τ), each function f : (X, τ) → (Y, σ) with a strongly closed graph is
weakly-θ-continuous.

Proof. Let x ∈ X and V ∈ σ(f(x)). For each y ∈ Y − V , we have y ̸= f(x),
this means for each y ∈ Y − V , (x, y) ̸∈ Γf . But Γf is strongly closed, then by
Theorem 4.5.11, there exist Uy ∈ τ(x) and Vy ∈ σ(y) such that f(Uy) ∩ V y = ∅.
Let V = {V } ∪ {Vy : y ∈ Y − V }, then V is an open cover for Y . But Y is
H-closed, then there is a finite subfamily, say V

′ =
{
V, Vy1 , . . . , Vyn

}
, of V such that

Y = V ∪
n⋃

i=1
V yi

. Let U =
n⋂

i=1
Uyi

. Then U ∈ τ(x) and U ⊆ Uyi
for all i = 1, . . . , n.

Now, f(U) ∩
( n⋃

i=1
V yi

) =
n⋃

i=1

(
f(U) ∩ V yi

)
⊆

n⋃
i=1

(
f(Uyi

) ∩ V yi

)
= ∅. This implies

that, f
(
U

)
⊆ Y −

n⋃
i=1

V yi
⊆ V . Thus, f is weakly-θ-continuous at the arbitrary

point x ∈ X, and so f is weakly-θ-continuous on X.
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Lemma 4.5.1. Let X = Z ∪{p} where Z is a set with p ̸∈ Z, (Y, σ) be a topological
space and y ∈ Y . Let g : Z → (Y, σ) be a function and F be a filter on Z. Define
a function g̃ : (X, τp) → (Y, σ) by g̃(z) = g(z) for any z ∈ Z and g̃(p) = y. Then
g(F) θ−→ y in (Y, σ) if and only if g̃ is weakly-θ-continuous on X.

Proof. Similar to the proof of Lemma 2.4.1.

Theorem 4.5.15. [47, 52] A Hausdorff space (Y, σ) is H-closed if and only if
for every topological space (X, τ) ∈ S, each function f : (X, τ) → (Y, σ) with a
strongly closed graph is weakly-θ-continuous.

Proof. The first direction follows by Theorem 4.5.14. Suppose, by the way of
contradiction, that Y is not H-closed, then by Proposition 4.1.2 part (iii), there is
a filter F on Y such that θ-Adhσ(F) = ∅. Let X = Y ∪ {p} where p ̸∈ Y . Consider
the topological space (X, τp). Then by Theorem 2.4.12, (X, τp) is Hausdorff. Also,
by Theorems 1.4.2 and 1.4.4, (X, τp) is completely normal and fully normal. This
implies that (X, τp) ∈ S. Fix a point b ∈ Y and define ĩdY : (X, τp) → (Y, σ) by
ĩdY (x) = idY (x) = x for any x ∈ Y and ĩdY (p) = b. Let (x, y) ∈ X × Y and
(x, y) ̸∈ ΓĩdY

. Consider the case when x ̸= p. Since ĩdY (x) ̸= y and (Y, σ) is
Hausdorff, then there exists Vy ∈ σ(y) such that ĩdY (x) ̸∈ V y. Hence, {x} ∈ τp(x),
Vy ∈ σ(y) and ĩdY ({x}) ∩ V y = {ĩdY (x)} ∩ V y = ∅. Consider the case when x = p.
Then b = ĩdY (p) ̸= y. Again, since (Y, σ) is Hausdorff, then there exists Vy ∈ σ(y)
such that b ̸∈ V y. Moreover, since θ-Adhσ(F) = ∅, then by Theorem 4.1.3, we

have F
θ

�̸ y, so there exist Wy ∈ σ(y) and F ∈ F such that F ∩ W y = ∅. Let
Zy = Vy ∩ Wy. Then Zy ∈ σ(y), b /∈ Zy and F ∩ Zy = ∅. So, F ∪ {p} ∈ τp(x),
Zy ∈ σ(y) and ĩdY (F ∪ {p}) ∩ Zy = (id(F ) ∪ {b}) ∩ Zy = F ∩ Zy = ∅. We have
shown, in both cases, that for each (x, y) ∈ (X × Y ) − ΓĩdY

, there exist Ux ∈ τp(x)
and Gy ∈ σ(y) such that ĩdY (Ux) ∩ Gy = ∅. Thus, by Theorem 4.5.11, ĩdY has a
strongly closed graph. By hypothesis, ĩdY is weakly-θ-continuous, so by Lemma
4.5.1, idY (F) θ−→ b in (Y, σ) implies F

θ−→ b in (Y, σ), and hence by Proposition
4.1.2 part (i), F θ

� b, and so Theorem 4.1.3, θ-Adhσ(F) ̸= ∅, which is a contradiction.
Therefore, (Y, σ) is H-closed.
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Chapter 5
rc-Convergence of Filters

We study rc-convergence of filters. We will start by introducing the definition
of an rc-limit of a filter and define an rc-cluster point of a filter. Characteriza-
tions of various topological properties in terms of filters have been discovered.
Also, new results in regular, extremally disconnected, and semi-Urysohn spaces
have been obtained. Various functions: rc-continuous, θs-continuous, and S-
continuous are all characterized by filters. As well, the connections between
these functions and rc-limits (rc-cluster points) of filters are investigated. Sev-
eral important notions, such as S-closed spaces and rc-strongly closed graphs,
can be characterized with the help of filters.

5.1 rc-Limit and rc-Cluster Points of Filters

Definition 5.1.1. [48] Let (X, τ) be a topological space. For each x ∈ X, let
Cτ

r(x) = {U : x ∈ U, U ∈ τ}. Then Cτ
r(x) = RCτ (x) and Cτ

r(x) has the finite
intersection property. Thus, Cτ

r(x) is a filter subbase on X. Let ⟨Cτ
r(x)⟩ be the

filter generated by Cτ
r(x). We call ⟨Cτ

r(x)⟩ the rc-neighborhood filter of x.

Notation 9. For a topological space (X, τ) and x ∈ X, the subbase Cτ
r(x) will be

simply be denoted by Cr(x) when there is no confusion.
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Proposition 5.1.1. Let (X, τ) be a topological space. Then

(i) C(x) ⊆ Cr(x) for any x ∈ X.

(ii) (X, τ) is extremally disconnected if and only if C(x) = Cr(x) for any x ∈ X.

Proof. (i) Let x ∈ X and H ∈ C(x), then H = U where x ∈ U and U ∈ τ but
U ⊆ U , so H = U where x ∈ U and U ∈ τ , thus H ∈ Cr(x). Therefore,
C(x) ⊆ Cr(x) for any x ∈ X.

(ii) Suppose that X is extremally disconnected and x ∈ X. By part (i), C(x) ⊆
Cr(x). Let R ∈ Cr(x), then R = U , U ∈ τ and x ∈ U but since X is
extremally disconnected and U ∈ τ , then R = U ∈ τ . As x ∈ R ∈ τ , then
R ∈ C(x) but R is regular closed, so R is closed. Thus, R = R, and hence
R ∈ C(x). Therefore, Cr(x) ⊆ C(x). Conversely, Let U ∈ τ , then we show
that U ∈ τ . Let x ∈ U , then U ∈ Cr(x) = C(x), then there exists V ∈ τ(x)
such that U = V but x ∈ V ⊆ V = U . So, U ∈ U(x) for any x ∈ X. Hence,
U ∈ τ . Therefore, X is extremally disconnected.

Definition 5.1.2. [48] Let (X, τ) be a topological space, F be a filter on X and
x ∈ X. We say that F rc-converges to x, written F

rc−→ x if ⟨Cr(x)⟩ ⊆ F. In such
a case, x is called the rc-limit of F.

Definition 5.1.3. [111] Let (X, τ) be a topological space, F be a filter on X and
x ∈ X. We say that F s-converges to x, written F

s−→ x if for all S ∈ SO(x),
S ∈ F. In such a case, x is called the s-limit of F.

Proposition 5.1.2. [10] Let F be a filter on a topological space X. Then F
s−→ x

if and only if F rc−→ x.

Proof. This follows from the fact that RC(x) = {V : V ∈ SO(x)}.

Definition 5.1.4. [10] Let (X, τ) be a topological space. We define the τrc-topology
on X as the topology on X which has RC(X) as a subbase. It is to be noted that
intersection of two regular closed sets may fail to be regular closed. Therefore these
collections do not form a base for topology.
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Proposition 5.1.3. Let (X, τ) be a topological space and F be a filter on X. Then
F

rc−→ x in (X, τ) if and only if F −→ x in (X, τrc).

Proof. Suppose that F
rc−→ x. Then ⟨Cr(x)⟩ ⊆ F. That is, ⟨RC(x)⟩ ⊆ F. Let

U ∈ τrc(x). Then there exist R1, . . . , Rn ∈ RC(x) such that x ∈
n⋂

i=1
Ri ⊆ U . Since

n⋂
i=1

Ri ∈ ⟨RC(x)⟩, then
n⋂

i=1
Ri ∈ F. So, U ∈ F. Thus, F −→ x in (X, τrc).

Conversely, suppose that F
τrc−→ x. Let R ∈ Cr(x) = RC(x). But since RC(X) ⊆

τrc, then R ∈ τrc(x). As F
τrc−→ x, then R ∈ F. Therefore, F rc−→ x.

Definition 5.1.5. [48] Let (X, τ) be a topological space and F be a filter on X

and x ∈ X. Then F rc-accumulates at x, written F
rc
� x, iff F(∩)[Cr(x)] iff for

each F ∈ F and for each R ∈ [Cr(x)], F ∩ R ̸= ∅. The point x is then called the
rc-cluster of F.

Definition 5.1.6. [111] Let (X, τ) be a topological space and F be a filter on X

and x ∈ X. Then F s-accumulates at x, written F
s
� x, iff for each V ∈ SO(x) and

each F ∈ F, F ∩ V ̸= ∅. The point x is called the s-cluster of F.

Proposition 5.1.4. Let (X, τ) be a topological space and F be a filter on X. Then
F

rc
� x in (X, τ) if and only if F � x in (X, τrc).

Proof. Suppose that F
rc
� x. Let U ∈ τrc(x). Then there exist R1, . . . , Rn ∈ RC(x)

such that x ∈
n⋂

i=1
Ri ⊆ U . Since Ri ∈ RC(x) for any i = 1, . . . , n, then

n⋂
i=1

Ri ∈

[RC(x)] = [Cr(x)]. So, (
n⋂

i=1
Ri) ∩ F ̸= ∅ for any F ∈ F. Hence, U ∩ F ≠ ∅ for any

F ∈ F. Thus, F � x in (X, τrc).

Conversely, suppose that F
τrc� x. Let R ∈ [Cr(x)] = [RC(x)]. But since

RC(X) ⊆ τrc, then R ∈ τrc(x). As F
τrc� x, then R ∩ F ̸= ∅ for any F ∈ F.

Therefore, F rc
� x.

Remark 5.1. [10] Since Cr(x) = RC(x) = {V : V ∈ SO(x)} by Proposition 1.2.7
part (iii). Then an equivalent formulation of Definition 5.1.6, is that a filter F

s-accumulates at x ∈ X if and only if for each F ∈ F and for each R ∈ RC(x),
F ∩ R ̸= ∅.
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Proposition 5.1.5. [10] Let (X, τ) be a topological space, F be a filter on X and
x ∈ X. If F rc

� x, then F
s
� x.

The converse is not necessarily true follows from the following example.

Example 5.1.1. Suppose that X = {a, b, c, d} with τ = {∅, X, {a, b}, {c}, {a, b, c}}
and F = {{a, b, c}, X}. Now, Cr(d) = {X, {a, b, d}, {c, d}} and
[Cr(d)] = {X, {a, b, d}, {c, d}, {d}}. Then F

s
� d since Cr(d)(∩)F but F

rc

�̸ d since
{a, b, c} ∩ {d} = ∅.

Proposition 5.1.6. Let X be a topological space, F be a filter on X and x ∈ X.
If F rc−→ x, then F

rc
� x.

Proof. Suppose that F
rc−→ x. Let F ∈ F and R ∈ [Cr(x)], then R ∈ F since

F
rc−→ x. So, F ∩ R ̸= ∅.

Convergence of filters in the usual sense and rc-convergence are independent
of each other.

Example 5.1.2. Consider the topological space (X, τ) given in Example 5.1.1.
Let F = {{a, b, c}, X}. Then U(d) = {X} ⊆ F, so F −→ d. But F

rc

−̸→ d since
Cr(d) = {{c, d}, {a, b, d}, X} ̸⊆ F.

Example 5.1.3. Consider the topological space (X, τ) given in Example 5.1.1.
Let F = {{a, b, d}, X}. Then U(a) = {{a, b}, {a, b, c}, {a, b, d}, X} ̸⊆ F, so F−̸→a.
But F rc−→ a since ⟨Cr(a)⟩ = {{a, b, d}, X} ⊆ F.

Cluster and rc-cluster point of filters are independent of each other.

Example 5.1.4. Consider the topological space (X, τ) given in Example 5.1.1. Let
F = ⟨a⟩ be the principal filter generated by a. Then U(d) = {X} ⊆ F, so F −→ d,
and hence F � d. But F

rc

�̸ d since {a} ∈ F, {c, d} ∈ Cr(d), but {a} ∩ {c, d} = ∅.
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Example 5.1.5. Consider the topological space (X, τ) given in Example 5.1.1.
Let F = ⟨d⟩ be the principal filter generated by d. Then F�̸a since {d} ∈ F,
{a, b} ∈ U(a), but {d}∩{a, b} = ∅. Now, by Example 5.1.3, [Cr(a)] = {{a, b, d}, X}.
Clearly, F(∩)[Cr(a)]. Hence, F rc

� a.

Definition 5.1.7. [59] Let (X, τ) be a topological space, E ⊆ X and x ∈ X. Then
x is a θ-semi-adherent point of E iff for all R ∈ Cr(x), R ∩ E ̸= ∅. The set of
all θ-semi-adherent points of a set E is called the θ-semiclosure of the set E and
denoted by θ-sCl(E).

Proposition 5.1.7. Let X be a topological space and E ⊆ X, then E ⊆ θ-sCl(E) ⊆
θ-Cl(E).

Proof. Let x ∈ E and R ∈ Cr(x), then x ∈ R. So, x ∈ R ∩ E, and hence R ∩ E ̸= ∅
and thus, x ∈ θ-sCl(E). Hence, E ⊂ θ-sCl(E). Next, let x ∈ θ-sCl(E) and
G ∈ C(x). By Proposition 5.1.1, C(x) ⊆ Cr(x), so G ∈ Cr(x), and hence G ∩ E ≠ ∅
since x ∈ θ-sCl(E). Thus, x ∈ θ-Cl(E).

Proposition 5.1.8. Let (X, τ) be a topological space and E ⊆ X. Then θ-sCl(E) =⋂{U ⊆ X : U ∈ RO(X), E ⊆ U}.

Proof. Let x ∈ θ-sCl(E) and suppose, by the way of contradiction, that x /∈ ⋂{U ⊆
X : U ∈ RO(X), E ⊆ U}, then x /∈ U for some U ∈ RO(X) with E ⊆ U . Then
X − U ∈ RC(X) and x ∈ X − U . So, X − U ∈ RC(x). As x ∈ θ-sCl(E), then
(X − U) ∩ E ̸= ∅ but E ⊆ U , then E ∩ (X − U) ⊆ U ∩ (X − U) = ∅, which is a
contradiction. Hence, θ-sCl(E) ⊆ ⋂{U ⊆ X : U ∈ RO(X), E ⊆ U}.

Next, let x ∈ ⋂{U ⊆ X : U ∈ RO(X), E ⊆ U} and suppose, by the way of
contradiction, that x /∈ θ-sCl(E). Then there exists R ∈ RC(x) such that E∩R = ∅.
Let U = X − R. Then U ∈ RO(X) and E ⊆ U , so by hypothesis, x ∈ U = X − R.
That is, x ̸∈ R, which is a contradiction with R ∈ RC(x). Thus, x ∈ θ-sCl(E).
Hence, ⋂{U ⊆ X : U ∈ RO(X), E ⊆ U} ⊆ θ-sCl(E). Therefore, the equality
holds.

Definition 5.1.8. [59] A subset E of a topological space (X, τ) is called θ-
semiclosed if θ-sCl(E) = E. The complement of a θ-semiclosed set is called
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a θ-semiopen set. The family of all θ-semiopen sets in (X, τ) is denoted by τ+.

Proposition 5.1.9. [87, 89] Let A be a subset of a topological space X. Then A

is θ-semiopen if and only if for each x ∈ A, there exists a semi-open set G in X

such that x ∈ G ⊆ G ⊆ A.

Proof.

A is θ-semiopen iff X − A is θ-semiclosed
iff θ-sCl(X − A) ⊆ X − A

iff A ⊆ X − θ-sCl(X − A)
iff ∀ x ∈ A, x ̸∈ θ-sCl(X − A)
iff ∀ x ∈ A, ∃ R ∈ RC(x) such that R ∩ (X − A) = ∅
iff ∀ x ∈ A, ∃ R ∈ RC(X) such that x ∈ R ⊆ A

iff ∀ x ∈ A, ∃ G ∈ SO(X) such that x ∈ G ⊆ G ⊆ A.

Proposition 5.1.10. [87] Let A be a subset of a topological space (X, τ). Then
A ∈ τ+ if and only if A is the union of regular closed sets of (X, τ).

Proposition 5.1.11. [87] Let (X, τ) be a topological space and A ⊆ X.

(i) If A is regular closed in X, then A is θ-semiopen.

(ii) If A is regular open in X, then A is θ-semiclosed.

(iii) The family of all θ-semiopen subsets of X need not be a topology on X.

Proof. 32:57/1:58:08

(i) Let A be regular closed in X and x ∈ A, then take R = A ∈ RC(X) such
that x ∈ R ⊆ A. So, by Proposition 5.1.9, A is θ-semiopen.

(ii) Suppose that A is regular open in X, then X − A is regular closed in X. So,
by part (i), X − A is θ-semiopen. Hence, A is θ-semiclosed.

(iii) τ+ is not a topology in general. As the following example shows.
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Example 5.1.6. Let X = {a, b, c} with τ = {∅, X, {a}, {b}, {a, b}}. Then RC(X) =
{∅, X, {a, c}, {b, c}}. Let A = {a, c} and B = {b, c}, then clearly, A and B are
θ-semiopen since A, B ∈ RC(X). But {c} = A∩B. Thus, c ∈ A∩B but there is no
R ∈ RC(X) such that c ∈ R ⊆ A ∩ B, and hence by Proposition 5.1.9, A ∩ B ̸∈ τ+,
that is A ∩ B is not θ-semiopen.

Proposition 5.1.12. [87] The following are equivalent for a topological space
(X, τ):

(i) (X, τ) is extremally disconnected.

(ii) SO(X, τ) is a topology on X.

(iii) τ+ is a topology on X.

Remark 5.2. If Clτrc denotes the closure operator in the τrc-topology, then Clτrc(A) ̸=
θ-sCl(A) as the following example shows.

Example 5.1.7. Consider the topological space (X, τ) given in Example 5.1.1. Then
RC(X) = {∅, X, {a, b, d}, {c, d}} and τrc = {∅, X, {a, b, d}, {c, d}, {d}}. Let A =
{a, c}, then Clτrc(A) = {a, b, c} and θ-sCl(A) = X. Thus, Clτrc(A) ̸= θ-sCl(A).

Theorem 5.1.1. Let (X, τ) be a topological space and E ⊆ X. If E is open in X,
then θ-sCl(E) ⊆ E.

Proof. Since E is open in X, then by Theorem 4.1.1, θ-Cl(E) = E. But θ-sCl(E) ⊆
θ-Cl(E) by Proposition 5.1.7. Thus, θ-sCl(E) ⊆ E.

Theorem 5.1.2. Let (X, τ) be an extremally disconnected and E ⊆ X. Then
E ⊆ θ-sCl(E).

Proof. Let x ∈ E and let U ∈ Cr(x). Since X is extremally disconnected, then
U ∈ τ(x). So, U ∩ E ̸= ∅ since x ∈ E. Hence, x ∈ θ-sCl(E). Therefore,
E ⊆ θ-sCl(E).

Corollary 5.1.1. Let (X, τ) be an extremally disconnected space and E ⊆ X. If
E is open in X, then θ-sCl(E) = E.
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Proof. This follows from Theorems 5.1.1 and 5.1.2.

Theorem 5.1.3. Let (X, τ) be a regular extremally disconnected space and E ⊆ X.
Then E = θ-sCl(E).

Proof. Since X is extremally disconnected, then by Theorem 5.1.2, E ⊆ θ-sCl(E).
Also, since X is regular, then by Theorem 4.3.2, E = θ-Cl(E). Thus, E ⊆
θ-sCl(E) ⊆ θ-Cl(E) = E. Therefore, E = θ-sCl(E).

Definition 5.1.9. [75] Let F be a filter on a topological space (X, τ). A point x ∈ X

is said to be a θ-semi-adherent point of F if x is a θ-semi-adherent point of every
set in F. The θ-semiadherence of F, θ-sAdh(F), is the set of all θ-semi-adherent
points of F.

Remark 5.3. [75] Let X be a topological space. If F is a filter on X, then
θ-sAdh(F) = ⋂

F ∈F
θ-sCl(F ).

Theorem 5.1.4. Let F be a filter on a topological space X and x ∈ X. Then
x ∈ θ-sAdh(F) if and only if F s

� x.

Proof.

x ∈ θ-sAdh(F) iff x ∈
⋂

F ∈F

θ-sCl(F )

iff x ∈ θ-sCl(F ) for all F ∈ F

iff R ∩ F ̸= ∅ for all R ∈ RC(x) and all F ∈ F

iff F
s
� x.

Theorem 5.1.5. Let F be a filter on a topological space X and x ∈ X. If F rc
� x,

then x ∈ θ-sAdh(F).

Proof. If F rc
� x, then by Proposition 5.1.5, F s

� x. So, by Theorem 5.1.4, x ∈
θ-sAdh(F).
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Example 5.1.8. Consider the topological space (X, τ) and the filter F on X given
in Example 5.1.1, we get F s

� d but F
rc

�̸ d. So, by Theorem 5.1.4, d ∈ θ-sAdh(F)
and by Proposition 5.1 and Theorem 2.1.1, d ̸∈ Adhτrc(F). Hence, θ-sAdh(F) ̸=
Adhτrc(F).

Theorem 5.1.6. Let X be a topological space, E ⊆ X and x ∈ X. If F is a filter
on X such that E ∈ F and F

rc−→ x, then x ∈ θ-sCl(E).

Proof. Suppose that there is a filter F on X such that E ∈ F and F
rc−→ x. We

will show that x ∈ θ-sCl(E). Let R ∈ Cr(x). But ⟨Cr(x)⟩ ⊆ F, then R ∈ F and
thus, R ∩ E ̸= ∅. So, x ∈ θ-sCl(E).

Theorem 5.1.7. Let X be a topological space, E ⊆ X and x ∈ X. If F is a filter
on X such that F

rc−→ x and F ∩ E ̸= ∅ for all F ∈ F, then x ∈ θ-sCl(E).

Proof. Suppose that F is a filter on X such that F
rc−→ x and F ∩ E ≠ ∅ for all

F ∈ F. Let R ∈ Cr(x), then R ∈ F since F
rc−→ x. So, by hypothesis, R ∩ E ̸= ∅.

Therefore, x ∈ θ-sCl(E).

Remark 5.4. Let F and G be filters on a topological space (X, τ) and x ∈ X.

(i) The principal filter ⟨x⟩ rc−→ x.

(ii) If F rc−→ x and G
rc−→ x, then F ∩ G

rc−→ x.

Theorem 5.1.8. Let X be a topological space, F be a filter on X and x ∈ X.
Then F

rc−→ x if and only if for every subfilter F
′ of F, F′ rc−→ x.

Proof. If every subfilter F
′ of F rc-converges to x, then so does F because F ⊆ F.

Conversely, if F rc−→ x and F′ is a subfilter of F, then ⟨Cr(x)⟩ ⊆ F and F ⊆ F
′ .

Hence, ⟨Cr(x)⟩ ⊆ F
′ . Therefore, F′ rc−→ x.

Theorem 5.1.9. Let (X, τ) be a topological space, F be a filter on X and x ∈ X.
Then F

rc−→ x if and only if every subfilter G of F has a subfilter H such that
H

rc−→ x.
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Proof. Suppose, by the way of contradiction, that F
rc

−̸→ x, then there is R ∈ Cr(x)
such that R ̸∈ F. Then (X − R) ∩ F ̸= ∅ for all F ∈ F. Consider G = ⟨F

∣∣∣
X−R

⟩,
then G is a filter of F such that F ⊆ G and X − R ∈ G. So, G has a subfilter F. By
hypothesis, G has a subfilter H such that H

rc−→ x. Since R ∈ Cr(x), then R ∈ H

but X − R ∈ G ⊆ H. So, ∅ ∈ H, which is a contradiction. Therefore, F rc−→ x.
The converse follows from Theorem 5.1.8.

Theorem 5.1.10. Let X be a topological space, F be a filter on X and x ∈ X.
Then F

rc
� x if and only if there exists a subfilter F

′ of F such that F
′ rc−→ x.

Proof. Let F be a filter on X. Suppose that there exists a subfilter F
′ of F such

that F
′ rc−→ x. Then F ⊆ F

′ and ⟨Cr(x)⟩ ⊆ F
′ . We show that F

rc
� x. Let F ∈ F

and R ∈ [Cr(x)], then F ∈ F
′ and R ∈ F

′ . So, F ∩ R ̸= ∅. Hence, F rc
� x.

Conversely, assume that F
rc
� x. We will construct a subfilter F′ of F that

rc-converges to x. Since F
rc
� x, then F(∩)[Cr(x)]. Since [Cr(x)] ⊆ ⟨Cr(x)⟩ and by

Proposition 1.1.1 part (i), F(∩)⟨Cr(x)⟩. Let F
′ = F ∨ ⟨Cr(x)⟩. Then F

′ is a filter
on X such that F ⊆ F

′ and ⟨Cr(x)⟩ ⊆ F
′ . Thus, F′ is a subfilter of F such that

F
′ rc−→ x.

Theorem 5.1.11. Let X be a topological space, F′ be a subfilter of F on X and
x ∈ X. If F′ rc

� x, then F
rc
� x.

Proof. Suppose that F′ rc
� x, then F

′(∩)[Cr(x)] but since F ⊆ F
′ and by Proposition

1.1.1 part (i), so F(∩)[Cr(x)]. Hence, F rc
� x.

Theorem 5.1.12. Let F be an ultrafilter on a topological space X and x ∈ X.
Then F

rc−→ x if and only if F rc
� x.

Proof. If F
rc−→ x, then F

rc
� x by Proposition 5.1.6. Conversely, suppose that

F
rc
� x. Let R ∈ Cr(x). Then R ∩ F ̸= ∅ for any F ∈ F. So, F meets R. But

F is an ultrafilter on X, then by the proof of Theorem 1.1.5, R ∈ F. Therefore,
F

rc−→ x.
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5.2 rc-Convergence in Semi-Urysohn Spaces

Definition 5.2.1. [31] A topological space (X, τ) is said to be semi-Urysohn if for
each x1 ̸= x2 in X, there exist semi-open sets U and V in X containing x1 and x2,
respectively, such that U ∩ V = ∅.

Theorem 5.2.1. [31] A topological space X is semi-Urysohn if and only if for each
x1 ̸= x2 in X, there exist regular closed sets F1 and F2 in X containing x1 and x2,
respectively, such that F1 ∩ F2 = ∅.

The following implications hold.

Proposition 5.2.1. [31] Urysohn =⇒ semi-Urysohn =⇒ weakly-T2.

Theorem 5.2.2. Let X be a topological space. If X is semi-Urysohn, then each
filter F on X rc-converges to at most one point in X.

Proof. Suppose that X is semi-Urysohn and F is a filter on X. Assume that
F

rc−→ x and F
rc−→ y with x ̸= y in X. But X is semi-Urysohn, so there exist

G ∈ Cr(x) and H ∈ Cr(y) such that G ∩ H = ∅. On the other hand, G ∈ F and
H ∈ F, so G ∩ H ≠ ∅, which is a contradiction. Thus, F rc-converges to at most
one point in X.

Theorem 5.2.3. Let X be a semi-Urysohn space, F be a filter on X and x ∈ X.
If F rc−→ x in X, then x is the unique rc-cluster point of F.

Proof. If F rc−→ x, then F
rc
� x by Proposition 5.1.6. Now, suppose that y ∈ X is an

rc-cluster point of F with y ̸= x. But X is semi-Urysohn, so there exist G ∈ Cr(x)
and H ∈ Cr(y) such that G ∩ H = ∅. But F

rc−→ x, so G ∈ F. Also, since F
rc
� y,

then F ∩ H ≠ ∅ for all F ∈ F, but then G ∩ H ̸= ∅, which is a contradiction.
Therefore, x is the unique rc-cluster point of F.
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5.3 rc-Convergence in Regular Extremally
Disconnected Spaces

We will see immediately that, in regular extremally disconnected spaces, rc-
convergence of filters is equivalent to convergence of filters and in this case
equivalence is also valid for cluster and rc-cluster points.

Theorem 5.3.1. Let (X, τ) be a regular space and F be a filter on X and x ∈ X.

(i) If F rc−→ x, then F −→ x.

(ii) If F rc
� x, then F � x.

Proof. (i) Suppose that F
rc−→ x. Let U ∈ τ(x), then there exists V ∈ τ(x) such

that V ⊆ U since X is regular. But V ∈ C(x) ⊆ Cr(x) and F
rc−→ x. So,

V ∈ F, and hence U ∈ F. Therefore, F −→ x.

(ii) Suppose that F
rc
� x. Let U ∈ τ(x), then there exists V ∈ τ(x) such that

V ⊆ U since X is regular. But V ∈ C(x) ⊆ Cr(x) and F
rc
� x. This implies,

V ∩ F ̸= ∅ for any F ∈ F. So, U ∩ F ̸= ∅ for any F ∈ F. Therefore, F � x.

Theorem 5.3.2. Let (X, τ) be an extremally disconnected space, F be a filter on
X and x ∈ X.

(i) If F −→ x, then F
rc−→ x.

(ii) If F � x, then F
rc
� x.

Proof. (i) Suppose that F −→ x. Let R ∈ Cr(x). Then R ∈ RO(x) ⊆ τ(x)
since X is extremally disconnected. But F −→ x implies R ∈ F. Therefore,
F

rc−→ x.

(ii) Suppose that F � x. Let R ∈ [Cr(x)]. Then R ∈ [RO(x)] ⊆ τ(x) since X is
extremally disconnected. But since F � x, then R ∩ F = ∅ for any F ∈ F.
Therefore, F rc

� x.
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Corollary 5.3.1. Let X be a regular extremally disconnected space, F be a filter
on X and x ∈ X.

(i) F
rc−→ x if and only if F −→ x.

(ii) F
rc
� x if and only if F � x.

Proof. This follows directly from Theorems 5.3.1 and 5.3.2.

5.4 rc-Convergence and Functions

We will investigate the case of rc-limits of filters under the three types of con-
tinuity. We will do the same investigation for rc-cluster points of filters.

5.4.1 rc-Continuous Functions

We introduce rc-continuous functions that form a proper subclass of the class
of weakly-θ-continuous functions. In studying this new class, we state several
characterizations of rc-continuous functions and the notion of a function that
has an rc-strongly closed graph.

Definition 5.4.1. [3] A function f : (X, τ) → (Y, σ) is rc-continuous at x ∈ X if
for every regular closed set R in Y containing f (x), there exists an open set U in
X containing x such that f(U) ⊆ R. Equivalently, for every R ∈ Cσ

r (f(x)), there
exists U ∈ τ(x) such that f(U) ⊆ R. If this condition is satisfied at each x ∈ X,
then f is said to be rc-continuous on X.

Theorem 5.4.1. [3] A function f : X → Y is rc-continuous if and only if the
inverse image of any regular closed set in Y is open in X.

Proof. The proof is a direct consequence of Definition 5.4.1.

Proposition 5.4.1. If f : (X, τ) → (Y, σ) is rc-continuous at x ∈ X, then for each
R ∈ [Cσ

r (f(x))], there exists U ∈ τ(x) such that f(U) ⊆ R.
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Proof. Let R ∈ [Cσ
r (f(x))]. Then R =

n⋂
i=1

Ri, where Ri ∈ Cσ
r (f(x)) for all i =

1, . . . , n. Since f is rc-continuous at x, then for each i = 1, . . . , n, there exists
Ui ∈ τ(x) such that f(Ui) ⊆ Ri. Let U =

n⋂
i=1

Ui, then U ∈ τ(x) and f(U) ⊆
n⋂

i=1
f(Ui) ⊆

n⋂
i=1

Ri = R.

Theorem 5.4.2. Let f : (X, τ) → (Y, σ) be a function. Then f is rc-continuous at
x ∈ X if and only if whenever F is a filter on X with F −→ x, then f(F) rc−→ f(x)
in Y .

Proof. Suppose that F −→ x in X and R ∈ Cσ
r (f(x)). Since R ∈ Cσ

r (f(x)) and
f is rc-continuous at x, then there exists U ∈ τ(x) such that f(U) ⊆ R. But
since F −→ x and U ∈ τ(x), then U ∈ F but R ⊇ f(U), so R ∈ f(F). Hence,
f(F) rc−→ f(x).

Conversely, suppose that for each filter F on X, F −→ x in X implies f(F) rc−→
f(x) in Y . Let R ∈ Cσ

r (f(x)). Since Uτ (x) ⊆ Uτ (x), then Uτ (x) −→ x. By
hypothesis, f (Uτ (x)) rc−→ f(x). That is, ⟨Cr (f(x))⟩ ⊆ f (Uτ (x)). So, R ∈
f (Uτ (x)). That is, there exists U ∈ Uτ (x) such that f(U) ⊆ R. So, there exists
V ∈ τ(x) such that V ⊆ U . This implies f(V ) ⊆ f(U) ⊆ R. Hence, there exists
V ∈ τ(x) such that f(V ) ⊆ R. Therefore, f is rc-continuous at x ∈ X.

Theorem 5.4.3. Let f : (X, τ) → (Y, σ) be a function. f is rc-continuous at
x ∈ X if and only if whenever F is a filter on X with F � x, then f(F) rc

� f(x) in
Y .

Proof. Suppose that f is rc-continuous at x ∈ X. Let F be a filter on X such that
F � x. Let R ∈ [Cσ

r (f(x))]. Then by Proposition 5.4.1, there exists U ∈ τ(x) such
that f(U) ⊆ R. But F � x, then F ∩ U ̸= ∅ for all F ∈ F. So, f(F ∩ U) ̸= ∅
for all F ∈ F. Now, f(F ∩ U) ⊆ f(F ) ∩ f(U) ⊆ f(F ) ∩ R for all F ∈ F. Thus,
R ∩ f(F ) ̸= ∅ for all F ∈ F but f(F) = ⟨{f(F ) : F ∈ F}⟩. Hence, R ∩ G ≠ ∅ for
all G ∈ f(F). Therefore, f(F) rc

� f(x).

Conversely, suppose, by the way of contradiction, that f is not rc-continuous
at x ∈ X, then there exists R ∈ Cσ

r (f(x)) such that f(U) ̸⊆ R for any U ∈ τ(x).
So, U ̸⊆ f−1(R) for any U ∈ τ(x). This implies, V ̸⊆ f−1(R) for any V ∈ Uτ (x).
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Thus, V ∩ F ̸= ∅ for any V ∈ Uτ (x) where F = X − f−1(R). By Proposition
1.1.6, F = ⟨Uτ (x)

∣∣∣
F

⟩ is a filter on X such that F ∈ F and Uτ (x) ⊆ F. This implies

F −→ x and by Proposition 2.1.1, F � x. We claim that f(F)
rc

�̸ f(x). Since F ∈ F,
then f(F ) ∈ f(F). Now, R ∩ f(F ) = R ∩ f(X − f−1(R)) = R ∩ f(f−1(Y − R)) ⊆
R ∩ (Y − R) = ∅. Hence, we have R ∈ Cσ

r (f(x)), f(F ) ∈ f(F) and R ∩ f(F ) = ∅.
Therefore, f(F)

rc

�̸ f(x).

Remark 5.5. The following two examples show that the concepts of rc-continuity
and continuity are independent of each other.

Example 5.4.1. Consider the function f from the set of real numbers R with the
usual topology onto itself given by f(x) = x2 for any x ∈ R, then f is continuous
but it is not rc-continuous.

Example 5.4.2. Consider the function f from the set of real numbers R with
the left ray topology onto itself given by f(x) = −x for any x ∈ R, then f is
rc-continuous but it is not continuous.

Theorem 5.4.4. Let f : (X, τ) → (Y, σ) be a function and Y is regular. If f is
rc-continuous, then f is continuous.

Proof. Let x ∈ X and F be a filter on X such that F −→ x. Since f is rc-continuous,
then f(F) rc−→ f(x) by Theorem 5.4.2. But Y is regular, so f(F) −→ f(x) by
Theorem 5.3.1 part (i). Therefore, f is continuous at x ∈ X. Thus, f is continuous
since x was arbitrary.

Theorem 5.4.5. Let f : (X, τ) → (Y, σ) be a function and Y is extremally
disconnected. If f is continuous, then f is rc-continuous.

Proof. Let x ∈ X and F be a filter on X such that F −→ x. Since f is continuous,
then f(F) −→ f(x) by Theorem 2.3.1. But Y is extremally disconnected, so
f(F) rc−→ f(x) by Theorem 5.3.2 part (i). Therefore, f is rc-continuous at x ∈ X.
Thus, f is rc-continuous since x was arbitrary.

Corollary 5.4.1. Let f : (X, τ) → (Y, σ) be a function and Y is regular extremally
disconnected. Then f is continuous if and only if f is rc-continuous.
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5.4.2 θs-Continuous Functions

In [57] is introduced and investigated a new class of continuity in topologi-
cal spaces called θs-continuous functions, which contains the class of strongly-θ-
continuous functions.

Definition 5.4.2. [57] A function f : (X, τ) → (Y, σ) is θs-continuous at x ∈ X

if for every open set V in Y containing f(x), there exists a semi-open set U in X

containing x such that f(U) ⊆ V . Equivalently, for every V ∈ σ(f(x)), there exists
H ∈ Cτ

r(x) such that f(H) ⊆ V . If this condition is satisfied at each x ∈ X, then
f is said to be θs-continuous on X.

Theorem 5.4.6. Let f : (X, τ) → (Y, σ) be a function and F be a filter on X. If
θs-continuous at x ∈ X, then f(F) −→ f(x) in Y whenever F

rc−→ x.

Proof. Assume that F
rc−→ x. Let V be an open set in Y containing f(x). Since

f is θs-continuous at x, then there exists H ∈ Cτ
r(x) such that f(H) ⊆ V . But

since F
rc−→ x and H ∈ Cτ

r(x), then H ∈ F, and hence V ∈ f(F). Therefore,
f(F) −→ f(x).

Theorem 5.4.7. Let f : (X, τ) → (Y, σ) be a function and F be a filter on X. If
f is θs-continuous at x ∈ X, then f(F) � f(x) in Y whenever F

rc
� x.

Proof. Let F be a filter on X such that F
rc
� x. Let V ∈ σ(f(x)). Since f is

θs-continuous at x, then there exists H ∈ Cτ
r(x) such that f(H) ⊆ V . But F

rc
� x,

then F ∩ H ̸= ∅ for all F ∈ F. So, ∅ ̸= f(F ∩ H) ⊆ f(F ) ∩ f(H) ⊆ f(F ) ∩ V for
all F ∈ F. Thus, V meets each member of f(F). Hence, f(F) � f(x) in Y .

5.4.3 S-Continuous Functions

Definition 5.4.3. [83] A function f : (X, τ) → (Y, σ) is W -almost-open if for each
V ∈ σ, f−1(V ) ⊆ f−1(V ).

Proposition 5.4.2. [48, 118] Every open function is W -almost-open.
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Theorem 5.4.8. [81] If f : (X, τ) → (Y, σ) is weakly-θ-continuous, then f−1(V ) ⊆
f−1(V ) for each V ∈ σ.

Proof. Let V ∈ σ and suppose, by the contradiction, that f−1(V ) ̸⊆ f−1(V ), then
there exists x ∈ f−1(V ) such that x ̸∈ f−1(V ). Then f(x) /∈ V , so there exists
W ∈ σ(f(x)) such that W ∩ V = ∅. Since V is open in Y , then by Theorem
1.2.2, W ∩ V ⊆ W ∩ V . So, W ∩ V = ∅. But f is weakly-θ-continuous and
W ∈ σ(f(x)), then there exists U ∈ τ(x) such that f(U) ⊆ W . Since W ∩ V = ∅,
then f(U) ∩ V = ∅. But x ∈ f−1(V ) and U ∈ τ(x), so f−1(V ) ∩ U ̸= ∅, and hence
f(U) ∩ V ̸= ∅, which is a contradiction. Therefore, f−1(V ) ⊆ f−1(V ).

Proposition 5.4.3. [81] If a function f : (X, τ) → (Y, σ) is W -almost-open
weakly-θ-continuous, then f−1(V ) = f−1(V ) for all V ∈ σ.

Proof. Let V ∈ σ. Since f is W -almost-open, then f−1(V ) ⊆ f−1(V ). Also, since f

is weakly-θ-continuous, then by Theorem 5.4.8, then f−1(V ) ⊆ f−1(V ). Therefore,
f−1(V ) = f−1(V ).

Corollary 5.4.2. [48] If a function f : (X, τ) → (Y, σ) is W -almost-open weakly-
θ-continuous, then (f−1(V ))◦ = f−1(V ◦) for all V ∈ σ.

Proof. Let V ∈ σ and let W = Y − V . Then W ∈ σ. So, by Proposition
5.4.3, we have f−1(W ) = f−1(W ). Then, f−1(Y − V ) = f−1(Y − V ), and so
X − f−1(V ) = f−1(Y − V

◦), it follows that X − (f−1(V ))◦ = X − f−1(V ◦).
Therefore, (f−1(V ))◦ = f−1(V ◦).

A W -almost-open weakly-θ-continuous function preserves rc-convergence. We
first introduce the following lemma.

Lemma 5.4.1. If f : (X, τ) → (Y, σ) is W -almost-open weakly-θ-continuous, then
⟨Cσ

r (f(x))⟩ ⊆ f(⟨Cτ
r(x)⟩) for any x ∈ X.

Proof. Let x ∈ X and f(x) ∈ V for some V ∈ σ, then x ∈ f−1
(
V

)
. By

Corollary 5.4.2, f−1
(
V

◦)
=

(
f−1(V )

)◦
. Let G = f−1

(
V

◦)
, then G ∈ τ and
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G ⊆ f−1
(
V

)
, so G ⊆ f−1

(
V

)
but f−1

(
V

)
= f−1 (V ) by Proposition 5.4.3. Hence,

G ⊆ f−1(V ) . . . (i) but since V ∈ σ, then V ⊆ V
◦, so f−1(V ) ⊆ f−1(V ◦) = G.

Hence, f−1(V ) ⊆ G . . . (ii). From (i) and (ii), we obtain G = f−1(V ). So,
G = f−1(V ) = f−1

(
V

)
. Since x ∈ f−1

(
V

)
= G and G ∈ τ , then G ∈ Cτ

r(x),
and so f−1

(
V

)
∈ Cτ

r(x). But V ⊇ f(f−1(V )), so V ∈ f(⟨Cτ
r(x)⟩). Therefore,

⟨Cσ
r (f(x))⟩ ⊆ f(⟨Cτ

r(x)⟩).

Theorem 5.4.9. [48] Let f : (X, τ) → (Y, σ) be W -almost-open weakly-θ-
continuous at x ∈ X and F be a filter on X. If F rc−→ x, then f(F) rc−→ f(x) in
Y .

Proof. Suppose that f is W -almost-open weakly-θ-continuous at x ∈ X and F
rc−→ x

in X. Then ⟨Cτ
r(x)⟩ ⊆ F. So, f(⟨Cτ

r(x)⟩) ⊆ f(F). By Lemma 5.4.1, ⟨Cσ
r (f(x))⟩ ⊆

f(⟨Cτ
r(x)⟩). Hence, ⟨Cσ

r (f(x))⟩ ⊆ f(F). Thus, f(F) rc−→ f(x).

Theorem 5.4.10. Let f : (X, τ) → (Y, σ) be a function, F be a filter on X. If f

is W -almost-open weakly-θ-continuous at x ∈ X, then f(F) rc
� f(x) in Y whenever

F
rc
� x.

Proof. Suppose that f is W -almost-open weakly-θ-continuous at x ∈ X and a filter
on X with F

rc
� x. Then by Lemma 5.4.1, ⟨Cσ

r (f(x))⟩ ⊆ f(⟨Cτ
r(x)⟩). Now, let

R ∈ [Cσ
r (f(x))], then R ∈ ⟨Cσ

r (f(x))⟩ ⊆ f(⟨Cτ
r(x)⟩), so there exists H ∈ ⟨Cτ

r(x)⟩
such that R ⊇ f(H) but F

rc
� x, then H ∩ F ̸= ∅ for all F ∈ F, so f(H ∩ F ) ̸= ∅

for all F ∈ F. Hence, for all F ∈ F, ∅ ≠ f(H ∩ F ) ⊆ f(H) ∩ f(F ) ⊆ R ∩ f(F ).
Thus, R ∩ f(F ) ̸= ∅ for all F ∈ F. Therefore, f(F) rc

� f(x) in Y .

An S-continuous function preserves rc-convergence. We first introduce the
following definition.

Definition 5.4.4. [89] A function f : (X, τ) → (Y, σ) is S-continuous at x ∈ X

if for every semi-open set V in Y containing f(x), there exists a semi-open set U

in X containing x such that f(U) ⊆ V . Equivalently, for all G ∈ Cσ
r (f(x)), there

exists H ∈ Cτ
r (x) such that f(H) ⊆ G. If this condition is satisfied at each x ∈ X,

then f is said to be S-continuous on X.
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Proposition 5.4.4. If f : (X, τ) → (Y, σ) is S-continuous at x ∈ X, then for each
R ∈ [Cσ

r (f(x))], there exists H ∈ [Cτ
r(x)] such that f(H) ⊆ R.

Proof. Let R ∈ [Cσ
r (f(x))]. Then R =

n⋂
i=1

Ri, where Ri ∈ Cσ
r (f(x)) for all i =

1, . . . , n. Since f is S-continuous at x, then for each i = 1, . . . , n, there exists
Hi ∈ Cτ

r(x) such that f(Hi) ⊆ Ri. Let H =
n⋂

i=1
Hi, then H ∈ [Cτ

r(x)] and

f(H) ⊆
n⋂

i=1
f(Hi) ⊆

n⋂
i=1

Ri = R.

Theorem 5.4.11. [46] If f : (X, τ) → (Y, σ) is an almost-continuous almost-open
function, then the inverse image of every regular open set in Y is a regular open
set in X.

Proof. Suppose that f is an almost-continuous almost-open function. We want
to show f−1(G) = f−1(G)◦. Since f−1(G) ∈ τ , then f−1(G) ⊆ f−1(G)◦. Next,
we show that f−1(G)◦ ⊆ f−1(G). Suppose, to the contrary, that there exists
x ∈ f−1(G)◦ such that f(x) ̸∈ G, then f(x) ∈ Y − G = Y − G

◦ = Y − G.
Now, f(x) ∈ f

(
f−1(G)◦)

and f
(
f−1(G)◦)

is open in Y since f is almost-open.
As f(x) ∈ Y − G and f

(
f−1(G)◦)

∈ σ(f(x)), then (Y − G) ∩ f
(
f−1(G)◦)

̸= ∅.
So, f

(
f−1(G)◦)

̸⊆ G. Since f is almost-continuous, then by Proposition 4.4.1,
f is weakly-θ-continuous, so by Theorem 5.4.8, f−1(G) ⊆ f−1(G), and hence
f

(
f−1(G)◦)

⊆ G, which is a contradiction. Therefore, f−1(G) ∈ RO(X) for all
G ∈ RO(Y ).

Theorem 5.4.12. [46] If f : (X, τ) → (Y, σ) is almost-continuous almost-open,
then the inverse image of every regular closed set in Y is a regular closed set in X.

Proof. Let F ∈ RC(Y ), then Y − F ∈ RO(Y ). Since f is almost-continuous
almost-open, then by Theorem 5.4.11, f−1(Y − F ) = X − f−1(F ) ∈ RO(X), and
hence f−1(F ) ∈ RC(X).

Theorem 5.4.13. [89] Let f : (X, τ) → (Y, σ) be a function. Then f is S-
continuous if and only if for every F ∈ RC(Y ), f−1(F ) is the union of regular
closed sets of X.
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Corollary 5.4.3. If f is almost-open almost-continuous, then f is S-continuous.

Proof. This follows from Theorems 5.4.12 and 5.4.13.

Theorem 5.4.14. Let f : (X, τ) → (Y, σ) be S-continuous at x ∈ X and F be a
filter on X. If F rc−→ x in X, then f(F) rc−→ f(x) in Y .

Proof. Assume that F
rc−→ x in X and G ∈ Cσ

r (f(x)). Since f is S-continuous at
x, then there exists H ∈ Cτ

r(x) such that f(H) ⊆ G. Also, since F
rc−→ x and

H ∈ Cτ
r(x), then H ∈ F. So, G ∈ f(F). Thus, f(F) rc−→ f(x).

Corollary 5.4.4. [48, Theorem 4.2. p. 316] An almost-open almost-continuous
function preserves rc-convergence.

Proof. This follows from Corollary 5.4.3 and Theorem 5.4.14.

Theorem 5.4.15. Let f : (X, τ) → (Y, σ) be a function and F be a filter on X. If
f is S-continuous at x ∈ X, then f(F) rc

� f(x) in Y whenever F
rc
� x.

Proof. Suppose that f is S-continuous at x ∈ X. Let F be a filter on X such that
F

rc
� x. Let R ∈ [Cσ

r (f(x))]. Then by Proposition 5.4.4, there exists H ∈ [Cτ
r(x)]

such that f(H) ⊆ R. But since F
rc
� x and H ∈ [Cτ

r(x)] , then F ∩ H ̸= ∅ for all
F ∈ F. So, f(F ∩H) ̸= ∅ for all F ∈ F. Now, f(F ∩H) ⊆ f(F )∩f(H) ⊆ f(F )∩R

for all F ∈ F. Thus, R ∩ f(F ) ̸= ∅ for all F ∈ F but f(F) = ⟨{f(F ) : F ∈ F}⟩.
Hence, R ∩ G ̸= ∅ for all G ∈ f(F). Therefore, f(F) rc

� f(x).

5.4.4 More on Functions and rc-Convergence

Theorem 5.4.16. If f : (X, τ) → (Y, σ) is S-continuous and X is extremally
disconnected, then f is rc-continuous.

Proof. Let x ∈ X and F be a filter on X such that F −→ x but since X is
extremally disconnected and Theorem 5.3.2 part (i), then F

rc−→ x. Since f is
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S-continuous and by Theorem 5.4.14, then f(F) rc−→ f(x) in Y . Therefore, f is
rc-continuous at x ∈ X. Therefore, f is rc-continuous since x was arbitrary.

Theorem 5.4.17. If f : (X, τ) → (Y, σ) is rc-continuous and X is regular, then f

is S-continuous.

Proof. Let x ∈ X and R ∈ Cσ
r (f(x)). Since f is rc-continuous, then there exists

an open set U in X containing x such that f(U) ⊆ R. But X is regular, so there
exists H ∈ C(x) such that H ⊆ U . Since C(x) ⊆ Cτ

r(x), then H ∈ Cτ
r(x). Also,

we have f(H) ⊆ f(U) ⊆ R. Therefore, f is S-continuous at x ∈ X. Thus, f is
S-continuous since x was arbitrary.

Theorem 5.4.18. If f : (X, τ) → (Y, σ) is θs-continuous and Y is extremally
disconnected, then f is S-continuous.

Proof. Let x ∈ X and R ∈ Cσ
r (f(x)), then R is open in Y containing f(x) since Y

is extremally disconnected. But f is θs-continuous, so there exists H ∈ Cτ
r (x) such

that f(H) ⊆ R. Therefore, f is S-continuous at x. Thus, f is S-continuous since
x was arbitrary.

Corollary 5.4.5. Let X and Y be extremally disconnected spaces. If f : (X, τ) →
(Y, σ) is θs-continuous, then f is rc-continuous.

Proof. If f is θs-continuous, then by Theorem 5.4.18, f is S-continuous since Y is
extremally disconnected but then by Theorem 5.4.16 and since f is S-continuous,
we have f is rc-continuous.

Theorem 5.4.19. If f : (X, τ) → (Y, σ) is S-continuous and Y is regular, then f

is θs-continuous.

Proof. Let x ∈ X and V be an open set in Y containing f(x). Since Y is
regular, so there exists R ∈ C(f(x)) such that R ⊆ V . But C(f(x)) ⊆ Cσ

r (f(x)),
then R ∈ Cσ

r (f(x)). By S-continuity of f , there exists H ∈ Cτ
r(x) such that

f(H) ⊆ R. But R ⊆ V , so f(H) ⊆ V . Hence, there exists H ∈ Cτ
r(x) such that

f(H) ⊆ V . Therefore, f is θs-continuous at x. Thus, f is θs-continuous since x

was arbitrary.
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Corollary 5.4.6. Let X and Y be regular spaces. If f : (X, τ) → (Y, σ) is
rc-continuous, then f is θs-continuous.

Proof. This follows from Theorems 5.4.17 and 5.4.19.

Corollary 5.4.7. Let f : (X, τ) → (Y, σ) be a function, where X and Y are regular
extremally disconnected spaces. Then the following are equivalent:

(i) f is S-continuous.

(ii) f is rc-continuous.

(iii) f is θs-continuous.

Proof. aaa

(i) =⇒ (ii) Follows from Theorem 5.4.16.

(ii) =⇒ (iii) Follows from Corollary 5.4.6.

(iii) =⇒ (i) Follows from Theorem 5.4.18.

Theorem 5.4.20. Let {Xα : α ∈ ∆} be a family of topological spaces, let F be a
filter on X = ∏

α∈∆
Xα and x ∈ X.

(i) If F rc−→ x in X, then πα(F) rc−→ πα(x) in Xα for all α ∈ ∆.

(ii) If F rc
� x in X, then πα(F) rc

� πα(x) in Xα for all α ∈ ∆.

Proof. (i) Suppose that F
rc−→ x in X. Since πα is open continuous for all

α ∈ ∆, then by Propositions 5.4.2 and 4.4.1, πα is W -almost-open weakly-
θ-continuous for all α ∈ ∆, so by Theorem 5.4.9, πα(F) rc−→ πα(x) for all
α ∈ ∆.

(ii) Assume that F
rc
� x. Since for all α ∈ ∆, πα is open continuous for all

α ∈ ∆, then by Propositions 5.4.2 and 4.4.1, πα is W -almost-open weakly-θ-
continuous. So, by Theorem 5.4.10, πα(F) rc

� πα(x) for all α ∈ ∆.
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5.5 S-Closed Spaces

5.5.1 Characterizations of S-closed Spaces

Definition 5.5.1. [111] A topological space (X, τ) is called S-closed if every semi-
open cover U of X contains a finite subfamily {U1, . . . , Un} such that X =

n⋃
i=1

Ui.

Definition 5.5.2. [85] A subset A of a topological space X is said to be

(a) an S-closed subspace if the space (A, τA) is S-closed.

(b) an S-closed relative to X if for every cover {Vα : α ∈ ∆} of A by semi-open
sets in X, there exists a finite subset Ω of ∆ such that A ⊆ ⋃

α∈Ω
V α.

Remark 5.6. A topological space (X, τ) is said to be S-closed if it is an S-closed
relative to itself.

Theorem 5.5.1. [48] Let (X, τ) be a topological space. Then X is S-closed if and
only if every regular closed cover of X has a finite subcover.

Proof. Let C ⊆ RC(X) be a cover of X. By Proposition 1.2.4 part (iii), RC(X) ⊆
SO(X). So, C ⊆ SO(X) is a cover of X. But X is S-closed, then there exist
C1, . . . , Cn ∈ C such that X =

n⋃
i=1

Ci but since each Ci is regular closed, then each

Ci is closed, and hence for all i = 1, . . . , n, Ci = Ci, then X =
n⋃

i=1
Ci. Therefore,

C
′ = {C1, . . . , Cn} is a finite subcover of C.

Conversely, suppose that every cover C ⊆ RC(X) of X has a finite subcover. Let
V ⊆ SO(X) be a cover of X. Let C = {V : V ∈ V}. Then by Proposition 1.2.7
part (iii), C ⊆ RC(X). Since X = ⋃

V ∈V
V ⊆ ⋃

V ∈V
V ⊆ X, then C is a cover of X. By

hypothesis, C has a finite subcover, that is, there exist V1, V2, . . . , Vn ∈ V such that
X =

n⋃
i=1

V i. Therefore, X is S-closed.

Corollary 5.5.1. Let A be a subset of a topological space X. Then A is S-closed
subspace if and only if every cover C ⊆ RC(A) of A has a finite subcover.
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Theorem 5.5.2. [18] The property of a topological space being S-closed is a
semi-regular property. That is, (X, τ) is S-closed if and only if (X, τs) is S-closed.

Proof. We know that RC(X, τ) = RC(X, τs). Now, (X, τ) is S-closed if and only
if every cover C ⊆ RC(X, τ) has a finite subcover if and only if every cover
C ⊆ RC(X, τs) has a finite subcover if and only if (X, τs) is S-closed.

Theorem 5.5.3. Let (X, τ) be a topological space and A ⊆ X. Then A is an
S-closed relative to X if and only if every cover of A by regular closed sets of X

has a finite subcover.

Proof. Let C ⊆ RC(X) be a cover of A. Since RC(X) ⊆ SO(X), then C ⊆ SO(X)
is a cover of A. But A is an S-closed relative to X, then C has a finite subfamily,
say C

′ = {C1, C2, . . . , Cn} such that A ⊆
n⋃

i=1
Ci but since each Ci is regular closed

(and hence closed), then Ci = Ci for all i = 1, . . . , n, so A ⊆
n⋃

i=1
Ci. Therefore, C′

is a finite subcover of C.

Conversely, suppose that every cover of A by regular closed sets of X has a finite
subcover. Let V be a cover of A by semi-open sets of X. Then by Proposition
1.2.7 part (iii), {V : V ∈ V} ⊆ RC(X). Since A ⊆ ⋃

V ∈V
V and V ⊆ V for all V ∈ V,

then A ⊆ ⋃
V ∈V

V . So, {V : V ∈ V} is a cover of A by regular closed sets of X. By
hypothesis, it has a finite subcover, that is, there exist V1, V2, . . . , Vn ∈ V such that
A ⊆

n⋃
i=1

V i. Therefore, A is an S-closed relative to X.

Remark 5.7. [85] An S-closed relative to a topological space X is not necessarily
an S-closed subspace in X, even if it is closed in X, as the following example shows.

Example 5.5.1. [85] Let τ be the co-countable topology on R and let N be the
set of all natural numbers. Then N is an S-closed relative to (R, τ) and closed in
(R, τ), but not an S-closed subspace.

Proof. Let C be a cover of N by regular closed sets in (R, τ). Note that U = R
for each nonempty U ∈ τ . So, RC(R, τ) = {∅,R}. Thus, C is a finite subcover
of itself. Hence, by Theorem 5.5.3, N is an S-closed relative to (R, τ). Next, we
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show that N is not an S-closed subspace in (R, τ). Note that for each n ∈ N,
{n} = N ∩ U , where U = R − (N − {n}) ∈ τ . Thus, for each n ∈ N, {n} ∈ τN.
That is, the subspace topology (N, τN) of (R, τ) is the discrete topology on N. As
A = {{n} : n ∈ N} ⊆ RC(N, τN) is a cover of N which has no finite subcover. Thus,
by Corollary 5.5.1, N is not an S-closed subspace of (R, τ).

Theorem 5.5.4. [84] An open set G of a topological space X is an S-closed
subspace if and only if G is an S-closed relative to X.

Proof. Let {Uα : α ∈ ∆} be a cover of G by semi-open sets of X. Since G is open
in X and Uα ∈ SO(X) for each α ∈ ∆, then by Proposition 1.2.2, G ∩ Uα ∈ SO(X)
for each α ∈ ∆. Hence, by Proposition 1.2.3, G ∩ Uα is semi-open in G for each
α ∈ ∆. Now, since G ⊆ ⋃

α∈∆
Uα, then G = G ∩

( ⋃
α∈∆

Uα

)
= ⋃

α∈∆
(G ∩ Uα). So,

{G ∩ Uα : α ∈ ∆} ⊆ SO(G) is a cover of G. But G is S-closed, then there exists a
finite subset Ω of ∆ such that G = ⋃

α∈Ω
ClG(G∩Uα). Hence, G ⊆ ⋃

α∈Ω
Uα. Therefore,

G is an S-closed relative to X.

Conversely, suppose that G is an S-closed relative to X. Let {Uα : α ∈ ∆} ⊆
SO(G) be a cover of G. Since G is open in X, then G is semi-open in X. So,
by Theorem 1.2.3, Uα is semi-open in X for each α ∈ ∆. Since G is an S-closed
relative to X. Then there exists a finite subset Ω of ∆ such that G ⊆ ⋃

α∈Ω
Uα. Thus,

G = G ∩ ( ⋃
α∈Ω

Uα) = ⋃
α∈Ω

(G ∩ Uα) = ⋃
α∈Ω

ClG(Uα). Therefore, G is an S-closed
subspace of X.

Theorem 5.5.5. [84] A topological space X is S-closed if and only if every proper
regular open set of X is an S-closed subspace.

Proof. Suppose that X is S-closed and let G be a proper regular open set of X. By
Theorem 5.5.4, we show that G is an S-closed relative to X. Let {Uα : α ∈ ∆} be a
cover of G by semi-open sets of X. Since X−G is regular closed, then by Proposition
1.2.4 part (iii), X − G ∈ SO(X). Now, X = (X − G) ∪ ⋃

α∈∆
Uα. So, {X − G} ∪ {Uα :

α ∈ ∆} is a semi-open cover of X but X is S-closed, then there exists a finite
subset Ω of ∆ such that X = X − G ∪ ⋃

α∈Ω
Uα. So, X = (X − G) ∪ ⋃

α∈Ω
Uα since
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X − G is closed in X. Thus, G = G ∩ X = G ∩
(
(X − G) ∪ ⋃

α∈Ω
Uα

)
= G ∩ ( ⋃

α∈Ω
Uα).

Therefore, we obtain G ⊆ ⋃
α∈Ω

Uα.

Conversely, let U = {Uα : α ∈ ∆} be a semi-open cover of X. Take Uα◦ ∈ U such
that X ≠ Uα◦ and Uα◦ ̸= ∅. Then since Uα◦ ∈ SO(X), Uα◦ ∈ RC(X), and hence
X − Uα◦ is a proper regular open set of X. Thus, by hypothesis, X − Uα◦ is an
S-closed subspace in X, and so by Thoerem 5.5.4, X − Uα◦ is an S-closed relative
to X. Hence, there exists a finite subset Ω of ∆ such that X − Uα◦ ⊆ ⋃

α∈Ω
Uα.

Therefore, we obtain X = ⋃
α∈Ω∪{α◦}

Uα.

Theorem 5.5.6. [85] Let A be a subset of a topological space X. If A is an
S-closed relative to X, then A is an S-closed relative to X.

Proof. Let U = {Uα : α ∈ ∆} be a cover of A by semi-open sets in X, then U is
a cover of A. But A is an S-closed relative to X. So, there exists a finite subset
Ω of ∆ such that A ⊆ ⋃

α∈Ω
Uα. Thus, we have A ⊆ ⋃

α∈Ω
Uα = ⋃

α∈Ω
Uα = ⋃

α∈Ω
Uα.

Therefore, A is an S-closed relative to X.

Proposition 5.5.1. Let F be a subset of a topological space X. If X is S-closed
and F is regular closed in X, then F is an S-closed relative to X.

Proof. Let F be regular closed in X, then F ◦ is regular open in X. If F ◦ = X,
then F = F ◦ = X is an S-closed relative to X. If F ◦ ≠ X, then by Theorems 5.5.4
and 5.5.5, F ◦ is an S-closed relative to X. By Theorem 5.5.6, F ◦ is an S-closed
relative to X. But since F is regular closed in X, then F ◦ = F . Therefore, F is an
S-closed relative to X.

We are now ready to make characterizations of S-closed spaces using our main
concept, the rc-convergence of filters.

Theorem 5.5.7. [48] For a topological space (X, τ), the following are equivalent:

(i) X is S-closed.

(ii) Every regular closed cover of X has a finite subcover.
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(iii) For every family A of RO(X) such that ⋂
A∈A

A = ∅, there exists a finite

subfamily A
′ of A such that ⋂

A∈A′
A = ∅.

(iv) Every filter on X rc-accumulates at some point of X.

(v) Every ultrafilter on X rc-converges to some point of X.

Proof. aa

(i) ⇐⇒ (ii) This follows from Theorem 5.5.1.

(ii) =⇒ (iii) Let A ⊆ RO(X) be a family of subsets X such that ⋂
A∈A

A = ∅. Let C =
{X − A : A ∈ A}. Then C ⊆ RC(X). Since ⋂

A∈A
A = ∅, then X = X − ∅ =

X− ⋂
A∈A

A = ⋃
A∈A

(X−A). Thus, C ⊆ RC(X) is a cover of X. But X is S-closed,

so there exist A1, A2, . . . , An ∈ A such that
n⋃

i=1
(X − Ai) = X, this implies

X −
n⋂

i=1
Ai = X, and hence

n⋂
i=1

Ai = ∅. Therefore, A′ = {A1, . . . , An} ⊆ A

and A
′ = ∅.

(iii) =⇒ (ii) Let C ⊆ RC(X) be a cover of X. Let A = {X −C : C ∈ C}, then A ⊆ RO(X)
and ⋂

C∈C
(X − C) = X − ⋃

C∈C
C = X − X = ∅. So, by hypothesis, there

exist C1, C2, . . . , Cn ∈ C such that
n⋂

i=1
(X − Ci) = ∅. Since X −

n⋃
i=1

Ci =
n⋂

i=1
(X − Ci) = ∅, then

n⋃
i=1

Ci = X. Hence, C′ = {C1, C2, . . . , Cn} is a finite
subcover of C.

(iv) =⇒ (v) Let F be an ultrafilter on X. Then by (iv), F rc
� x for some x ∈ X. But since

F is an ultrafilter, then by Theorem 5.1.12, F rc−→ x.

(v) =⇒ (iv) Let F be a filter on X. Then by Theorem 1.1.3, there exists an ultrafilter M

on X such that F ⊆ M. By hypothesis, M rc−→ x for some x ∈ X, so M
rc
� x

but since F ⊆ M, then by Theorem 5.1.11, F rc
� x.

(iv) =⇒ (i) Suppose that X is not S-closed, then there exists a semi-open cover U =
{Uα : α ∈ ∆} such that for any finite subset Ω of ∆, X ̸= ⋃

α∈Ω
Uα. Let

B = { ⋂
α∈Ω

(X − Uα) : Ω is a finite subset of ∆}, then B is a filter base in X.

Let F = ⟨B⟩X , then by hypothesis, F
rc
� x ∈ X. Since x ∈ X = ⋃

α∈∆
Uα,

then x ∈ Uα◦ for some α◦ ∈ ∆. Since Uα◦ ∈ SO(X) and x ∈ Uα◦ , then
Uα◦ ∈ SO(x), and so Uα◦ ∈ Cτ

r (x) ⊆ [Cτ
r (x)] but X −Uα◦ ∈ B ⊆ F and F

rc
� x,

then (X − Uα◦) ∩ Uα◦ ≠ ∅, which is a contradiction. Therefore, X is S-closed.
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(ii) =⇒ (v) Suppose on the contrary that there is an ultrafilter M on X such that M
rc

−̸→ x

for all x ∈ X. Then for all x ∈ X, there is Rx ∈ Cτ
r(x) such that Rx ̸∈ M.

Let R = {Rx : x ∈ X}, then R is a regular closed cover of X. By (ii), R has
a finite subcover, that is, there exist x1, . . . , xn ∈ X such that X =

n⋃
i=1

Rxi
.

Now, for each i = 1, . . . , n, we have Rxi
̸∈ M but M is an ultrafilter on X,

then X − Rxi
∈ M for all i = 1, . . . , n. Hence,

n⋂
i=1

(X − Rxi
) ∈ M. But

n⋂
i=1

(X −Rxi
) = X −

n⋃
i=1

Rxi
= X −X = ∅. So, ∅ ∈ M, which is a contradiction.

Therefore, every ultrafilter on X rc-converges to some point in X.

Theorem 5.5.8. [68] For a subset A of a topological space (X, τ), the following
are equivalent:

(i) A is an S-closed relative to X.

(ii) Every cover of A by regular closed sets of X has a finite subcover.

(iii) For every family C of regular open sets of X such that
( ⋂

C∈C
C

)
∩ A = ∅, there

exists a finite subfamily C
′ of C such that

( ⋂
C∈C′

C
)

∩ A = ∅.

(iv) Every filter on X which meets A rc-accumulates at some point of A.

(v) Every ultrafilter on X which meets A rc-converges to some point of A.

Proof. Similar to the proof of Theorem 5.5.7.

Lemma 5.5.1. Let M be an ultrafilter on a topological space X and x ∈ X. Then
M

s−→ x if and only if M s
� x.

Proof. If M s−→ x, then M
rc−→ x, so M

rc
� x, and hence M

s
� x.

Conversely, suppose that M
s
� x. If M

s

−̸→ x, then there is R ∈ Cτ
r(x) such

that R ̸∈ M but M is an ultrafilter on X, so X − R ∈ M. Since R ∈ Cτ
r(x) and

X − R ∈ M, then ∅ = R ∩ (X − R) ∈ M, which is a contradiction. Therefore,
M

s−→ x.

Theorem 5.5.9. For a topological space (X, τ), the following are equivalent:
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(i) X is S-closed.

(ii) Every filter on X s-accumulates at some point of X.

(iii) Every ultrafilter on X s-converges to some point of X.

Proof. aaa

(i) =⇒ (ii) Let F be a filter on X. Since X is S-closed, then by Theorem 5.5.7, F rc
� x

for some x ∈ X. But by Proposition 5.1.5, F s
� x.

(ii) =⇒ (iii) Let F be an ultrafilter on X. Then by (ii), F s
� x for some in x ∈ X. But F

is an ultrafilter on X, then by Lemma 5.5.1, F s−→ x.

(iii) =⇒ (i) Let F be an ultrafilter on X. Then by (iii), F s−→ x for some x ∈ X. But
then by Proposition 5.1.2, F rc−→ x. Hence, every ultrafilter rc-converges to
some point x ∈ X. Therefore, X is S-closed by Theorem 5.5.7.

Theorem 5.5.10. [10] A topological space (X, τ) is S-closed if and only if (X, τrc)
is compact.

Proof. (X, τ) is S-closed if and only if every ultrafilter on X rc-converges if and
only if every ultrafilter on X τrc-converges if and only if (X, τrc) is compact.

Theorem 5.5.11. [84] Let X be a regular space. If X is S-closed, then X is
compact.

Proof. Assume that X is S-closed. Let F be an ultrafilter on X, then by Theorem
5.5.7, F rc−→ x for some x ∈ X. Since X is regular and by Theorem 5.3.1 part (i),
F −→ x. Therefore, by Theorem 2.4.2, X is a compact space.

Theorem 5.5.12. Let X be an extremally disconnected space. If X is compact,
then X is S-closed.

Proof. Assume that X is compact. Let F be an ultrafilter on X, then by Theorem
2.4.2, F −→ x for some x ∈ X. Since X is extremally disconnected and by Theorem
5.3.2 part (i), F rc−→ x. Therefore, by Theorem 5.5.7, X is an S-closed space.
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Corollary 5.5.2. Let X be a regular extremally disconnected space. Then X is
S-closed if and only if X is compact.

Proof. This follows from Theorems 5.5.11 and 5.5.12.

Theorem 5.5.13. [89] A θ-semiclosed subset A of an S-closed space X is an
S-closed relative to X.

Proof. Let U = {Uα : α ∈ ∆} be a cover of A by regular closed sets of X. So,
A ⊆ ⋃

α∈∆
Uα. Since A is θ-semiclosed, then X − A is θ-semiopen. So, for all

x ∈ X − A, there exists a regular closed set Fx in X such that x ∈ Fx ⊆ X − A.
Hence, X −A = ⋃

x∈X−A
Fx. So, X = A∪(X −A) ⊆ ⋃

α∈∆
Uα ∪ ⋃

x∈X−A
Fx. This implies,

U ∪ {Fx : x ∈ X − A} is a regular closed cover of X. But X is S-closed, then
there exist α1, . . . , αn ∈ ∆ and x1, . . . , xm ∈ X − A such that X =

n⋃
i=1

Uαi
∪

m⋃
j=1

Fxj
.

Since X − A = ⋃
x∈X−A

Fx and A ∩ (X − A) = ∅, then A ∩ Fx = ∅ for all x ∈ X − A,
hence A ∩ Fxj

= ∅ for all j = 1, . . . , m. Thus,

A = A ∩ X =
(
A ∩

n⋃
i=1

Uαi

)
∪

(
A ∩

m⋃
j=1

Fxj

)
=

(
A ∩

n⋃
i=1

Uαi

)
∪ ∅ = A ∩

n⋃
i=1

Uαi
.

So, A ⊆
n⋃

i=1
Uαi

. Therefore, A is an S-closed relative to X.

5.5.2 S-Closedness and Functions

Theorem 5.5.14. Let f : (X, τ) → (Y, σ) be an S-continuous function. If A ⊆ X

is an S-closed relative to X, then f(A) ⊆ Y is an S-closed relative to Y .

Proof. Let f be S-continuous. Let A ⊆ X be an S-closed relative to X. Let G be a
filter on Y which meets f(A). Then f−1(G) is a filter on X which meets A. But A

is an S-closed relative to X. Then by Theorem 5.5.8, f−1(G) rc
� a for some a ∈ A.

But f is S-continuous, then Theorem 5.4.15, ff−1(G) rc
� f(a) but G ⊆ ff−1(G).

So, by Theorem 5.1.10, G rc
� f(a). Therefore, f(A) is an S-closed relative to Y by

Theorem 5.5.8.
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Corollary 5.5.3. Let f : (X, τ) → (Y, σ) be an almost-open almost-continuous
function. If A ⊆ X is an S-closed relative to X, then f(A) ⊆ Y is an S-closed
relative to Y .

Proof. This follows from Corollary 5.4.3 and Theorem 5.5.14.

Theorem 5.5.15. Let f : (X, τ) → (Y, σ) be an rc-continuous function. If A ⊆ X

is compact, then f(A) ⊆ Y is an S-closed relative to Y .

Proof. Let f : (X, τ) → (Y, σ) be rc-continuous. Let A ⊆ X be compact. Let G

be a filter on Y which meets f(A). Then f−1(G) is a filter on X which meets A.
But A is compact in X. Then by Theorem 2.4.3, f−1(G) � a for some a ∈ A. But
f is rc-continuous, then by Theorem 5.4.3, ff−1(G) rc

� f(a) but G ⊆ ff−1(G). So,
by Theorem 5.1.10, G rc

� f(a). Therefore, f(A) is an S-closed relative to Y by
Theorem 5.5.8.

Theorem 5.5.16. Let f : (X, τ) → (Y, σ) be a θs-continuous function. If A ⊆ X

is an S-closed relative to X, then f(A) ⊆ Y is compact.

Proof. Let f : (X, τ) → (Y, σ) be θs-continuous. Let A ⊆ X be an S-closed relative
to X. Let G be a filter on Y which meets f(A). Then f−1(G) is a filter on X which
meets A. But A is an S-closed relative to X. Then by Theorem 4.5.3, f−1(G) rc

� a

for some a ∈ A. But f is θs-continuous, then by Theorem 5.4.7, ff−1(G) � f(a)
but G ⊆ ff−1(G). So, by Theorem 2.1.9, G � f(a). Therefore, f(A) is compact by
Theorem 2.4.3.

Theorem 5.5.17. Let f : (X, τ) → (Y, σ) be a W -almost-open weakly-θ-continuous
function. If A ⊆ X is an S-closed relative to X, then f(A) ⊆ Y is an S-closed
relative to Y .

Proof. Let f : (X, τ) → (Y, σ) be W -almost-open weakly-θ-continuous. Let A ⊆ X

be an S-closed relative to X. Let G be a filter on Y which meets f(A). Then
f−1(G) is a filter on X which meets A. But A is an S-closed relative to X. Then
by Theorem 5.5.8, f−1(G) rc

� a for some a ∈ A. But f is W -almost-open weakly-
θ-continuous, then by Theorem 5.4.10, ff−1(G) rc

� f(a) but G ⊆ ff−1(G). So, by
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Theorem 5.1.10, G rc
� f(a). Therefore, f(A) is an S-closed relative to Y by Theorem

5.5.8.

Theorem 5.5.18. [10] A topological space (X, τ) is S-closed if and only if it is an
rc-continuous image of a compact space.

Proof. Let (X, τ) be S-closed. Then by Theorem 5.5.10, (X, τrc) is compact.
Consider the identity function idX : (X, τrc) → (X, τ). Then idX is obviously rc-
continuous. Therefore, there exist a compact space and an rc-continuous function
such that the S-closed space (X, τ) is the rc-continuous image of a compact space.
The converse follows from Theorem 5.5.15.

Theorem 5.5.19. [84] If X = ∏
α∈∆

Xα is S-closed, then each space Xα, α ∈ ∆, is
S-closed.

Proof. Since πα is an onto W -almost-open weakly-θ-continuous for all α ∈ ∆ and
X is S-closed, then by Corollary 5.5.3, πα(X) = Xα is S-closed for all α ∈ ∆.

5.5.3 rc-Strongly Closed Graphs

Definition 5.5.3. [3] A function f : (X, τ) → (Y, σ) has an rc-strongly closed
graph Γf if whenever (x, y) ∈ X × Y and (x, y) ̸∈ Γf , there exist U ∈ τ(x) and
R ∈ Cσ

r (y) such that (U × R) ∩ Γf = ∅.

Theorem 5.5.20. Let f : (X, τ) → (Y, σ) be a function, then f has an rc-strongly
closed graph if and only if for each x ∈ X and each y ∈ Y , with (x, y) /∈ Γf , there
exist U ∈ τ(x) and R ∈ Cσ

r (y) such that f(U) ∩ R = ∅.

Proof. The straightforward proof follows from Definition 5.5.3 and is omitted.

The following two examples show that the concepts of closed graph and rc-
strongly closed graph are independent of each other.
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Example 5.5.2. In Example 3.5.2, the function f has a closed graph but it doesn’t
have an rc-strongly closed graph.

Example 5.5.3. Consider the topological space (X, τ) given in Example 5.1.1.
Define a function f : (X, τ) → (X, τ) by f(x) = c for any x ∈ X. Then f has an
rc-strongly closed graph but it doesn’t have a closed graph.

Our first characterization of functions that have rc-strongly closed graph is in
terms of rc-convergence.

Theorem 5.5.21. [3] A function f : (X, τ) → (Y, σ) has an rc-strongly closed graph
if and only if for any filter F on X such that F −→ x ∈ X and f(F) rc−→ y ∈ Y ,
then (x, y) ∈ Γf .

Proof. Suppose, by the way of contradiction, that f has an rc-strongly closed graph.
Let F −→ x ∈ X and f(F) rc−→ y ∈ Y , then we show that (x, y) ∈ Γf . Suppose
on the contrary that (x, y) /∈ Γf . Since Γf is rc-strongly closed and by Theorem
5.5.20, then there exist U ∈ τ(x) and R ∈ Cσ

r (y) such that f(U) ∩ R = ∅. But
since F −→ x and U ∈ τ(x), then U ∈ F, and hence f(U) ∈ f(F). On the other
hand, f(F) rc−→ y and R ∈ Cσ

r (y), so R ∈ f(F). Thus, f(U) ∩ R ≠ ∅, which is a
contradiction. Therefore, (x, y) ∈ Γf .

Conversely, suppose, by the way of contradiction, that f does not have an rc-
strongly closed graph. Then there exists (x, y) ̸∈ Γf such that for all U ∈ τ(x) and
all R ∈ Cσ

r (y), we have f(U) ∩ R ̸= ∅. This implies that U ∩ f−1(R) ̸= ∅ for all
U ∈ τ(x) and all R ∈ Cσ

r (y). Let F = {F ⊆ X : F ⊇ U ∩ f−1(R), U ∈ τ(x), R ∈
Cσ

r (y)}, then F is a filter on X. We claim that F −→ x and f(F) rc−→ y. First,
let U◦ ∈ τ(x). Then U◦ ⊇ U◦ ∩ f−1(R) for each R ∈ Cσ

r (y). Hence, U◦ ∈ F. Next,
let R◦ ∈ Cσ

r (y). Then R◦ ⊇ f(f−1(R◦)) ⊇ f(U ∩ f−1(R◦)) for each U ∈ τ(x), but
U ∩f−1(R◦) ∈ F for each U ∈ τ(x). So, R◦ ∈ f(F). Therefore, we have constructed
a filter F −→ x in X for which f(F) rc−→ y in Y . By hypothesis, (x, y) ∈ Γf , which
is a contradiction. Therefore, Γf is rc-strongly closed.

Corollary 5.5.4. Let f : (X, τ) → (Y, σ) be any function, where Y is a regular
extremally disconnected space. Then the following are equivalent:
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(i) f has an rc-strongly closed graph.

(ii) For each filter F on X, F −→ x in X and f(F) rc−→ y in Y implies y = f(x).

(iii) For each filter F on X, F −→ x in X and f(F) −→ y in Y implies y = f(x).

(iv) f has a closed graph.

Proof. 3aa

(i) =⇒ (ii) Follows from Theorem 5.5.21.

(ii) =⇒ (iii) Follows from Theorem 5.3.2 part (i) and the fact that Y is extremally discon-
nected.

(iii) =⇒ (iv) Follows from Theorem 2.4.9.

(iv) =⇒ (i) Suppose that f has a closed graph. Let F be a filter on X with F −→ x and
f(F) rc−→ y. Since Y is regular, then by Theorem 5.3.1 part (i), f(F) −→ y.
But f has a closed graph, so by Theorem 2.4.9, (x, y) ∈ Γf . Therefore, f has
an rc-strongly closed graph by Theorem 5.5.21.

The graph of an rc-continuous function need not be rc-strongly closed as it is
shown in the next example.

Example 5.5.4. Consider the identity function f : (R, τ) → (R, σ), where τ and
σ are the usual and left ray topologies on R, respectively. Since σ ⊆ τ , then f

is continuous but (R, σ) is extremally disconnected, so by Theorem 5.4.5, f is rc-
continuous. However, the graph Γf is not rc-strongly closed graph since (0, 1) ̸∈ Γf

but for any U ∈ τ(0) and R ∈ Cσ
r (1) = {R}, we have (0, 0) ∈ (U × R) ∩ Γf .

We are now ready to give a sufficient condition on the codomain of an rc-
continuous function f to insure that it has an rc-strongly closed graph.

Theorem 5.5.22. [88] Let f : (X, τ) → (Y, σ) be rc-continuous and (Y, σ) be
semi-Urysohn. Then f has an rc-strongly closed graph.

Proof. Suppose that F is a filter on X with F −→ x ∈ X and f(F) rc−→ y ∈ Y .
Since f is rc-continuous, then by Theorem 5.4.2, f(F) rc−→ f(x) in Y . But Y is
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semi-Urysohn implies f(x) = y by Theorem 5.2.2. So, (x, y) ∈ Γf . Hence, by
Theorem 5.5.21, f has an rc-strongly closed graph.

Note that in example 5.5.4, the topological space (R, σ) is not a semi-Urysohn
space. The remaining results of this section relate functions with rc-strongly
closed graph to S-closed spaces.

Example 5.5.5. Consider the identity function f : (R, τ) → (R, σ), where τ and σ

are the usual and discrete topologies on R, respectively. Then f has an rc-strongly
closed graph but f is not rc-continuous.

We are now ready to give a sufficient condition on the codomain of a function
f has an rc-strongly closed graph to insure that it is rc-continuous.

Theorem 5.5.23. [3] Let (Y, σ) be an S-closed space. For every topological
space (X, τ), each function f : (X, τ) → (Y, σ) with an rc-strongly closed graph is
rc-continuous.

Proof. Let x ∈ X and R ∈ Cσ
r (f(x)). For each y ∈ Y − R, y ≠ f(x), then for

each y ∈ Y − R, (x, y) ̸∈ Γf . But f has an rc-strongly closed graph, then by
Theorem 5.5.20, there exist Uy ∈ τ(x) and Ry ∈ Cσ

r (y) such that f(Uy) ∩ Ry = ∅.
Let R = {R} ∪ {Ry : y ∈ Y − R}, then R is a regular closed cover of Y since
Y = R ∪ (Y − R) ⊆ R ∪

( ⋃
y∈Y −R

Ry

)
⊆ Y . But Y is S-closed, then R has a finite

subcover, say R
′ = {R, Ry1 , . . . , Ryn : y1, . . . , yn ∈ Y − R}. So, Y = R ∪

n⋃
i=1

Ryi
.

Let U =
n⋂

j=1
Uyj

. Then U ∈ τ(x) and f(U) = f
( n⋂

j=1
Uyj

)
⊆

n⋂
j=1

f(Uyj
) ⊆ f(Uyi

) for

all i = 1, . . . , n. Now, f
(
U

)
∩

( n⋃
i=1

Ryi

)
=

n⋃
i=1

(
f(U) ∩ Ryi

)
⊆

n⋃
i=1

(
f(Uyi

) ∩ Ryi

)
=

n⋃
i=1

∅ = ∅. This implies that, f(U) ⊆ Y − (
n⋃

i=1
Ryi

) ⊆ R. Hence, f is rc-continuous
at the arbitrary point x ∈ X and therefore, f is rc-continuous.

Theorem 5.5.24. Let F be a filter on a topological space (Y, σ) and X = Y ∪ {p}
with p ̸∈ Y . If θ-sAdhσ(F) = ∅, then the prime space (X, τp) is Hausdorff.

Proof. Similar to the proof of Theorem 2.4.12.
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Lemma 5.5.2. Let X = Z ∪{p} where Z is a set with p ̸∈ Z, (Y, σ) be a topological
space and y ∈ Y . Let g : Z → (Y, σ) be a function and F be a filter on Z. Define
a function g̃ : (X, τp) → (Y, σ) by g̃(z) = g(z) for any z ∈ Z and g̃(p) = y. Then
g(F) s−→ y in (Y, σ) if and only if g̃ is rc-continuous on X.

Proof. Similar to the proof of Lemma 2.4.1.

Our final result shows that the condition of theorem 5.5.23 characterizes S-
closed spaces if the spaces X are chosen from the class S to obtain the following
characterization of S-closed spaces.

Theorem 5.5.25. Let (Y, σ) be a Hausdorff space. Then (Y, σ) is an S-closed
space if and only if for any space (X, τ) ∈ S, each function f : (X, τ) → (Y, σ),
that has an rc-strongly closed graph, is rc-continuous.

Proof. The first direction follows by Theorem 5.5.23. Conversely, suppose, by the
way of contradiction, that Y is not S-closed, then by Theorem 5.5.9, there is a
filter F on Y such that θ-sAdhσ(F) = ∅. Let X = Y ∪ {p} where p ̸∈ Y . Consider
the topological space (X, τp). Then by Theorem 5.5.24, (X, τp) is Hausdorff. Also,
by Theorems 1.4.2 and 1.4.4, (X, τp) is completely normal and fully normal. This
implies that (X, τp) ∈ S. Fix a point b ∈ Y and define ĩdY : (X, τp) → (Y, σ) by
ĩdY (x) = idY (x) = x for any x ∈ Y and ĩdY (p) = b. Let (x, y) ∈ X ×Y and (x, y) ̸∈
ΓĩdY

. Consider the case when x ̸= p. Since ĩdY (x) ̸= y and (Y, σ) is Hausdorff,
then there exists Vy ∈ σ(y) such that ĩdY (x) ̸∈ V y. Hence, Ux = {x} ∈ τp(x),
Wy = V y ∈ Cσ

r (y) and ĩdY (Ux)∩Wy = ĩdY ({x})∩V y = {ĩdY (x)}∩V y = ∅. Consider
the case when x = p. Then b = ĩdY (p) ̸= y. Again, since (Y, σ) is Hausdorff,
then there exists Vy ∈ σ(y) such that b ̸∈ V y. Moreover, since θ-sAdhσ(F) = ∅,
then by Theorem 5.1.4, we have F

s

�̸ y, so there exist Ry ∈ Cσ
r (y) and F ∈ F

such that F ∩ Ry = ∅. Take Wy = Vy ∩ Ry. Then y ∈ Wy, b ̸∈ Wy and Wy ⊆ Ry.
Since Ry ∈ RC(Y ), then by Proposition 1.2.4 part (iii), Ry ∈ SO(Y ). But since
Vy ∈ σ, then by Theorem 1.2.2, Vy ∩ Ry ∈ SO(Y ). Thus, by Proposition 1.2.7
part (iii), Wy = Vy ∩ Ry ∈ RC(Y ). So, Wy ∈ Cσ

r (y). Hence, Ux = F ∪ {p} ∈ τp(x)
and Wy ∈ Cσ

r (y), so by Theorem 5.5.20, ĩdY (Ux) ∩ Fy = ĩdY (F ∪ {p}) ∩ Wy =
(idY (F ) ∪ {b}) ∩ Wy = G ∩ Wy ⊆ G ∩ Ry = ∅. We have shown, in both cases,
that for each (x, y) ∈ (X × Y ) − ΓĩdY

, there exist Ux ∈ τp(x) and Wy ∈ Cσ
r (y) such
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that ĩdY (Ux) ∩ Wy = ∅. Thus, by Theorem 5.5.20, ĩdY has an rc-strongly closed
graph. By hypothesis, ĩdY is rc-continuous, so by Lemma 5.5.2, idY (F) s−→ b

implies F
s−→ b in (Y, σ) but by Proposition 5.1.2, we have F

rc−→ b and by
Proposition 5.1.6, F rc

� b, and so by Proposition 5.1.5, F s
� b, hence Theorem 5.1.4,

θ-sAdhσ(F) ̸= ∅, which is a contradiction. Therefore, (Y, σ) is S-closed.
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Chapter 6
Various Types of Convergence Structures

Since the topological structure on a topological space is determined by the
data of the convergence of filters on the space, the convergence structure has
been introduced to generalize the topological structure [36].

It is the purpose of this chapter to investigate the relationship among δ, θ, and
rc-convergence structures. Also, the relationship among some types of compact-
ness: nearly compact, quasi-H-closed, and S-closed spaces is also investigated.
We explore some information about a filter convergence structure and a filter
convergence space as q-closure and q-adherence of sets, q-closed sets, a topol-
ogy induced by a convergence structure q, a q-neighborhood filter, a topological
concept, a topological modification of q, a pretopological concept, and a pre-
topological modification of q. We also obtain some results about the aforesaid
concepts and provide basic ideas of a convergence theory, which would enable
one to tackle θ, δ, and rc-convergence structures.

6.1 Relationship among δ, θ and rc-Convergence

Theorem 6.1.1. Let F be a filter on a topological space (X, τ) and x ∈ X.

(i) If F δ−→ x, then F
θ−→ x.

(ii) If F rc−→ x, then F
θ−→ x.
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Proof. (i) Let U ∈ τ(x), then U
◦ ∈ F since F

δ−→ x but U
◦ ⊆ U . So, U ∈ F.

Therefore, F θ−→ x.

(ii) If F rc−→ x, then ⟨Cr(x)⟩ ⊆ F but C(x) ⊆ Cr(x), and so ⟨C(x)⟩ ⊆ ⟨Cr(x)⟩ ⊆ F.
Therefore, F θ−→ x.

Theorem 6.1.2. Let (X, τ) be an almost-regular space, F be a filter on X and
x ∈ X. Then F

δ−→ x if and only if F θ−→ x.

Proof. If F
δ−→ x, then F

θ−→ x by Theorem 6.1.1 part (i). Conversely, let
G ∈ RO(x), then there exists H ∈ RO(x) such that H ⊆ G. Since H ∈ τ(x), then
H ∈ C(x) but since F

θ−→ x, then H ∈ F, and so G ∈ F. Therefore, F δ−→ x.

Theorem 6.1.3. Let X be an extremally disconnected space, F be a filter on X

and x ∈ X. Then the following are equivalent:

(i) F
δ−→ x.

(ii) F
θ−→ x.

(iii) F
rc−→ x.

Proof. aaa

(i) =⇒ (ii) Follows from Theorem 6.1.1 part (i).

(ii) =⇒ (iii) Since F
θ−→ x, then ⟨C(x)⟩ ⊆ F but C(x) = Cr(x) since X is extremally

disconnected. So ⟨Cr(x)⟩ ⊆ F. Therefore, F rc−→ x.

(iii) =⇒ (i) Since F
rc−→ x, then ⟨Cr(x)⟩ ⊆ F but RO(x) = RC(x) = Cr(x) since X

is extremally disconnected. Hence, ⟨RO(x)⟩ ⊆ F. That is, Us(x) ⊆ F.
Therefore, F δ−→ x.

Theorem 6.1.4. [48] For a topological space (X, τ), the following are equivalent:

(i) X is extremally disconnected.

(ii) For each x ∈ X and each filter F on X, if F δ−→ x, then F
rc−→ x.

(iii) For each x ∈ X and each filter F on X, F θ−→ x if and only if F rc−→ x.
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(iv) For each x ∈ X and each filter F on X, if F −→ x, then F
rc−→ x.

Proof. 3a
(i) =⇒ (ii) Follows from Theorem 6.1.3.
(ii) =⇒ (i) Let U ∈ τ . We show that U ∈ τ . Let x ∈ U be arbitrary. Since τs ⊆ τ , then

Us(x) ⊆ U(x), so U(x) δ−→ x. By hypothesis, U(x) rc−→ x. So, ⟨Cr(x)⟩ ⊆ U(x).
But since U ∈ Cr(x), then U ∈ U(x). Thus, for all x ∈ U , U ∈ U(x), and
hence U ∈ τ . Therefore, X is extremally disconnected.

(i) =⇒ (iii) Follows from Theorem 6.1.3.
(iii) =⇒ (ii) Let x ∈ X and F be any filter on X and F

δ−→ x, then by Theorem 6.1.1
part (i), F θ−→ x. So, by hypothesis, F rc−→ x.

(iii) =⇒ (iv) Let x ∈ X and F be any filter on X and F −→ x, then by Proposition 4.1.2
part (ii), F θ−→ x. So, by hypothesis, F rc−→ x.

(iv) =⇒ (i) Let U ∈ τ . We show that U ∈ τ . Let x ∈ U be arbitrary. Since U(x) −→ x,
then by hypothesis, U(x) rc−→ x. So, ⟨Cr(x)⟩ ⊆ U(x). But U ∈ Cr(x), then
U ∈ U(x). Thus, for all x ∈ U , U ∈ U(x). Hence, U ∈ τ . Therefore, X is
extremally disconnected.

6.2 Relationship between Types of Compactness

Theorem 6.2.1. [7] Let X be a topological space.
(i) If X is nearly compact, then X is quasi-H-closed.
(ii) If X is S-closed, then X is quasi-H-closed.

Proof. .
(i) Assume that X is nearly compact. Let F be an ultrafilter on X, then F

δ−→ x

for some x ∈ X. By Theorem 6.1.1 part (i), F θ−→ x. Therefore, by Theorem
4.5.2, X is a quasi-H-closed space.

(ii) Assume that X is S-closed. Let F be an ultrafilter on X, then F
rc−→ x for

some x ∈ X. By Theorem 6.1.1 part (ii), F θ−→ x. Therefore, by Theorem
4.5.2, X is a quasi-H-closed space.
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Theorem 6.2.2. [19, 48] Let X be an almost-regular space.

(i) X is nearly compact if and only if X is quasi-H-closed.

(ii) If X is S-closed, then X is nearly compact.

Proof. .

(i) If X is almost-regular, then by Theorem 6.1.2, a filter F
δ−→ x if and only if

F
θ−→ x. Thus, X is nearly compact if and only if every ultrafilter δ-converges

if and only if every ultrafilter θ-converges if and only if X is quasi-H-closed.

(ii) If X is S-closed, then by Theorem 6.2.1 part (ii), X is quasi-H-closed. So, by
part (i) and since X is almost-regular, X is nearly compact.

Theorem 6.2.3. [89] Let X be an extremally disconnected space and A ⊆ X.
Then the following are equivalent:

(i) A is an N -closed relative to X.

(ii) A is a quasi-H-closed relative to X.

(iii) A is an S-closed relative to X.

Proof. This follows from Theorems 3.5.4, 4.5.3, 5.5.8 and 6.1.3.

Corollary 6.2.1. [48] Let X be an extremally disconnected space. Then the
following are equivalent:

(i) X is nearly compact.

(ii) X is quasi-H-closed.

(iii) X is S-closed.

Proof. Follows from Theorem 6.2.3 with A = X.

Theorem 6.2.4. [115] Let X be a regular space. Then for any A ⊆ X, A =
δ-Cl(A) = θ-Cl(A).
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Proof. Let X be a regular space and A ⊆ X. Then by Theorem 4.3.2, A = θ-Cl(A).
So, by Proposition 4.1.6, we have A ⊆ δ-Cl(A) ⊆ θ-Cl(A) and since X is regular
and by Theorem 4.3.2, then θ-Cl(A) = A. Therefore, A = δ-Cl(A) = θ-Cl(A).

Theorem 6.2.5. Let X be an extremally disconnected space and A ⊆ X. Then
δ-Cl(A) = θ-Cl(A) = θ-sCl(A).

Proof. Follows from Definitions 3.1.3, 4.1.4, 5.1.7 and Propositions 1.3.6, 5.1.1.

Corollary 6.2.2. [89] Let X be an extremally disconnected space and A ⊆ X.
Then the following are equivalent:

(i) A is δ-closed.

(ii) A is θ-closed.

(iii) A is θ-semiclosed.

Proof. Follows from Theorem 6.2.5.

Lemma 6.2.1. Let (X, τ) be a topological space. If X is not extremally disconnected,
then there is a regular open set G in X such that G is neither closed nor dense in
X.

Proof. Suppose for each G ∈ RO(X), either G = G or G = X. Let U ∈ τ ,
then U

◦ ∈ RO(X), and so by above U
◦ = U

◦ or U
◦ = X. If U

◦ = X, then
X = U

◦ ⊆ U = U , and hence U = X ∈ τ. If U
◦ = U

◦, then since U is open, we
have U ⊆ U

◦, and so U ⊆ U
◦ = U

◦. But U
◦ ⊆ U . Thus, U = U

◦ ∈ τ . Hence, for
each U ∈ τ, U ∈ τ . Therefore, X is extremally disconnected.

Theorem 6.2.6. [48] If (X, τ) is almost-regular and S-closed, then X is extremally
disconnected and nearly compact.

Proof. Let X be almost-regular and S-closed. First, we show that X is extremally
disconnected. Suppose, by the way of contradiction, that X is not extremally
disconnected. Then by Lemma 6.2.1, there exists G ∈ RO(X) such that G ̸= G

and X ̸= G. Let x ∈ G − G, then there exists a filter F on X such that G ∈ F
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and F −→ x. But G ⊆ G, then G ∈ F, so F meets G. Since G is a proper regular
open in X and X is S-closed, then by Theorems 5.5.4 and 5.5.5, G is an S-closed
relative to X. By Theorem 5.5.6, G is an S-closed relative to X, so by Theorem
5.5.8, F rc

� p for some p ∈ G. That is, F(∩)[Cr(p)]. If p ̸∈ G, then p ∈ X − G,
but X − G ∈ RC(X) since G ∈ RO(X). So, X − G ∈ Cr(p). But G ∈ F and
F(∩)[Cr(p)], so G ∩ (X − G) ̸= ∅, which is a contradiction. Hence, p ∈ G but
G ∈ RO(X), thus G ∈ RO(p). But X is almost-regular, then by Theorem 1.3.2,
there exists a regular open set H in X such that p ∈ H ⊆ H ⊆ G. Since p ∈ H ∈ τ ,
then H ∈ C(p). As x ̸∈ G, then x ̸∈ H. Thus, x ∈ X −H, and hence X −H ∈ U(x).
But H ∩ (X − H) = ∅, so we have C(p) ⊥ U(x) but C(p) ⊆ Cr(p) ⊆ [Cr(p)] and
U(x) ⊆ F, so by Proposition 1.1.1 part (ii), so [Cr(p)] ⊥ F but this contradicts the
fact that [Cr(p)](∩)F. Therefore, X is extremally disconnected. Next, since X is
almost-regular and S-closed, then by Theorem 6.2.2, X is nearly compact.

Corollary 6.2.3. [48] Let X be almost-regular. Then the following are equivalent:

(i) X is S-closed.

(ii) X is nearly-compact and extremally disconnected.

(iii) Xs is regular, compact and extremally disconnected.

Proof. aa

(i) =⇒ (ii) Since X is almost-regular and S-closed, then X is nearly compact and ex-
tremally disconnected by Theorem 6.2.6.

(ii) =⇒ (i) Follows from Corollary 6.2.1.

(ii) ⇐⇒ (iii) This follows from Theorems 1.3.3, 3.5.5 and Proposition 1.3.5.

Lemma 6.2.2. [46] A topological space (X, τ) is weakly-T2 if and only if for each
x ̸= y in X, there exist G ∈ RO(X) and F ∈ RC(X) such that x ∈ G, y ∈ F and
G ∩ F = ∅.

Proof. Assume that X is weakly-T2 and x ̸= y in X, then y ̸= x, so by Proposition
1.3.7, there exists a regular closed set F such that y ∈ F but x ̸∈ F . Let G = X −G,
then G is regular open in X and x ∈ G. Also, G ∩ F = (X − F ) ∩ F = ∅.
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Conversely, let x ̸= y in X. Then y ̸= x, so by hypothesis, there exist G ∈ RO(y)
and F ∈ RC(x) such that G ∩ F = ∅. Since y ∈ G and G ∩ F = ∅, then y /∈ F . So,
for each x ̸= y in X, there exists a regular closed set F such that x ∈ F but y /∈ F .
Therefore, by Proposition 1.3.7, X is weakly-T2.

Lemma 6.2.3. Let (X, τ) be a topological space. Then X is Hausdorff if and only
if for each x ̸= y in X, Us(x) ⊥ C(y).

Proof. Suppose that X is Hausdorff. Let x ̸= y in X, then there exist open
sets U and V in X such that x ∈ U , y ∈ V and U ∩ V = ∅. Since U is
open in X and x ∈ U , then U

◦ ∈ RO(x) ⊆ Us(x). Also, since y ∈ V ∈ τ ,
then V ∈ C(y). Moreover, by Theorem 1.2.2 and since U

◦ and V are open,
U

◦ ∩ V ⊆ U
◦ ∩ V ⊆ U ∩ V ⊆ U ∩ V = U ∩ V = ∅ = ∅. Hence, Us(x) ⊥ C(y).

Conversely, let x ̸= y in X. Then Us(x) ⊥ C(y). So, there exist G ∈ Us(x) and
H ∈ C(y) such that G ∩ H = ∅. But then there exist open sets U and V in X such
that x ∈ U ⊆ U

◦ ⊆ G and y ∈ V ⊆ H. Moreover, U ∩ V ⊆ G ∩ H = ∅. Thus, X

is Hausdorff.

Theorem 6.2.7. [48] If (X, τ) is weakly-T2 and S-closed, then X is H-closed and
extremally disconnected.

Proof. Let X be weakly-T2 and S-closed. First, we show that X is extremally
disconnected. Suppose on the contrary that X is not extremally disconnected.
Then by Lemma 6.2.1, there exists G ∈ RO(X) such that G−G ̸= ∅ and X −G ̸= ∅.
Let x ∈ G − G. Then there exists a filter F on X such that G ∈ F and F −→ x,
so F meets G. But since G is an S-closed relative to X, so by Theorem 5.5.8,
F

rc
� y for some y ∈ G. That is, F(∩)[Cr(y)]. If y ∈ G − G, then y ∈ X − G, but

X −G ∈ RC(X) since G ∈ RO(X). So X −G ∈ Cr(y). But G ∈ F and F(∩)[Cr(y)],
so G ∩ (X − G) ̸= ∅, which is a contradiction. Hence, y ∈ G but G is open in
X since G ∈ RO(X), thus G ∈ U(y). Since x ̸∈ G and y ∈ G, then x ̸= y, so by
Lemma 6.2.2 and since X is weakly-T2, there exist G ∈ RO(x) and F ∈ Cr(y) such
that G ∩ F = ∅. But Cr(y) ⊆ [Cr(y)]. So, F ∈ [Cr(y)]. Thus, Us(x) ⊥ [Cr(y)]. But
since F −→ x, then by Proposition 3.1.2 part (ii), F δ−→ x, so Us(x) ⊆ F, thus by
Proposition 1.1.1 part (ii), F ⊥ [Cr(y)], which is a contradiction since F(∩)[Cr(y)].
Hence, X is extremally disconnected. Next, since X is weakly T2, then as above,
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we have for each x ≠ y, Us(x) ⊥ [Cr(y)] but X is extremally disconnected, so
Cr(y) = C(y). Thus, for each x ̸= y, Us(x) ⊥ [C(y)] but C(y) is a filter base in X,
so we have for each x ̸= y, Us(x) ⊥ C(y). Thus, by Lemma 6.2.3, X is Hausdorff.
Finally, since X is S-closed, then by Theorem 6.2.1 part (ii), X is quasi-H-closed.
Thus, X is a Hausdorff quasi-H-closed. Therefore, X is H-closed.

Corollary 6.2.4. If X is weakly-T2 and extremally disconnected, then X is Haus-
dorff.

Proof. Obvious, by the proof of Theorem 6.2.7.

Corollary 6.2.5. [48] Let X be a weakly-T2 space.

(i) If X is nearly-compact and extremally disconnected, then X is S-closed and
Hausdorff.

(ii) If X is quasi-H-closed and extremally disconnected, then X is S-closed and
Hausdorff.

Proof. 3aa

(i) If X is nearly compact and extremally disconnected, then by Corollary 6.2.1,
X is S-closed. Also, if X is weakly-T2 and extremally disconnected, then by
Corollary 6.2.4, X is Hausdorff.

(ii) If X is quasi-H-closed and extremally disconnected, then by Corollary 6.2.1,
X is S-closed. Also, if X is weakly-T2 and extremally disconnected, then by
Corollary 6.2.4, X is Hausdorff.

Corollary 6.2.6. Let X be weakly-T2. Then the following are equivalent:

(i) X is S-closed.

(ii) X is quasi-H-closed and extremally disconnected.

(iii) Xs is compact Hausdorff and extremally disconnected.

Proof. aaa
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(i) =⇒ (ii) Since X is weakly-T2 and S-closed, then by Theorem 6.2.7, X is H-closed
and extremally disconnected, and so X is quasi-H-closed and extremally
disconnected.

(ii) =⇒ (iii) Since X is weakly-T2 and extremally disconnected, then by Corollary 6.2.4, X

is Hausdorff. So, by Proposition 1.3.3, Xs is Hausdorff. Also, by Proposition
1.3.5, Xs is extremally disconnected. Since X is quasi-H-closed and extremally
disconnected, then by Corollary 6.2.1, X is nearly compact, and so Xs is
compact.

(iii) =⇒ (i) Assume that Xs is compact and extremally disconnected, then by Theorem
3.5.5 and Proposition 1.3.5, X is nearly compact and extremally disconnected,
respectively. So, by Corollary 6.2.1, X is S-closed.

6.3 Relationship between Various Functions

In this section we investigate relationships between types of functions.

Theorem 6.3.1. If f : (X, τ) → (Y, σ) is almost-continuous, then f is weakly-θ-
continuous.

Proof. Let x ∈ X and F be a filter on X such that F −→ x. Since f is almost-
continuous and by Theorem 3.4.2, f(F) δ−→ f(x) in Y , then f(F) θ−→ f(x) by
Theorem 6.1.1 part (i). Therefore, f is weakly-θ-continuous at x ∈ X by Theorem
4.4.2. Thus, f is weakly-θ-continuous since x was arbitrary.

Theorem 6.3.2. If f : (X, τ) → (Y, σ) is weakly-θ-continuous and Y is almost-
regular, then f is almost-continuous.

Proof. Let x ∈ X and F be a filter on X such that F −→ x. Since f is weakly-θ-
continuous and by Theorem 4.4.2, then f(F) θ−→ f(x) in Y but Y is almost-regular
and by Theorem 6.1.2, we have f(F) δ−→ f(x). Therefore, f is almost-continuous
at x ∈ X. Thus, f is almost-continuous since x was arbitrary.
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Corollary 6.3.1. Let f : X → Y be a function and Y be almost-regular. Then f

is weakly-θ-continuous if and only if f is almost-continuous.

Theorem 6.3.3. [8] Let f : X → Y be a function and X be almost-regular. If f

is super-continuous, then f is strongly-θ-continuous.

Theorem 6.3.4. [48] If f : X → Y is W -almost-open weakly-θ-continuous, then f

is almost-continuous.

Proof. Let x ∈ X and V be an open neighborhood of f(x) in Y . Since f is weakly-
θ-continuous, then there exists an open neighborhood U of x such that f(U) ⊆ V .
Then U ⊆ f−1

(
V

)
, so U◦ ⊂

(
f−1

(
V

))◦
but U is open and

(
f−1

(
V

))◦
= f−1

(
V

◦)
by Corollary 5.4.2. So U ⊆ f−1

(
V

◦)
. Thus, f(U) ⊆ ff−1

(
V

◦)
⊆ V

◦. Therefore,
f is almost-continuous.

Theorem 6.3.5. If f : (X, τ) → (Y, σ) is rc-continuous, then f is weakly-θ-
continuous.

Proof. Let x ∈ X and F be a filter on X such that F −→ x. Since f is rc-continuous
and by Theorem 5.4.2, f(F) rc−→ f(x) in Y , then f(F) θ−→ f(x) by Theorem 6.1.1
part (ii). Therefore, f is weakly-θ-continuous at x ∈ X by Theorem 4.4.2. Thus, f

is weakly-θ-continuous since x was arbitrary.

Theorem 6.3.6. Let f : (X, τ) → (Y, σ) be a function, where Y is extremally
disconnected. Then the following are equivalent:

(i) f is weakly-θ-continuous.

(ii) f is almost-continuous.

(iii) f is rc-continuous.

Proof. This follows from Theorems 6.1.3, 3.4.2, 4.4.2, 5.4.2, Propositions 1.3.6, 5.1.1
part (ii) and the fact that Y is extremally disconnected.

Theorem 6.3.7. Let f : (X, τ) → (Y, σ) be a function, where X and Y are
extremally disconnected spaces. Then the following are equivalent:
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(i) f is θ-continuous.

(ii) f is δ-continuous.

(iii) f is S-continuous.

Proof. This follows from Definitions 3.4.3, 4.4.3, 5.4.4, Propositions 1.3.6, 5.1.1
part (ii) and the fact that X and Y are extremally disconnected.

Theorem 6.3.8. Let f : (X, τ) → (Y, σ) be a function, where X is extremally
disconnected. Then the following are equivalent:

(i) f is strongly-θ-continuous.

(ii) f is super-continuous.

(iii) f is θs-continuous.

Proof. This follows from Definitions 3.4.2, 4.4.2, 5.4.2, Propositions 1.3.6, 5.1.1
part (ii) and the fact that X is extremally disconnected.

Theorem 6.3.9. Let f : (X, τ) → (Y, σ) be a function.

(i) If f has a strongly closed graph, then f has an almost-strongly closed graph.

(ii) If f has a strongly closed graph, then f has an rc-strongly closed graph.

Proof. (i) This follows from Theorems 3.5.15, 4.5.12 and 6.1.1 part (i).

(ii) This follows from Theorems 4.5.12, 5.5.21 and 6.1.1 part (ii).

Theorem 6.3.10. Let f : (X, τ) → (Y, σ) be a function, where Y is almost-regular.
Then f has a strongly closed graph if and only if f has an almost-strongly closed
graph.

Proof. This follows from Theorems 3.5.15, 4.5.12 and 6.1.2.

Theorem 6.3.11. Let f : (X, τ) → (Y, σ) be a function and Y be extremally
disconnected. The following are equivalent:
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(i) f has a strongly closed graph.

(ii) f has an almost-strongly closed graph.

(iii) f has an rc-strongly closed graph.

Proof. This follows from Theorems 3.5.15, 4.5.12, 5.5.21 and 6.1.3.

6.4 θ, δ and rc-Convergence Structures

In this section, we introduce the definition of a filter convergence structure and
related concepts. Very roughly speaking, a convergence space is a set together
with a designated collection of convergent filters. The theory of convergence
structures was developed in order to handle non-topological convergences.

Definition 6.4.1. [11, 91] Let X be a set and F(X) be the set of all filters on
X. A mapping q : X → P(F(X)) is called a filter convergence structure on X and
(X, q) a filter convergence space if the following hold for all x ∈ X:

(i) ⟨x⟩ ∈ q(x);

(ii) For all filters F,G ∈ q(x), F ∩ G ∈ q(x);

(iii) For each F,G ∈ F(X), if F ∈ q(x) and F ⊆ G, then G ∈ q(x).

Instead of F ∈ q(x), we shall usually write F
q−→ x.

Definition 6.4.2. [11] Given a set X, the set of all convergence structures on X

is denoted by C(X).

Example 6.4.1 (The natural convergence structure of a topology). [11] Every
topological space (X, τ) yields a convergence space. Let (X, τ) be a topological
space and Uτ (x) be the neighborhood system at x ∈ X with respect to τ . Then the
convergence structure c(τ) induced by τ is defined as follows:

F ∈ c(τ)(x) iff Uτ (x) ⊆ F for each F ∈ F(X).

The convergence structure c(τ) is called the natural convergence structure of τ .
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Example 6.4.2 (θ, δ and rc-convergence structures). Let (X, τ) be a topological
space.

(i) The δ-convergence structure on X: For x ∈ X and F ∈ F(X), F ∈ δ(x) iff
Us(x) ⊆ F. This follows from Remark 3.2 and Theorem 3.1.7.

(ii) The θ-convergence structure on X: For x ∈ X and F ∈ F(X), F ∈ θ(x) iff
⟨C(x)⟩ ⊆ F. This follows from Remark 4.3 and Theorem 4.1.8.

(iii) The rc-convergence structure on X: For x ∈ X and F ∈ F(X), F ∈ rc(x) iff
⟨Cr(x)⟩ ⊆ F. This follows from Remark 5.4 and Theorem 5.1.8.

Remark 6.1. [11] On C(X), define a relation ≤ on C(X) by q1 ≤ q2 ⇐⇒
q2(x) ⊆ q1(x) for all x ∈ X. Then (C(X), ≤) is a poset.

Definition 6.4.3. [11] Let q1 and q2 be two convergence structures on X. If
q1 ≤ q2, then we say that q1 is coarser than q2 and q2 is finer than q1.

Proposition 6.4.1. For any topological space (X, τ), we have θ ≤ δ ≤ c(τ).

Proof. By Theorem 6.1.1 part (i), θ ≤ δ and by Proposition 3.1.2 part (ii), δ ≤ c(τ).
Thus, θ ≤ δ ≤ c(τ).

Definition 6.4.4. [11] Let (X, q) be a convergence space and A ⊆ X. Then

Clq(A) = {x ∈ X : ∃ F ∈ q(x) such that A ∈ F} is the q-closure of A.

Proposition 6.4.2. For a subset A of a topological space (X, τ), we have

(i) Clc(τ)(A) = A.

(ii) Clδ(A) = δ-Cl(A).

(iii) Clθ(A) = θ-Cl(A).

(iv) Clrc(A) = Clτrc(A) but Clrc(A) ̸= θ-sCl(A).

Proof. (i) This follows from Theorem 2.1.2.

(ii) By Theorem 3.1.3, Clδ(A) = δ-Cl(A).

(iii) By Theorem 4.1.4, Clθ(A) = θ-Cl(A).
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(iv) By Theorem 2.1.3 and Proposition 5.1.3, we have Clrc(A) = Clτrc(A). Finally,
by Example 5.1.7 and Thereom 5.1.5, Clrc(A) ̸= θ-sCl(A).

Proposition 6.4.3. [11] Let (X, q) be a convergence space. Then the following
hold:

(i) Clq(∅) = ∅.

(ii) A ⊆ Clq(A) for all A ⊆ X.

(iii) If A ⊆ B, then Clq(A) ⊆ Clq(B).

(iv) Clq(A ∪ B) = Clq(A) ∪ Clq(B) for all A, B ⊆ X.

Proof. aaa

(i) If there is an x ∈ X such that x ∈ Clq(∅), then ∅ ∈ F for some filter F ∈ q(x),
which is impossible since ∅ /∈ F. Thus, for all x ∈ X, x /∈ Clq(∅). That is,
Clq(∅) = ∅.

(ii) Let x ∈ A, then A ∈ ⟨x⟩ and ⟨x⟩ ∈ q(x). So, x ∈ Clq(A).

(iii) Let x ∈ Clq(A), then there exists F ∈ q(x) such that A ∈ F but A ⊆ B. So,
B ∈ F since F is a filter on X. Therefore, x ∈ Clq(B).

(iv) It is easy to check that Clq(A)∪Clq(B) ⊆ Clq(A∪B). Next, let x ∈ Clq(A∪B).
Then there is a filter F ∈ q(x) such that A∪B ∈ F. If A ∈ F, then x ∈ Clq(A).
If A ̸∈ F, then for all F ∈ F, F ∩ (X − A) ̸= ∅. Let G = ⟨F

∣∣∣
X−A

⟩, then by
Proposition 1.1.6, G is a filter on X such that X − A ∈ G and F ⊆ G. Since
F ∈ q(x), then G ∈ q(x). Also, since A ∪ B ∈ F ⊆ G and X − A ∈ G, then
B − A = (A ∪ B) ∩ (X − A) ∈ G, so B ∈ G. Hence, we have G ∈ q(x) and
B ∈ G. Thus, x ∈ Clq(B).

In general, the q-closure operator is not idempotent as the following example.

Example 6.4.3. Let X = {a, b, c}, τ = {∅, X, {a}, {b}, {a, b}} and A = {a}.
Consider the convergence structure θ on X. Then we show that Clθ(A) = {a, c}
and Clθ(Clθ(A)) = X. Clearly, a ∈ Clθ(A) and since the only open set containing
c is X, then c ∈ Clθ(A). But b ̸∈ Clθ(A) since {b} is open in X containing b
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and {b} ∩ A = ∅. Next, clearly, a, c ∈ Clθ (Clθ(A)) = Clθ({a, c}). Now, we show
that b ∈ Clθ({a, c}). The open sets in X containing b are {b}, {a, b} and X. As
{b} = {b, c}, {a, b} = X and X = X, then U ∩ {a, c} ≠ ∅ for every U ∈ τ(b). So,
b ∈ Clθ({a, c}). Hence, Clθ({a, c}) = X. Therefore, Clθ(Clθ(A)) ̸= Clθ(A). That
is, Clθ is not idempotent.

Definition 6.4.5. [11] Let (X, q) be a convergence space and F ∈ F(X). Then

aq(F) = {x ∈ X : ∃ G ∈ q(x) such that F ⊆ G}

is the set of all q-adherent points for F.

Proposition 6.4.4. Let (X, q) be a convergence space. Then aq(F) = ⋂
F ∈F

Clq(F )
for any F ∈ F(X).

Proof. Let F ∈ F(X). Then

aq(F) = {x ∈ X : ∃ G ∈ q(x) such that F ⊆ G}
= {x ∈ X : ∃ G ∈ q(x) such that F ∈ G, ∀ F ∈ F}
= {x ∈ X : x ∈ Clq(F ), ∀ F ∈ F}
=

⋂
F ∈F

Clq(F ).

Proposition 6.4.5. For a filter F on a topological space (X, τ), we have

(i) δ-Adh(F) = aδ(F).

(ii) θ-Adh(F) = aθ(F).

(iii) Adhτrc(F) = arc(F).

Proof. (i) δ-Adh(F) = ⋂
F ∈F

δ-Cl(F ) but by Propsition 6.4.2 part (ii), δ-Cl(F ) =
Clδ(F ) for any F ∈ F. By Remark 3.1, δ-Adh(F) = aδ(F).

(ii) θ-Adh(F) = ⋂
F ∈F

θ-Cl(F ) but by Proposition 6.4.2 part (iii), θ-Cl(F ) = Clθ(F )
for any F ∈ F. By Remark 4.2, θ-Adh(F) = aθ(F).
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(iii) Adhτrc(F) = ⋂
F ∈F

Clτrc(F ) but by Proposition 6.4.2 part (iv), Clτrc(F ) =
Clrc(F ) for any F ∈ F. Hence, Adhτrc(F) = ⋂

F ∈F
Clrc(F ) = arc(F).

Remark 6.2. For a filter F on a topological space (X, τ), θ-sAdh(F) ̸= arc(F).
This follows from Example 5.1.8 and Proposition 6.4.5 part (iii).

Definition 6.4.6. [11] A subset A of a convergence space (X, q) is said to be
q-closed if A = Clq(A).

Definition 6.4.7. [11] A subset A of a convergence space (X, q) is said to be
q-open if X − A is q-closed.

Let (X, q) be a convergence space. Then τ(q) = {U ⊆ X : U is q-open} is a
topology on X called the topology induced by a convergence structure q [11].

Example 6.4.4. Let (X, τ) be a topological space, then we have τ(θ) = τθ, τ(δ) = τδ

and τ(rc) = τrc.

Theorem 6.4.1. [11] Let (X, q) be a convergence space and A ⊆ X. Then A is
q-open if and only if whenever F ∈ F(X) and F

q−→ x ∈ A, then A ∈ F.

Proof. Assume that A is q-open. Let F ∈ F(X) be such that F q−→ x ∈ A. Suppose
on the contrary that A ̸∈ F. Let G = ⟨F

∣∣∣
(X−A)

⟩, then by Proposition 1.1.6, G is a

filter on X such that X − A ∈ G and F ⊆ G. Since F
q−→ x, then G

q−→ x. So,
x ∈ Clq(X − A) = X − A since X − A is q-closed. This implies x ̸∈ A, which is a
contradiction. Therefore, A ∈ F.

Conversely, suppose that whenever F
q−→ x ∈ A, we have A ∈ F. Let x ∈

Clq(X − A), then there exists F ∈ F(X) such that F
q−→ x and X − A ∈ F. If

x ∈ A, then by hypothesis, A ∈ F but then ∅ = A ∩ (X − A) ∈ F, which is a
contradiction. So, x ̸∈ A, hence x ∈ X − A. Therefore, Clq(X − A) = X − A. So,
X − A is q-closed and therefore, A is q-open in X.
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Definition 6.4.8. [11] Let (X, q) be a convergence space. For all x ∈ X, the filter
Uq(x) = ⋂{F : F q−→ x} is called the q-neighborhood filter of x and its elements
the q-neighborhoods of x.

Theorem 6.4.2. [11] Let (X, q) be a convergence space and U ⊆ X. Then U is
q-open if and only if it is a q-neighborhood of each of its points.

Proof. Let U be q-open and let x ∈ U . If F ∈ F(X) and F
q−→ x, then by Theorem

6.4.1, U ∈ F. Therefore, U ∈ ⋂
F∈q(x)

F = Uq(x). Conversely, suppose that for each

x ∈ U , U ∈ Uq(x). Suppose that F ∈ F(X) and F
q−→ x ∈ U . Then by hypothesis,

U ∈ Uq(x) but Uq(x) ⊆ F. So, U ∈ F, hence by Theorem 6.4.1, U is q-open.

Theorem 6.4.3. [11] Let (X, q) be a convergence space, U ⊆ X and x ∈ X. Then
U is a q-neighborhood of x if and only if x ̸∈ Clq(X − U).

Proof. If U ̸∈ Uq(x), then there is a filter F ∈ q(x) such that U ̸∈ F. Let
G = ⟨F

∣∣∣
X−U

⟩, then by Proposition 1.1.6, G is a filter on X such that X −U ∈ F and
F ⊆ G, so G ∈ q(x) and X − U ∈ G. Consequently, x ∈ Clq(X − U). Conversely,
if x ∈ Clq(X − U), then there is a filter F ∈ q(x) such that X − U ∈ F. Hence,
U /∈ F but Uq(x) ⊆ F since F ∈ q(x). So, U ̸∈ Uq(x).

Theorem 6.4.4. Let (X, q) be a convergence space, A ⊆ X and x ∈ X. Then
x ∈ Clq(A) if and only if U ∩ A ̸= ∅ for all U ∈ Uq(x).

Proof. Let x ∈ Clq(A) and U ∈ Uq(x). So, there exists F ∈ F(X) such that A ∈ F

and F
q−→ x. Since F

q−→ x, then Uq(x) ⊆ F, and so U ∈ F. Hence, U ∩ A ∈ F.
Thus, U ∩ A ̸= ∅.

Conversely, suppose that for all U ∈ Uq(x), U ∩A ̸= ∅. We show that x ∈ Clq(A).
Suppose on the contrary that x ̸∈ Clq(A). Then x ̸∈ Clq (X − (X − A)). By
Theorem 6.4.3, X − A ∈ Uq(x), and so by hypothesis, (X − A) ∩ A ̸= ∅ which is a
contradition. Therefore, x ∈ Clq(A).

Proposition 6.4.6. Let X be a set and q1, q2 ∈ C(X). If q1 ≤ q2. Then
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(i) Uq1(x) ⊆ Uq2(x) for all x ∈ X.

(ii) Clq2(A) ⊆ Clq1(A) for all A ⊆ X.

(iii) τ(q1) ⊆ τ(q2).

Proof. (i) Let x ∈ X and U ∈ Uq1(x). Let F be any filter on X such that F q2−→ x.
Then F

q1−→ x since q1 ≤ q2. But then Uq1(x) ⊆ F, so U ∈ F. Thus, U ∈ F

for any F ∈ q2(x). Hence, U ∈ Uq2(x). Therefore, Uq1(x) ⊆ Uq2(x).

(ii) Let x ∈ Clq2(A). Then by Theorem 6.4.4, U ∩ A ̸= ∅ for all U ∈ Uq2(x). But
Uq1(x) ⊆ Uq2(x), so U ∩ A ̸= ∅ for all U ∈ Uq1(x). Again, by Theorem 6.4.4,
x ∈ Clq1(A). Therefore, Clq2(A) ⊆ Clq1(A).

(iii) Let U ∈ τ(q1). Then U ∈ Uq1(x) for all x ∈ U by Theorem 6.4.2. But by part
(i), Uq1(x) ⊆ Uq2(x) for all x ∈ X. So U ∈ Uq2(x) for all x ∈ U . Again, by
Theorem 6.4.2, U ∈ τ(q2). Therefore, τ(q1) ⊆ τ(q2).

Definition 6.4.9. [11] A convergence space is called topological if the convergence
structure is the natural convergence structure of a topology.

Example 6.4.5. By Propositions 3.1.1 and 5.1.3, δ and rc are topological conver-
gence structures, respectively.

Definition 6.4.10. [11] Let (X, q) be a convergence space and τ(q) be the topology
induced by q. The natural convergence structure of τ(q) is called the topological
modification of q and is denoted by λ(q).

Proposition 6.4.7. [11] Let (X, q) be a convergence space. Then

(i) λ(q) ≤ q.

(ii) Uλ(q)(x) ⊆ Uq(x) for all x ∈ X.

(iii) Clq(A) ⊆ Clλ(q)(A) for all A ⊆ X.

(iv) τ(λ(q)) = τ(q).

Proof. a
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(i) Let x ∈ X and assume that F
q−→ x. If A ∈ τ(q) and x ∈ A, then A is a

q-open containing x. So, A ∈ Uq(x) but Uq(x) ⊆ F, so A ∈ F. Thus, F−→x

in (X, τ(q)), that is, F λ(q)−→ x. Therefore, λ(q) ≤ q.

(ii) This follows from part (i) and Proposition 6.4.6 part (i).

(iii) This follows from part (i) and Proposition 6.4.6 part (iii).

(iv) By part (i) and Proposition 6.4.6 part (ii), we have τ(λ(q)) ⊆ τ(q). Now, let
U ∈ τ(q). Assume F

λ(q)−→ x ∈ U , then since U ∈ τ(q)(x), we have U ∈ F.
Thus, by Theorem 6.4.1, U is λ(q)-open, that is, U ∈ τ(λ(q)). Therefore,
τ(λ(q)) = τ(q).

Definition 6.4.11. [11] A convergence space (X, q) is called pretopological if Uq(x)
q-converges to x for every x ∈ X.

Proposition 6.4.8. [11] Every topological convergence space (X, q) is pretopologi-
cal.

Proof. Assume that (X, q) is topological, then q = c(τ) for some topology τ on X.
Let x ∈ X, then

Uq(x) =
⋂

{F ⊆ F(X) : F q−→ x}

=
⋂

{F ⊆ F(X) : F c(τ)−→ x}
=

⋂
{F ⊆ F(X) : Uτ (x) ⊆ F} = Uτ (x).

Since Uτ (x) c(τ)−→ x, then Uq(x) q−→ x. Therefore, q is pretopological.

Example 6.4.6. The θ-convergence structure is pretopological since Uθ(x) =
⟨C(x)⟩ θ−→ x for each x ∈ X.

One can associate to each convergence space (X, q) a pretopological conver-
gence space (X, π(q)) in a natural way. Let (X, q) be a convergence space. We
define a new convergence structure π(q) on X as follows: F ∈ π(q)(x) if and
only if Uq(x) ⊆ F. It is easy to show that π(q) is a convergence structure and it is
pretopological. π(q) is called the pretopological modification of q [11, 30].
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Proposition 6.4.9. [11] Let (X, q) be a convergence space. Then

(i) π(q) ≤ q.

(ii) Uπ(q)(x) = Uq(x) for all x ∈ X.

(iii) Clπ(q)(A) = Clq(A) for all A ⊆ X.

(iv) τ(π(q)) = τ(q).

Proof. aa

(i) Assume F
q−→ x. Then Uq(x) = ⋂{G : G

q−→ x} ⊆ F, that is, F
π(q)−→ x.

Therefore, π(q) ≤ q.

(ii) Uπ(q)(x) = ⋂{F : F π(q)−→ x} = ⋂{F : Uq(x) ⊆ F} = Uq(x).

(iii) This follows from part (ii) and Theorem 6.4.4.

(iv) This follows from part (ii) and Theorem 6.4.2.

Theorem 6.4.5. [50] Let (X, q) be a convergence space. Then

(i) (X, q) is topological if and only if q = λ(q).

(ii) (X, q) is pretopological if and only if q = π(q).

Proof. aa

(i) Assume that (X, q) is topological, then q = c(τ) for some topology τ on X.
Clearly, Uq(x) = Uτ (x). This implies τ(q) = τ . Thus, q = c(τ(q)) = λ(q).
The converse is clear.

(ii) Assume that (X, q) is pretopological. Then Uq(x) q−→ x for any x ∈ X. By
Proposition 6.4.9, π(q) ≤ q. Now, let x ∈ X and F

π(q)−→ x. Then Uq(x) ⊆ F.
As Uq(x) q−→ x, then F

q−→ x. So, q ≤ π(q). Thus, q = π(q). The converse
is clear.

Proposition 6.4.10. Let τ1 and τ2 be two topologies on X. Then τ1 ⊆ τ2 if and
only if c(τ1) ≤ c(τ2).
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Proof. Let F
c(τ2)−→ x. We want to show that F

c(τ1)−→ x. Let U ∈ τ1 and x ∈ U , then
U ∈ τ2 since τ1 ⊆ τ2. Hence, U ∈ τ2 and x ∈ U but since F

c(τ2)−→ x, then U ∈ F.
Therefore, F c(τ1)−→ x.

Conversely, suppose that c(τ1) ≤ c(τ2). Assume that U ∈ τ1. Let F
c(τ2)−→ x ∈ U ,

then we show U ∈ F. Since c(τ2)(x) ⊆ c(τ1)(x), then F
c(τ1)−→ x ∈ U , and hence

U ∈ F. Therefore, U ∈ τ2. That is, τ1 ⊆ τ2.

Lemma 6.4.1. Let X be a set and q1, q2 ∈ C(X). If q1 ≤ q2, then

(i) λ(q1) ≤ λ(q2).

(ii) π(q1) ≤ π(q2).

Proof. (i) Since q1 ≤ q2, then by Proposition 6.4.6 part (iii), τ(q1) ⊆ τ(q2). Thus,
by Proposition 6.4.10, c(τ(q1)) ≤ c(τ(q2)). Therefore, λ(q1) ≤ λ(q2).

(ii) Since q1 ≤ q2, then Uq1(x) ⊆ Uq2(x) for all x ∈ X. Let x ∈ X and let
F ∈ π(q2)(x), then Uq2(x) ⊆ F. So, Uq1(x) ⊆ F. Hence, F ∈ π(q1)(x). Thus,
π(q2)(x) ⊆ π(q1)(x). Therefore, π(q1) ≤ π(q2).

Proposition 6.4.11. [11] Let (X, q) be a convergence space. Then

(i) λ(q) is the finest topological convergence structure coarser than q.

(ii) π(q) is the finest pretopological convergence structure coarser than q.

(iii) λ(q) ≤ π(q) ≤ q.

Proof. aa

(i) We know that λ(q) is topological and λ(q) ≤ q. Let p be a topological
convergence structure on X such that p ≤ q. Then by Lemma 6.4.1 part (i),
λ(p) ≤ λ(q). But p = λ(p) since p is topological, so p ≤ λ(q). Thus, λ(q) is
the finest topological convergence structure coarser than q.

(ii) We know that π(q) is pretopological and π(q) ≤ q. Let p be a pretopological
convergence structure on X such that p ≤ q. Then by Lemma 6.4.1 part (ii),
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π(p) ≤ π(q). But p = π(p) since p is pretopological, so p ≤ π(q). Thus, π(q)
is the finest pretopological convergence structure coarser than q.

(iii) Since every topologcal convergence structure is pretopological, then λ(q) is
pretopological but λ(q) ≤ q. So, by part (i), λ(q) ≤ π(q) and by Proposition
6.4.9 part (i), π(q) ≤ q. Therefore, λ(q) ≤ π(q) ≤ q.

The following proposition provides a characterization of topological conver-
gence spaces.

Proposition 6.4.12. [11] A convergence space (X, q) is topological if and only if
(X, q) is pretopological and the q-closure operator is idempotent.

Proof. Assume that (X, q) is topological, then by Proposition 6.4.8, (X, q) is
pretopological. Since q = λ(q), then Clq = Clλ(q) = Clc(τ(q)) = Clτ(q), and hence
Clq is idempotent.

Conversely, suppose that (X, q) is a pretopological convergence space and Clq is
idempotent, then we show q = λ(q). Now, by Proposition 6.4.7 part (i), λ(q) ≤ q.
We show q ≤ λ(q). Suppose that F

λ(q)−→ x. Then Uτ(q)(x) ⊆ F. Let A ∈ Uq(x),
then x ̸∈ Clq(X −A) by Theorem 6.4.3. Since Clq is idempotent, then Clq(X −A) is
q-closed. Let U = X −Clq(X −A), then U is q-open and x ∈ U . Thus, U ∈ τ(q)(x).
But since X − A ⊆ Clq(X − A), then X − Clq(X − A) ⊆ A, and so U ⊆ A. So
we have U ∈ τ(q) and x ∈ U ⊆ A. Hence, A ∈ Uτ(q)(x). So, Uq(x) ⊆ Uτ(q)(x).
But Uτ(q)(x) ⊆ F, so Uq(x) ⊆ F. Hence, F π(q)−→ x. But q is pretopological implies
π(q) = q. Thus, F q−→ x. Hence, q ≤ λ(q). Therefore, q = λ(q). That is, (X, q) is
topological.

As the following example shows, the conditions in proposition 6.4.12 are inde-
pendent.

Example 6.4.7. Consider the topological space given in Example 6.4.3. Then by
Example 6.4.6, (X, θ) is pretopological but the θ-closure operator is not idempotent
by Example 6.4.3. Therefore, by Proposition 6.4.12, (X, θ) is not topological.
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Theorem 6.4.6. [50] Let (X, τ) be a topological space. Then θ is a topological
convergence structure on X if and only if (X, τ) is almost-regular.

Proof. If (X, τ) is almost-regular, then by Theorem 6.1.2, θ = δ, and so θ is
topological by Example 6.4.5. Conversely, suppose that θ is topological. Then
θ-Cl = Clθ is idempotent. Let U be a regular open set in X. Then F = X − U

is regular closed in X. So, F = V for some open V in X. By Theorem 4.1.1,
Clθ(V ) = V . Thus, Clθ(F ) = Clθ(V ) = Clθ(Clθ(V )) = Clθ(V ) = V = F . Hence, F

is θ-closed, and so U = X − F is θ-open. Hence, τs ⊆ τθ but τθ ⊆ τs. So, τs = τθ.
By Theorem 4.1.2, (X, τ) is almost-regular.

Theorem 6.4.7. [48] For a topological space (X, τ), the following are equivalent:

(i) X is extremally disconnected.
(ii) rc ≤ δ.
(iii) rc = θ.
(iv) rc ≤ c(τ).

Proof. This follows from Theorem 6.1.4.

Theorem 6.4.8. Let (X, τ) be a topological space. Then δ = c(τ) if and only if
(X, τ) is a semi-regular space.

Proof. This follows from Theorem 3.3.4 and Proposition 3.1.2 part (ii).

Theorem 6.4.9. Let (X, τ) be a topological space. Then θ = c(τ) if and only if
(X, τ) is a regular space.

Proof. This follows from Theorem 4.3.4 and Proposition 4.1.2 part (ii).

Theorem 6.4.10. Let (X, τ) be a topological space. Then rc = c(τ) if and only if
(X, τ) is a regular extremally disconnected space.

Proof. If rc = c(τ), then rc ≤ c(τ). So, by Theorem 6.4.7, X is extremally
disconnected and rc = θ. So, θ = c(τ). Hence, by Theorem 6.4.9, X is regular.
The converse follows from Corollary 5.3.1 part (i).
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Index of Symbols and Notations

Symbols

δ-Cl(A) The δ-closure of a set A.

(X, ≤) A partially ordered set.

(X, τ) A topological space.

(X, τs) The semi-regularization topological space of (X, τ).

(X, τp) A prime space.

(X, q) A convergence space.

[S]X The filter base generated by the filter subbase S with respect to X.

δ-Adh(F) The set of all δ-adherent points of F.

λ(q) The topological modification of q.

⟨x⟩ The principal filter generated by x.

⟨B⟩X The filter generated by the filter base B with respect to X.

⟨S⟩X The filter generated by the filter subbase S with respect to X.

C(X) The set of all convergence structures on X.

Cτ (x) The set of all closures of open neighborhoods of x with respect to τ .

Cτ
r(x) The set of all regular closed sets containing x with respect to τ .

P(X) The power set of X.

Uτs(x) The τs-neighborhood filter of x.
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Uτ (x) The τ -neighborhood filter of x.

Uq(x) The q-neighborhood filter of x.

Adhτ (F) The set of all adherent points of a filter F.

Clτrc( · ) The closure operator in the τrc-topology.

I(A) The set of all isolated points of A.

RC(X, τ) The set of all regular closed sets of (X, τ).

RCτ (x) The set of all regular closed sets containing x with respect to τ .

RO(X, τ) The set of all regular open sets of (X, τ).

ROτ (x) The set of all regular open sets containing x with respect to τ .

SO(X, τ) The set of all semi-open sets of (X, τ).

SOτ (x) The set of all semi-open sets containing x with respect to τ .

Clτ ( · ) A closure operator with respect to τ .

Clq( · ) A q-closure operator with respect to a convergence space.

Intτ ( · ) An interior operator with respect to τ .

A The closure of a set A.

Φ(X) A class of filters on a set X.

π(q) The pretopological modification of q.

τ(q) The topology induced by a convergence structure q.

τ+ The family of all θ-semiopen sets in (X, τ).

τδ The family of all δ-open sets in (X, τ) is a new topology on X.

τθ The family of all θ-open sets in (X, τ) is a new topology on X.

F(X) The set of all filters on X.

θ-Adh(F) The set of all θ-adherent points of a filter F.

θ-Cl(A) The θ-closure of a set A.

θ-sAdh(F) The set of all θ-semi-adherent points of a filter F.

θ-sCl(A) The θ-semiclosure of a set A.
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A
′ The set of all cluster points of A.

A◦ The interior of a set A.

aq(F) The set of all q-adherent points for a filter F.

c(τ) The natural convergence structure.

q A convergence structure.

q- Cl( · ) A q-closure operator with respect to a topological space.

Abbreviations

F.I.P The finite intersection property.

poset A partially ordered set.
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Index

δ-closed, 44
δ-open, 44
θ-neighborhood filter, 69
θ-semiclosed, 98
θ-semiopen, 99
q-closed, 146
q-neighborhood filter, 147
rc-neighborhood filter, 94

Accumulates, 26
Antiymmetric, 2

Closed graph, 37
Closed graph:

rc-strongly, 125
almost-strongly, 64
strongly, 90

Closed:
regular, 12

Coarser, 143
Cover, 23
Cover:

closed, 23
open, 23, 33, 57
regular closed, 116
regular open, 58

F.I.P, 7
Filter, 3
Filter base generated:

by subbase, 7
Filter base:

meets, 6
Filter generated:

by base, 4
by subbase, 7

Filter:
δ-cluster, 43
δ-limit, 42
θ-cluster, 70
θ-limit, 70
rc-cluster, 96
rc-limit, 95
s-cluster, 96
s-limit, 95
base, 4
cluster, 26
coarser, 3
finer, 3
image, 9
infimum, 4
inverse image, 9
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limit, 26
maximal, 8
principal, 4
subbase, 7
supremum, 4, 5
trace, 6

Finer, 143
Function:

S-continuous, 111
W -almost-open, 109
δ-continuous, 52
θ-continuous, 81
almost-continuous, 50
almost-open, 54
continuous, 31
open, 54
strongly-θ-continuous, 80
super-continuous, 51
weakly-θ-continuous, 79

Graph, 37

Least upper bound, 2

Open:
regular, 12
semi, 9

Partial ordering, 2
Point:

δ-adherent, 45
θ-adherent, 71, 73
θ-semi-adherent, 98
q-adherent, 145
accumulation, 22
adherent, 27
isolated, 22

Poset, 2

Pretopological, 149
Prime space, 22
Property, 17

Reflexive, 2
Relative to:

S-closed, 116
N -closed, 57
compact, 33
quasi-H-closed, 85

Semi-regularization, 15
Set:

δ-adherence, 45
δ-closure, 44
θ-adherence, 73
θ-closed, 71
θ-closure, 71
θ-open, 71
θ-semiclosure, 98
θ-semiadherence, 101
q-closure, 143
adherence, 27
partially ordered, 2
separated, 23

Space:
H-closed, 84
S-closed, 116
T1, 15
almost-regular, 18
completely normal, 23
extremally disconnected, 19
filter convergence, 142
fully normal, 24
Hausdorff, 15
nearly compact, 57
normal, 23
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quasi-H-closed, 84
regular, 15
semi-regular, 15
semi-Urysohn, 104
topological, 3
Urysohn, 76
weakly-T2, 20

Star, 24
Star-refinement, 24
Subfilter, 3
Subspace:

S-closed, 116

compact, 33
nearly compact, 57
quasi-H-closed, 85

Supremum, 2

Topological, 148
Topological modification, 148
Topology, 2
Topology induced, 146
Transitive, 2

Ultrafilter, 8
Upper bound, 2
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