Jordan Journal of Physics # **ARTICLE** # The Alpha Particles Doses Received by Students and Staff in Twenty Schools in the North of Hebron Region - Palestine # L. A. Mashal^a, K. M. Thabayneh^a and M. M. Abu-Samreh^b ^a Faculty of Science and Technology, Hebron University, P.O. Box 40, Hebron, Palestine. Doi: Received on: 09/06/2020; Accepted on: 5/11/2020 **Abstract:** The aim of the current study was to measure indoor radon concentration levels and its resulting doses received by the students and staff in schools of the directorate of education in the north of Hebron region- Palestine, during the summer months from June to September (2018), using CR-39 detectors. In this study, a total of 567 CR-39-based radon detectors were installed in the selected schools. The average radon concentrations were found to be 90.0, 66.5, and 58.0 Bqm⁻³ in Halhul, Beit Umar and Alarrub camp schools, respectively. Based on the measured indoor radon data, the overall average effective dose for the studied area was found to be 0.31 mSvy⁻¹. Reported values for radon concentrations and corresponding doses are lower than ICRP recommended limits for workplaces. The results show no significant radiological risk for the pupils and staff in the schools under investigation. Consequently, the health hazards related to radiation are expected to be negligible. Keywords: Radon concentration, Alpha particles, Annual effective dose, Schools. PACs: 29.40.-n. #### Introduction Radon, a naturally occurring radioactive gas that is tasteless, odorless and colorless, and its decay products are the most important source of natural radioactivity for the human exposure [1]. It is the second leading cause of lung cancer in the world, and the primary cause of lung cancer for individuals who have never smoked [2]. Measurement of the indoor radon level is highly desirable because the radiation dose received by the human population due to the inhalation and ingestion of radon and its progeny contribute more than 53% of the total dose from natural sources [3]. The most important isotope of radon, in terms of environmental effects, is (222 Rn) which is formed from the α -decay of radium (226 Ra), which is a decay product of Uranium (238 U) [1]. ²²²Rn has a half-life of 3.82 days, allowing it to diffuse through earth crust and into the air before decaying by the emission of α - particle into a series of short- lived radioactive progeny. However, as radon concentrations increase, the quantity that decays in the lung increases, resulting in a greater health risk [4]. Radon gas naturally dissipates from the rock and soil out to the atmosphere. Building materials, the water supply, and natural gas can all be sources of radon in the home and atmosphere. The concentration of atmospheric ²²²Rn, therefore, depends on the rate of diffusion from the ground and diffusion in the air [5]. The radon gas can enter the body via respiring, drinking and eating. The, alpha particles emitted by radon gas and other radiations emitted by its Corresponding Author: Khalil M. Thabayneh Email: khalilt@hebron.edu ^b Faculty of Arts and Sciences, Arab American University-Jenin (AAUJ), Jenin, Palestine. daughter products increase the absorbed dose in respiratory and digestion systems [6]. Exposure of persons to high concentration of radon and its short-lived progeny for a long period leads to health problems, particularly lung cancer [2]. The knowledge of radon levels in classrooms is important in assessing students and staff exposure and has a considerable public health impact where the concentrations of indoor radon are almost always higher than outdoor concentrations. Once inside a building, the radon cannot easily escape. The sealing of buildings to conserve energy reduces the intake of outside air and worsens the situation, although radon levels are generally highest in basements and ground floors because these areas are nearest to the source and are usually poorly ventilated. Schools may be a significant source of radon exposure for children and working staff. However, because occupancy patterns in schools differ from those in homes, the actual exposures received by each individual, or even by the entire school population, are difficult to determine. In other previous work, Dabayneh measured the radon concentration in 62 classrooms in Palestine; he claimed that the harmful levels of radon and radon progeny can accumulate in confined air spaces, such as basements and crawl spaces [7]. Our laboratory previously conducted a series of studies, with the objective to determine radon concentration levels in homes, hospitals, schools, tobacco, soils, and building materials [6, 9, 10-24]. The aim of the present work is to determine the radon concentrations in schools in the Directorate of Education in the Northern of Hebron province- Palestine, during the summer months from June to September, using CR-39 track etch detectors. It is worth mentioning here that, this study is part of a nationwide survey and measurement of indoor radon levels in workplace and studies, which so far, have not been conducted in this region, to provide data for drawing a national radon map in Palestine. # Materials and Methods Solid State Nuclear Track Detectors (SSNTD) (CR-39 detectors) was installed, in various rooms in twenty elementary and secondary schools in the Directorate of Education in the Northern of Hebron region – Palestine (Fig. 1). The typical dosimeter is shown as in Fig. 2 [2, 10]. Five detectors were used for the determination of background track density. This track density was subtracted from all the measurements before the determination of radon concentration. The CR-39 based radon detector was calibrated according to the standard source facility at the National Radiological Protection Board (NRPB), UK [6, 7]. Following this technique, dosimeters were prepared and distributed in three sites (Halhul, Beit Umar and Alarrub camp) in Hebron region. The detectors were installed in the classrooms, teachers' office, director's office, kitchens, stores, laboratories, libraries, corridors, bathrooms, canteens, etc. In each room two passive detectors were installed ~ 1.25 –1.5 m above the ground. The first detector was placed 0.5 m behind the door to prevent air currents, and the second detector was placed against the windows. The schools of the studied area, as almost all Palestinian schools are structures of masonry (concrete and brick) from inside and stones from outside, where rooms are ventilated only by operable windows (natural ventilation). The main zones, and the statistical information on detectors and schools in the Directorate of Education in the Northern of Hebron region - Palestine, during the summer season, are exhibited in Table 1. Three months later i.e. after 90 days of exposure, the detectors were collected and chemically etched in a 6.25 M, NaOH solution at $72\pm2~^{0}$ C and 8 h etching time to reach high resolution latent tracks [2, 8]. The detectors were washed by distilled water and then dried out. The number of tracks per cm² in each detector was counted manually using an optical microscope of 160 times magnification (160×). The tracks were counted trice for each detector and the average was calculated [2]. FIG. 1. West Bank geographical map showing the studied region. TABLE 1. Number of the schools, rooms and dosimeters distributed in the area under investigation. | Zone | No. of
Schools | No. of rooms | No. of Dosimeters distributed | No. of Dosimeters lost | No. of Dosimeters collected | |--------------|-------------------|--------------|-------------------------------|------------------------|-----------------------------| | Halhul | 10 | 118 | 262 | 28 | 234 | | Beit Umar | 9 | 129 | 270 | 29 | 241 | | Alarrub Camp | 1 | 16 | 35 | 8 | 27 | | Total | 20 | 263 | 567 | 65 | 502 | # **Results and Discussions** # **The Indoor Radon Concentrations** The track density, ρ , is generally defined as the average number of scratches in section divided by the section area. The obtained track densities were converted into indoor radon concentration levels, C_{Rn} , in Bqm⁻³ by applying the following calibration formula [2]: $$C_{Rn} = \frac{C_0 t_0 \rho}{\rho_0 t} \tag{1}$$ where C_0 is the radon concentration of the calibration chamber (90 kBqm⁻³), t_0 is the calibration exposure time (48 h), ρ is the measured track number density per cm² on the CR-39 detectors inside the used dosimeters, ρ_0 is the measured track number density per cm² on those of the calibrated dosimeters $(3.3 \times 10^4 \text{ tracks cm}^2)$, and t is the exposure time (2160 h). The radon concentration levels data were assessed from 502 dosimeters over a total of 567 as 65 detectors were lost. The range of radon concentrations and the frequency distributions of indoor ²²²Rn in twenty schools (263 rooms) are listed in Table 2. TABLE 2. Range and frequency of radon concentrations of selected schools in the 3 investigated zones in the area under investigation. | Zone | Frequency range (Bqm ⁻³) | | | | | |--------------|--------------------------------------|-------|---------|-------|--| | Zone | 0 - 49 | 50-99 | 100-199 | ≥ 200 | | | Halhul | 36 | 154 | 28 | 16 | | | Beit Umar | 79 | 145 | 14 | 3 | | | Alarrub Camp | 8 | 19 | | | | | Total | 123 | 318 | 42 | 19 | | | % | 24.5 | 63.3 | 8.4 | 3.8 | | As can be seen from Table 2, about 24.5% of indoor 222 Rn levels are found to vary between 0 and 29 Bqm⁻³. Radon concentrations levels between 50 and 99 Bqm⁻³ were observed in 63.3% of the studied classrooms, about 8.4% are found to vary between 100 and 199 Bqm⁻³. Nearly 3.8% of rooms show radon concentrations \geq 200 Bqm⁻³, with a maximum value of 306.4 Bqm⁻³. The results show that the concentrations in 12.2% of the studied rooms are above the reference level of 100 Bqm⁻³ assigned by WHO [23]. The minimum, the maximum, and the average concentrations of ²²²Rn in the investigated rooms in 20 schools in 3 different zones, are listed in Table 3. TABLE 3. Statistical parameters of the ²²²Rn concentrations (C_{Rn}), in different rooms of schools. | Zone | Halhul | Beit Umar | Alarrub Camp | |------------------------------|--------------------------------------|--------------------------------------|--------------------------------------| | Pages Type | C _{Rn} (Bqm ⁻³) | C _{Rn} (Bqm ⁻³) | C _{Rn} (Bqm ⁻³) | | Rooms Type | Min Max Av. | Min Max Av. | Min Max Av. | | Classroom | 37.5 257.0 80.3 | 25.2 286.0 65.2 | 35.0 93.0 49.2 | | Administration | 32.5 306.4 109.6 | 35.7 164.6 79.3 | 51.9 64.5 58.2 | | and Teachers rooms | | | | | Bathrooms | 46.5 99.5 73.4 | 20.5 93.2 52.4 | 55.5 | | Kitchens | 45.5 84.5 62.2 | 16.6 107.1 58.4 | 52.0 60.0 56.0 | | Stores | 52.5 305.2 110.6 | 34.2 164.6 79.4 | 60.9 91.7 76.3 | | Computer and Scientific labs | 48.1 289.0 103.6 | 35.6 99.0 64.6 | 52.5 | | and Libraries | | | | | Total Average | 90.0 | 66.5 | 58.0 | The data presented in Table 3, show that the average indoor radon concentrations obtained varied from 62.2 Bqm⁻³ (in Kitchens) to 110.6 Bqm⁻³ (in stores) in Halhul zone; from 52.4 Bqm⁻³ (in bathrooms) to 79.4 Bqm⁻³ (in stores) in Beit Umar zone; and from 49.2 Bqm⁻³ (in classroom) to 76.3 Bqm⁻³ (in stores) in Alarrub camp, with overall average values of 90.0, 66.5, and 58.0 Bqm⁻³, respectively. Generally speaking, almost 83% of average values are below the reference level [23], for the remedial action to be taken, and all the average values are than the world average radon concentration of 40 Bqm⁻³ [3]. According to the data in Table 3, the difference between the minimum and maximum of indoor concentration levels in the surveyed schools are relatively high. This large variation is mainly due to the difference in the ventilation methods used, the difference in the school's altitude, and the difference in the number of floors. Small values of concentration levels are generally reported in schools newly built under the supervision of Western countries (USA, Germany) and Japan as donations for Palestinian pupils. Table 4, shows the average concentrations of ²²²Rn, and other radiological effects, in the schools in three zones in different floors of the regions under investigation. Fig. 3, shows the comparison of radon average concentrations in different floors in the studied regions. The first floor is generally characterized by a high radon concentration level comparing to the other floor levels. This may be due to several reasons. Firstly, upper floors have better ventilation than the lower ones. Secondly, the chances for radon to reach the upper floors are very small compared to its chances to reach lower ones. Finally, the radon exhalation rates from the ground decrease fast as going to higher floors. However, there is a large variation in the radon concentration levels within the same floors, especially the ground and the first floor. We can see from the Tables 4 and 5, that the radon concentration was found to be higher in old schools, poorly ventilated rather than that in the newly constructed schools, having good ventilation. In addition, a higher concentration of radon in the lower floors in comparison to values measured in the higher floors, is observed. The ground floor of such schools is directly constructed on top of soil with a coating of concrete, which allows more radon to diffuse inside the rooms because of the higher porosity of the construction materials used. FIG. 3: Comparison of the average radon concentrations in different floors in the studied zones. TABLE 4. Comparison of the present study results in the schools with other studies. | Country | C_{Rn} (Bqm ⁻³) | Reference | | |---------------------------|-------------------------------|---------------|--| | Palestine: | | | | | - Tarqumia schools | 34 | [7] | | | - Tulkarem schools | 40 | [25] | | | - Bethlehem schools | 125 | [26] | | | - North eastern of Hebron | 71 | [2] | | | - North of Hebron schools | 74 | Present study | | | Jordan | 77 | [27] | | | Algiers | 26 | [28] | | | Kuwait: | | | | | - 1 st Floor | 16 | [29] | | | - 2 nd Floor | 19 | | | | Saudi Arabia | 75 | [30] | | | Greece | 231 | [31] | | | Pakistan: | | | | | - Kashmir schools | 78 | [32] | | | - Punjab schools | 52 | [33] | | | Tunisia | 27 | [34] | | | Nigeria | 45 | [35] | | | Portugal | 400 | [36] | | | ICRP action level, 1993 | 200 | [37] | | | UNSCEAR, 2000 | 40 | [3] | | | WHO | 100 | [23] | | TABLE 5. The 222 Rn concentrations levels (C_{Rn}), the annual effective dose (E_{Rn}), the lifetime risk (LTR), and the radon content of the lung air (H_{lung}) belong to different floors in the surveyed schools. | Zone | Floor | C_{Rn} (Bqm ⁻³) | E_{Rn} (mSvyr ⁻¹) | $LTR (\times 10^{-4})$ | H_{lung} (×10 ⁻⁸) (Svyr ⁻¹) | |---------------|-------|-------------------------------|---------------------------------|------------------------|---| | | No. | Min Max Av. | Min Max Av. | Min Max Av. | Min Max Av. | | | 1 | 53.5 289.0 113.3 | 0.22 1.20 0.47 | 12.5 67.3 26.3 | 4.3 23.1 9.1 | | Halhul | 2 | 37.5 306.4 88.2 | 0.16 1.27 0.37 | 8.7 71.4 20.6 | 3.0 24.5 7.1 | | | 3 | 32.5 248.5 83.0 | 0.14 1.03 0.34 | 7.6 57.9 19.4 | 2.6 19.9 6.6 | | | 1 | 20.5 325.2 72.0 | 0.09 1.35 0.30 | 4.8 75.8 16.8 | 1.6 26.0 5.8 | | Beit Umar | 2 | 48.6 286.0 70.0 | 0.20 1.19 0.29 | 11.3 66.6 16.3 | 3.9 22.9 5.6 | | | 3 | 35.7 101.4 67.0 | 0.15 0.42 0.28 | 8.3 23.6 15.6 | 2.9 8.1 5.4 | | | 4 | 16.6 81.0 66.0 | 0.07 0.34 0.27 | 3.9 18.9 15.4 | 1.3 6.5 5.3 | | Alarrub Camp | 1 | 35.0 93.0 56.0 | 0.15 0.39 0.23 | 8.2 21.7 13.1 | 2.8 7.4 4.5 | | | 2 | 38.0 91.7 53.0 | 0.16 0.38 0.22 | 8.9 21.4 12.3 | 3.0 7.3 4.2 | | Total Average | | 74.3 | 0.31 | 17.3 | 6.0 | | | | | | | | The observed variations concentrations among various regions can be attributed to many factors as the geological structure of the site, the various types of building materials used for the construction of the schools, the number of floors, painted and ventilation rates, the aging effect on the building. Other variations of the radon concentration levels may be attributed to human activities, such as opening windows and doors. Human activities are definitively different for schools from that of homes. Schools in Palestine mainly are operated from 5 to 6 hours, and closed for the rest of the day. In addition, except for weekends, there are also long periods in the year when schools are closed especially during the summer holidays. When schools are closed, an increase of radon concentration is expected due to poor ventilation. Accordingly, indoor radon concentrations in schools are expected to be higher than in houses. The relatively high concentrations found in some rooms, may be due to the structure of the soil and rocks, which consist mainly of limestone. Also, it may be due to the geological and topographical nature of the school site. Finally, the general results obtained were less than the ICRP standard level, the standard reference level set by, WHO and the US EPA for the USA assigned level in general [23, 24]. For the sake of comparison, the radon concentration levels were compared with that of other schools in different countries. The obtained radon concentration levels in the region under consideration are within the majority results of some other national and international areas as can be seen in Table 4. # The Radiological Effects of Radon # The Effective Dose in Schools To obtain the annual effective dose (E_{Rn}), due to the indoor radon and its progeny received by the pupils and staff, one has to take into account the conversion coefficient from the absorbed dose and the occupancy factor. According to the UNSCEAR 2000 report [3], the effective dose at any location depends upon the occupancy factor. The occupancy factor for the students and the teachers of north Hebron schools was calculated using the following equation: $$5.5 \frac{h}{day} \times 5 \frac{day}{wk} \times 36 \frac{wk}{vr} = 990 \frac{h}{vr}$$ (2) Thus, the school occupancy factor (H_s) = 990h / 8760h = 0.113. The expected annual effective doses received by the students and the teachers of the surveyed areas were calculated by using equation (3), the UNSCEAR model [3, 25] as shown: $$E_{Rn}(mSvy^{-1}) = C_{Rn} \times H_s \times F \times D \times T$$ (3) where C_{Rn} is the radon concentration (Bqm⁻³), H_s is the occupancy factor (0.113), F is the equilibrium factor (0.4), T is hours in a year (8760) and D is the dose conversion factor (9.1×0⁻⁶ mSv/h per Bqm⁻³). By using Eq. (3) and Table (4), the results for the average annual effective dose in all schools are as follows: from 0.34 mSvy⁻¹ (in third floor) to 0.47 mSvy⁻¹ (in first floor) in Halhul zone; from 0.27 mSvy⁻¹ (in fourth floor) to 0.30 mSvy⁻¹ (in first floor) in Beit Umar zone; and from 0.22 mSvy⁻¹ (in second floor) to 0.23 mSvy⁻¹ in (in first floor) in Alarrub camp. In its recent reports, UNSCEAR and WHO [3, 23] recommended that the action levels of radon should be set around of 1.3 and 2.5 mSvy⁻¹, respectively. Based on these recommendations, it has been observed that all of the annual effective doses show lower values than the action levels. Therefore, the results show no significant radiological health risk to the students and staff. We think this low effective dose value may reflect the very low occupancy rate as the students and the teachers spend just 11.3% of the year in the schools. #### The Lifetime Risk The estimate of lifetime risk used in the ICRP Publication 115 [38], is the lifetime excess absolute risk (LTR) associated with a chronic exposure scenario, expressed in a number of deaths 10⁻⁴ per Working Level per Month (WLM). According to the ICRP a LTR of 5× 10⁻⁴ per WLM should now be used as the nominal probability coefficient for radon and radon progeny induced lung cancer, replacing the ICRP Publication 65 value of 2.8×10⁻⁴ per WLM [25, 38]. $$LTR = \frac{WLM}{Life} \times 5 \times 10^{-4} \tag{4}$$ The students and staff of the schools in the north of Hebron region are subjected to the total average to a lifetime lung cancer risk of about 17.3% to chronic exposure to indoor radon. While in another study in Palestine, reported a lifetime lung cancer risk variation of 0.02% to 0.09% [25, 39]. #### The Annual Equivalent Dose to the Lungs The annual effective dose to lung, H_E , is calculated using an equation of the form [40]: $$H_{E}(mSvy^{-1}) = E_{Rn} \times W_{R} \times W_{T}$$ (5) where, W_R is the radiation weighting factor for Alpha particles ($W_R = 20$), W_T is the tissue weighting factor for the lung ($W_T = 0.12$). In case the radon content of the lung air is taken into account, Eq. (5) is reduced to [3]: $$H_{lung}(Sv) = 8 \times 10^{10} \text{ C}_{Rn} (Bqm^{-3})$$ (6) The total average value of radon content in the lung air (H_{lung}) is 6×10^{-8} Svy⁻¹ in the region under investigation. The results show no significant radiological risk for the pupils and staff in the schools in this region [41]. ### **Conclusion** The results of the present research led to the following conclusions: the average radon concentrations for the three zones were found to be 90.0, 66.5 and 58.0 Bqm⁻³ in Halhul, Beit Umar and Alarrub camp school, respectively. The total average annual effective dose due to the radon received by the pupils and staff in the studied area was 0.31 mSvy⁻¹. Since most radon comes from the ground, the highest concentrations of radon are found in ground floor rooms compared to values measured in the first and upper floor. Variations in radon concentration from one room to another in the same floor level may be explained by human activities. As the annual mean effective dose for students and staff at the schools are consistent with the normal dose as regarded by ICRP and WHO recommendations. Consequently, health hazards related to radiation are expected to be negligible. # **Acknowledgments** We gratefully acknowledge the Deanship of Scientific Research and Graduate Studies at Hebron University for supporting this research. Sincere thanks are also extended to the working staff in the chemistry lab at Hebron University who helped us in the etching process of the detectors before their readings # References - [1] Shoqwara, F., Dwaikat, N. and Saffarini, G., Research & Reviews: Journal of Physics, 2 (1) (2013) 10. - [2] Thabayneh, K.M., Abu-Samreh, M.M. and Mashal, L.A., Environ. Sci., 10 (2015) 260. - [3] UNSCEAR Report to General Assembly, with Scientific Annexes United Nations. New York (2000). - [4] Cao, X., Mac Naughton, P., Laurent, J. and Allen, J., Plos One, 12 (2017) e0184298. - [5] Youssef, H. Embaby, A., El-Farrash, H. and Laken, A., Int. J. of Recent Scient. Res., 6 (2015) 3440. - [6] Al-Khalifa, I., and Aood, H., Internat. J. of Resear. in Appl., Nat. and Social Scien. 2 (2014) 117. - [7] Dabayneh, K.M., Isot. and Radiat. Res. J., 38 (2006) 1067. - [8] Dabayneh, K.M. and Awawdeh, K.M., Al-Azhar J. of Sci., 18 (2007) 17. - [9] Dabayneh, K.M., Isot. and Radiat. Res. J., 40 (2008) 277. - [10] Thabayneh, K.M., Abu-Samreh, M.M. and Elian, M.M., Hebron Univ. Resear. J. (A), 6 (2012) 47. - [11] Thabayneh, K.M., Arab J Sci. Eng., 38 (2013) 201. - [12] Shoeib, M.Y. and Thabayneh, K.M., J. of Radiat. Res. and Appl. Sci., 7 (2014) 174. - [13] Jazzar, M.M. and Thabayneh, K.M., Inter. J. of Environ. Engin. and Nat. Resourc., 1 (2014) 171. - [14] Thabayneh, K.M., Appli. Radiat. Isot., 103 (2015) 48. - [15] Thabayneh, K.M. and Arar, A.M., Ulutas Med J., 1(2015) 31. - [16] Thabayneh, K.M., Nawajah, I.M. and Ighraib, A.A., SDRP J. of Earth Sci. and Environ. Stud., 1 (2015) 1. - [17] Thabayneh, K.M., Sains Malaysiana, 45 (2016) 699. - [18] Thabayneh, K.M., Mashal, L.A. and Arar, A.M., Asian J. of Sci. and Tech., 7 (2016) 2502. - [19] Abu-Samreh, M., Hussain, A., Daraghmeh, M. and Thabayneh, K., Hebron Univ. Res. J. (A), 7 (2017) 41. - [20] Thabayneh, K.M., Mashal, L.A., Arar, M.A. and Buss, F.M., J. of Scient. and Engin. Res., 4 (2017) 66. - [21] Thabayneh, K.M., J. of Environ. Heal. Sci. and Engin., 16 (2018) 121. - [22] Thabayneh, K., Khalilia, W. and Jaradat, A., Hebron Univ. Res J. (A), 8 (2019) 40. - [23] https://www.who.int/phe/radiation/backgrou nder_radon/en/. WHO calls for tighter standards on indoor radon World Health Organization. - [24] US EPA, Environments Division (6609J). A citizen's guide to Radon: The guide to protecting yourself and your family from Radon. Washington DC (2004). - [25] Al-Zabadi, H., Mallah, K. and Saffarini, G., Inter. J. of Radi. Res., 13 (2015) 221. - [26] Leghrouz, A., Abu-Samreh, M. and Shehadeh, A., Heal. Phys., 104 (2013) 163. - [27] Kullab, M., Al-Bataina, B., Ismail, A., Abumurad, K. and Ghaith, A., Radi. Measur., 28 (1997) 699. - [28] Amrani, D., Rad. Protec. Dosim., 87 (2000) 1333. - [29] Maged, A., Heal. Phys., 90 (2006) 258. - [30] Al-Mosa, T., MSc thesis, King Saud University (2007). Saudi Arabia (Unpublished). - [31] Clouvas, A., Takoudis, G., Xanthos, S., Potiriadis, C. and Kolovou, M., Rad. Protec. Dosim., 136 (2009) 127. - [32] Rafique, M., Rahman, S.U., Rahman, S., Matiullah, Shahzad, I., Ahmed, N., Iqbal, J., Ahmed, B., Ahmed, T. and Akhtar, N., Rad. Protec. Dosim., 142 (2010) 339. - [33] Rahman, S., Anwar, J., Jabbar, A. and Rfique, M., Indoor and Built Environ., 19 (2010) 214. - [34] Labidi, S., Al-Azmi, D., Mahjoubi, H. and Ben Salah, B., Radioprotection, 45 (2010) 209. - [35] Obed, I., Ademola, K., Vascotto, M. and Gianrossano, G., Environ. Radioactiv., 102 (2011) 1012. - [36] Antão, A., Earth and Planetary Sci., 8 (2014) 7. - [37] ICRP, Publication 65, Annals of the ICRP.23, Pergamon Press, Oxford (1993). - [38] ICRP, Publication 115, Annals ICRP 40 (1), Pergamon Press, Oxford (2010). - [39] Dwaikat, N., M.Sc. Thesis, An-Najah National University, (2001), Palestine (Unpublished). - [40] ICRP, Recommendations of the ICRP, Publication 60. Annals of the ICRP, 21, Pergamon Press, Oxford (1991). - [41] Rafique, M., Manzoor, N., Rahman, S., Rahman, S.U., Rajput, M.U. and Matiullah, Iran. J. Radiat. Res., 10 (2012) 19.