Please use this identifier to cite or link to this item:
http://dspace.hebron.edu:8080/xmlui/handle/123456789/258
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Almanasreh, Hasan | - |
dc.contributor.author | Svanstedt, Nils | - |
dc.date.accessioned | 2019-10-14T17:25:40Z | - |
dc.date.available | 2019-10-14T17:25:40Z | - |
dc.date.issued | 2012-03-16 | - |
dc.identifier.uri | http://dspace.hebron.edu:80/xmlui/handle/123456789/258 | - |
dc.description.abstract | We consider the linear Dirac operator with a (-1)-homogeneous locally periodic potential that varies with respect to a small parameter. Using the notation of G-convergence of positive definite self-adjoint operators in Hilbert spaces we prove G-compactness for families of projections of Dirac operators. We also prove convergence of the corresponding point spectrum in the spectral gap. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Journal of Function Spaces | en_US |
dc.title | G-Convergence of Dirac Operators | en_US |
Appears in Collections: | Journals |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
About the paper.docx | 10.47 kB | Microsoft Word XML | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.