Please use this identifier to cite or link to this item:
http://dspace.hebron.edu:8080/xmlui/handle/123456789/1070
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Horoub, Ayman M. A. | - |
dc.contributor.author | Nicholson, W. K. | - |
dc.date.accessioned | 2022-02-18T21:09:34Z | - |
dc.date.available | 2022-02-18T21:09:34Z | - |
dc.date.issued | 2021 | - |
dc.identifier.uri | http://dspace.hebron.edu:80/xmlui/handle/123456789/1070 | - |
dc.description.abstract | If L(R) is a set of left ideals defined in any ring R, we say that R is L-stable if it has stable range 1 relative to the set L(R). We explore L-stability in general, characterize when it passes to related classes of rings, and explore which classes of rings are L-stable for some L. Some well known examples of L-stable rings are presented, and we show that the Dedekind finite rings are L-stable for a suitable L. | en_US |
dc.language.iso | en | en_US |
dc.publisher | International Electronic Journal of Algebra | en_US |
dc.subject | Stable range | en_US |
dc.subject | Uniquely generated ring | en_US |
dc.subject | Internal cancellation ring | en_US |
dc.subject | Von Neumann regular ring | en_US |
dc.subject | Unit-regular ring | en_US |
dc.subject | Triangular matrix ring | en_US |
dc.subject | Left idealtors | en_US |
dc.subject | L-stable ring | en_US |
dc.title | L-STABLE RINGS | en_US |
dc.type | Article | en_US |
Appears in Collections: | Journals |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
L-stable.pdf | 434.4 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.