The impact of vegetative cover type on runoff and soil erosion under different land uses

Ayed G. Mohammad a,⁎, Mohammad A. Adam b

a Range Science, College of Agriculture, Hebron University. P.O. Box 40, Hebron, Palestine
b Natural Resources Management, College of Agriculture, Hebron University, Hebron, Palestine

ARTICLE INFO

Article history:
Received 28 March 2009
Received in revised form 6 January 2010
Accepted 26 January 2010

Keywords:
Runoff
Soil erosion
Vegetative cover
Land use
Forest
S. spinosum

1. Introduction

Most rainwater falls on the soil, either directly or indirectly through stem flow or leaf drainage. A small portion remains on the leaves (interception) and eventually evaporates; however, water that reaches the soil surface is stored (infiltrated) in the soil profile or travels downhill as surface runoff or may percolate to a groundwater body. The amount of water that infiltrates into the soil profile or leaves as runoff depends on many factors, such as soil characteristics (Oztas et al., 2003), the type of vegetative cover (Chirino et al., 2006), and the root system (Gyssels et al., 2005). Several studies under different environmental conditions have demonstrated the positive effect of vegetative cover in reducing water erosion. A common method for decreasing water runoff and soil erosion is via stable and suitable vegetative cover (Dunjo et al., 2004; Chaplot

ABSTRACT

The effects of different vegetation types on runoff generation and soil erosion were investigated. The study was conducted at the Southern part of West Bank, about 10 Km north-west of Hebron city, during 2005, 2006 and 2007. Five treatments were implemented: forests planted with P. halepensis (F), natural vegetation dominated by S. spinosum (W/S), natural vegetation where S. spinosum was removed (W/o.S), cultivated land (C), and deforestation (Df). Three types of data were estimated in each plot: runoff after each rainfall event, sedimentation at the end of the rainy season, and chemical and physical soil properties. The obtained results indicate that there are significant and important differences in runoff generation and sediment production with respect to the different types of vegetative cover. Forest and natural vegetation dominated by S. spinosum treatments exhibited the lowest amounts of runoff, with averages of 2.02 and 1.08 mm, respectively, in comparison to other treatments. The removal of S. spinosum significantly increased the total amount of runoff and sedimentation compared to the forest and S. spinosum treatments. In addition, runoff significantly increased (4.03 mm) for the Df treatment compared to that of the forest site. The greatest amount of sedimentation was observed in cultivated land and with deforestation.

The forest and S. spinosum treatments exhibited the highest percentages of organic matter of the five investigated treatments. The results indicate that forests and natural vegetation dominated by S. spinosum prevent or decrease the risk of runoff and soil erosion. In conclusion, the removal of S. spinosum and forest trees as a means to improve rangeland productivity increases runoff and sediment fluxes if not accompanied by careful grazing management. In addition, interchangeably using arid and semi-arid lands as rangeland and for cultivation may have significant negative impacts on the production potential of these lands.

© 2010 Elsevier B.V. All rights reserved.
rangelands (Oztas et al., 2003). Loss of vegetative cover as a result of human activities such as overgrazing and deforestation leads to the formation of soil seals (Singer and Bissonnais, 1998) that increase the risk of runoff and soil erosion (Singer and Bissonnais, 1998; Snyman and duPreez, 2005; Al-Seikh, 2006). Snyman and duPreez (2005) and Al-Seikh (2006) observed that rangeland degradation usually leads to increased surface water runoff and soil compaction due to decreased plant cover, reduced aggregate stability, reduced soil fertility, and decreases in the soil water content in all soil layers. In another study, Merzer (2007) reported that bare plots produced significantly more runoff than did a variety of vegetative plots.

FAO (1988) reported that one of the most common methods for rehabilitating degraded land and reducing the risk of soil erosion is to use forest cover. In Mediterranean areas, the establishment of *P. halepensis* (Allope pine) tree cover has traditionally been encouraged in both natural and degraded ecosystems in order to reduce soil erosion and increase the growth of different vegetation forms. Xin et al. (2004) reported that increases in the number of native plant species could significantly reduce soil erosion and increase soil soil antecedent soil moisture by enhancing rootlet with and the diversity of root system characteristics that comes with the presence of a greater number of different species.

Since the beginning of the last century, *P. halepensis* has frequently been used in reforestation because of its role in succession after degradation of the soil. Ariza (2004) observed that *P. halepensis* primarily improves the soil by doubling the organic matter content contained therein, which increases aggregate stability and prevents erosion. Alternatively, the same positive effects can be achieved through the recovery of the natural vegetation.

Due to a lack of natural resource management, most forests in the West Bank have been deforested, especially over the last few decades. The rangelands have also been overgrazed, leading to an increased risk of soil erosion and a loss of vegetative cover (Mohammad, 2005). Most of the rangeland in the West Bank, especially in the Central Highland and eastern slope, is dominated by the dwarf shrub *S. spinosum* (Al-Joaba, 2006; Mohammad, 2000), which, although unpalatable, seems to be important for soil conservation and decreasing the risk of erosion (Mohammad, 2000).

Information about the relationship between vegetative cover and surface water runoff and soil erosion in the Palestinian environment is very limited; therefore, the main objective of this study is to study the impact of different vegetation types on water runoff and soil erosion.

2. Materials and methods

2.1. Site description

This study was carried out near Soreif, a town about 10 km to the north-west of Hebron city in the western slopes of the West Bank/ Palestine, Central Highland: the exact geographical position is 35.06° East and 31.63° North, with an elevation 670 m above sea level. Plots covered an area of about 40 ha each. The site topography is characterized by high mountains and steep slopes, with grades ranging between 10 and 13%. The climate is Mediterranean, with rainy winters and long, hot, and dry summers. Most precipitation typically occurs between October and April, wherein the annual rainfall ranges from 400 to 500 mm according to Awadallah and Owaiwi (2005).

The same authors have characterized the soil located at this site as Brown Rendzinas and Pale Rendzinas.

2.2. Experimental field design

2.2.1. Treatments under investigation

This study was carried out during the winter seasons (October–April) of the years 2005, 2006, and 2007.

Two plots (replicates) were randomly assigned to undergo each treatment at the study site. These treatments include:

- Natural vegetation dominated by *Sarcopoterium spinosum* species (WS) with percent cover ranges between 49% and 56%. Other herbaceous dominant species include *Avena sterilis*, *Bromus* species *Lactuca virosa*, and *Lotus corniculatus*.

- Natural vegetation, where the *S. spinosum* was removed repeatedly during the fall of each study period (W/o.S). The dominant species include *Trifolium stellatum*, *Crepis crupinastrum*, *A. sterilis*, and *Brachypodium distachyon*.

- Cultivation practices wherein all vegetative cover was removed and cleared (C). The land was plowed before the start of the rainy season without planting anything inside the microcatchment that builds. The dominant species after regrowth include *B. distachyon*, *Avena sterilis*, *Hedypnois cretica*, and *Ragadillus stellatus*.

- Deforestation areas (DF). Cutting has been practiced on *P. halepensis* over the last 20 years, and at this time, the land is open to continue over grazing. The dominant species include *Piptatherum holciforme*, *Asphodelus aestivus*, *Cichorium intybus*, and *S. spinosum*.

2.2.2. Physical and chemical soil properties

Soil particle size distribution was determined using the pipette method (Bouwer, 1986). Soil pH was determined using an electrode pH-meter on saturated soil paste (1:2.5) using distilled water. Electrical conductivity (EC) was also measured in a saturated paste (1:2.5) (Skog and West, 1976; FAO, 1980). Organic matter was evaluated using the Walkley and Black method (Nelson and Sommers, 1982). Extractable bases (Na+, K+, NH4+, NO3−) were evaluated following displacement with 1 M NH4OAc (Thomas, 1982). Extractable P was evaluated using a molybdate reaction for colorimetric detection (Olsen and Sommers, 1982). The CaCO3 content was determined using a calcimeter instrument (William, 1949). A completely randomized design was used, with three replicates, to enable comparison among treatments.

2.2.3. Runoff and erosion measurements

Two replicated microcatchments of 50 m² (5 m x 10 m) area were constructed for each vegetation type in order to measure surface water runoff and sedimentation.

Cement blocks (20 cm tall) surrounded each runoff plot to prevent run-on from the adjacent area. Plastic pipe was used to convey the runoff water to a 0.7 m³ tank (Fig. 1).

The amount of runoff was measured after each main rainstorm event after allowing the sediment to settle. A rain gauge was used to measure the amount of rainfall in the study site during the study period (Fig. 2). The sediments accumulated at the bottom of each tank were also measured at the end of the winter after being air-dried (Fig. 2).

2.2.4. Ground cover

A permanent Line-Intercept Transect method was used to evaluate the ground cover percentage in each treatment, in accordance with (Bonham, 1989). In each microcatchment, two 10 m lines were established across each experimental plot. Whatever was present under the line, whether it was a plant species, rock, or bare soil, was recorded.

2.2.5. Statistical analysis

Completely Randomized Design with two replicates was used to compare between the treatments. One way ANOVA was used to compare treatment means for soil properties, runoff, and sedimentation. The Fisher LSD (Least Significant Difference) test at p≤0.05 was used for mean separation utilizing Sigmasat® program. Correlation analysis between runoff as dependent variable with clay content and % vegetation cover as independent variables was done.
Also the correlation between runoff as independent variable with sedimentation and EC as dependent variables was tested.

3. Results

3.1. Soil properties

Although the amount of organic matter measured was relatively high in all treatments, the levels were significantly higher in treatments with S. spinosum (WS) and forest (F) compared to the others (Fig. 3). No significant differences were found between treatments without S. spinosum (W/o.S), cultivation (C), and deforestation (DF).

Deforested land has a significantly higher pH (7.29) compared to all of the other treatments, except the cultivation treatment (Table 1). The highest EC values were found in the forest and S. spinosum treatments, which were both significantly different from others. The EC was significantly lower in deforested plots (0.44 ds m\(^{-1}\)) and in those with removed S. Spinosum (0.47 ds m\(^{-1}\)). In addition, the correlation analysis between runoff and EC show a strong negative relationship with an r value of \(-0.89\) that might be explained by the leaching of nutrient with runoff. On the other hand, no significant differences were found in NH\(_4\)\(^+\), K\(^+\), or available P among the various treatments. The highest Na\(^+\) (39.68 ppm) level was found in the forest site, although there were no statistically significant differences among the treatments. A significant difference was found in the NO\(_3\)\(^-\) concentration in the forest site compared to the deforestation site (13.8 ppm vs. 8.9 ppm, respectively); however, no significant differences were shown between the NO\(_3\) concentration of sites with and without S. Spinusum, (10.8 ppm vs., 5.8 ppm, respectively). The highest percent of CaCO\(_3\) (22.3%) was found in the cultivated treatments, and the lowest (13%) in the deforestation treatments. Results showed that there was no significant difference in clay and silt particles between the treatments (Table 2). Cultivation has the highest amount of sand particles (39%) compared to other treatments.

3.2. Ground cover

There was a difference in the percentage of ground cover (plant, bare soil, and rock) among the different treatments over the three years studied (2005, 2006, and 2007), as seen in Table 3. There was also a difference in plant cover, which was higher in 2006 than in 2005. In 2005, the sites with removed S. Spinusum had a higher percentage of plant cover compared to the cultivated land; however, cultivation showed a higher percentage of bare soil during that year compared to other treatments. Also, in 2006, the cultivation-treated sites had higher percentages of bare soil cover compared to treatments without S. spinosum and with deforestation (Table 3).
3.3. Surface runoff

There were significant differences among the treatments in the amount of surface runoff during the rainy season study periods (Fig. 4). Forest (P. halepensis) and natural vegetation dominated by S. spinosum had the lowest amount of total runoff by far (2, 1.7 mm during 2005; 1.7, 2.5 mm during 2006; and 3.8, 3.2 mm during 2007, respectively,) compared to other treatments. The deforestation treatments had the highest total runoff (4.1, 4.4, and 8 mm during 2005, 2006, and 2007, respectively) (Fig. 4). In addition, during the second season, the deforested sites as well as those without S. spinosum had the highest amount of runoff (Fig. 4). The correlation between runoff and percent vegetation cover during the study periods 2005, 2006 and 2007 shows a negative r values of −0.35, −0.35, and −0.45, respectively. Also correlation analysis between runoff and clay particles shows a week positive relationship during the study period 2005, 2006, and 2007 with an r value 0.29, 0.14, and 0.06, respectively.

Generally, there is a close relationship between the amount of runoff and soil erosion (sedimentation).

The results in Fig. 5 show significant differences among treatments in the total amount of accumulated sedimentation during the winters of 2005, 2006 and 2007. From Fig. 5, it can be seen that forests and natural vegetation dominated by S. spinosum had the lowest amount of sediments compared to other treatments. This result could be related to the low amount of water runoff. On the other hand, it might be related to significant root systems and a high organic matter content, both of which improve the soil structure (Al-Seikh, 2006).

3.4. Soil erosion

Our results demonstrated that soil erosion (sedimentation) was significantly different among the treatments during the three seasons. Treatments with S. spinosum and forest had significantly lower amounts of accumulated sedimentation compared to the others (Fig. 5); however, in the winter of 2005, there was no significant difference in the accumulative sedimentation found between the other three treatments of cultivated land, land without S. spinosum, and deforestation. On the other hand, in 2005, the cultivated land had the highest amount of sediment compared to all of the other treatments, except deforestation.

3.5. Relationship between total surface runoff and sedimentation

A close relationship appeared between the amount of water runoff and sedimentation in most treatments (Figs. 6). The correlation

Table 1

<table>
<thead>
<tr>
<th>Treatments</th>
<th>pH</th>
<th>EC (ds m⁻¹)</th>
<th>NH₄⁺ (ppm)</th>
<th>P (ppm)</th>
<th>CaCO₃ (%)</th>
<th>Na⁺ (ppm)</th>
<th>K⁺ (ppm)</th>
<th>NO₃⁻ (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>7.05 b</td>
<td>0.71 a</td>
<td>5.94 a</td>
<td>12.3 a</td>
<td>16.7</td>
<td>39.68 a</td>
<td>379.98 a</td>
<td>13.8 a</td>
</tr>
<tr>
<td>Df</td>
<td>7.29 a</td>
<td>0.44 d</td>
<td>7.47 a</td>
<td>12.2 a</td>
<td>13</td>
<td>38.66 a</td>
<td>407.64 a</td>
<td>8.9 b</td>
</tr>
<tr>
<td>W/S</td>
<td>7.06 b</td>
<td>0.61 ab</td>
<td>8.5 a</td>
<td>10.2 a</td>
<td>18.6</td>
<td>32.56 a</td>
<td>407.89 a</td>
<td>10.8 ab</td>
</tr>
<tr>
<td>W/0/S</td>
<td>7.06 b</td>
<td>0.47 cd</td>
<td>5.86 a</td>
<td>7.7 a</td>
<td>15.4</td>
<td>35.57 a</td>
<td>373.64 a</td>
<td>5.8 b</td>
</tr>
<tr>
<td>C</td>
<td>7.21 ab</td>
<td>0.55 bc</td>
<td>6.26 a</td>
<td>9 a</td>
<td>22.3</td>
<td>38.12 a</td>
<td>313.5 a</td>
<td>6.8 a</td>
</tr>
</tbody>
</table>

* Means followed by the same letter in the same column are not significantly different, according to the Fisher LSD test at P ≤ 0.05.

Table 2

<table>
<thead>
<tr>
<th>Treatments</th>
<th>%Clay</th>
<th>%Silt</th>
<th>%Sand</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>55 a</td>
<td>18 a</td>
<td>27 bc</td>
</tr>
<tr>
<td>Df</td>
<td>58 a</td>
<td>16 a</td>
<td>26 c</td>
</tr>
<tr>
<td>W/S</td>
<td>54 a</td>
<td>15 a</td>
<td>31 bc</td>
</tr>
<tr>
<td>W/0/S</td>
<td>55 a</td>
<td>12 a</td>
<td>34 ab</td>
</tr>
<tr>
<td>C</td>
<td>45 a</td>
<td>16 a</td>
<td>39 a</td>
</tr>
</tbody>
</table>

* Means followed by the same letter in the same column are not significantly different, according to the Fisher LSD test at P < 0.05.

Table 3

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Plant cover (%)</th>
<th>Soil cover (%)</th>
<th>Rock cover (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>W/o/S</td>
<td>71.4 90.5 93.7</td>
<td>16.4 3.4 2.9</td>
<td>12.2 6.2 3.5</td>
</tr>
<tr>
<td>W/S</td>
<td>64.1 82.8 90.8</td>
<td>23.8 6.6 3.8</td>
<td>12.1 10.6 5.4</td>
</tr>
<tr>
<td>C</td>
<td>49.3 86.4 90.2</td>
<td>34.6 8.2 5.6</td>
<td>16.1 5.4 4.1</td>
</tr>
<tr>
<td>Df</td>
<td>55.1 70.6 69.2</td>
<td>14.4 4.9 4.2</td>
<td>30.6 24.5 26.5</td>
</tr>
<tr>
<td>F*</td>
<td>70.2 72.6 74.5</td>
<td>9.5 7.1 8.4</td>
<td>24.5 11.7 10.5</td>
</tr>
</tbody>
</table>

* Canopy cover was measured for the forest.

Fig. 4. Total amount of runoff (mm) in all treatments: With S. spinosum (W/S), without S. spinosum (W/o/S), cultivation (C), deforestation (Df), and forest (F) during the three study periods.
analysis between runoff and soil erosion during the study periods 2005, 2006, and 2007 shows strong positive relationships with an r values of 0.93, 0.76, and 0.84, respectively. Increases in the amount of surface runoff lead to an increase in soil erosion for most treatments, especially during the main storm events of each winter; however, these relationships are inconsistent in all treatments, which reflect the influence of other factors, such as vegetative cover type. In the cultivation treatment, the amount of runoff is less than in treatments without $S. \text{spinosa}$ (W/o.S) or deforestation (Df) during 2005, despite the fact that accumulated sediment is higher for cultivation in comparison to these treatments.

4. Discussion

4.1. Soil properties

The amount of organic matter reflects the percentage of plant residues and soil organisms that have lived and died in the soils. The basic functions of organic matter are the development and maintenance of soil structure, water holding capacity, nutrient and organic carbon storage, and the maintenance of biological activity (Fu, et al., 2003).

The data in Fig. 3 show that soil organic matter is significantly higher in forests and with $S. \text{spinosa}$ treatments compared to other treatments; these results are probably related to the fact that the needles of the $P. \text{halepensis}$ fall and decomposed underneath the trees, adding high amounts of organic matter. This result agrees with a study conducted by Ariza (2004), who concluded that forests with Aleppo pine ($P. \text{halepensis}$) improved the soil by doubling its organic matter content. In addition, in natural vegetation dominated by $S. \text{spinosa}$, the organic matter was probably high due to the dominance of shrubs (mainly $S. \text{spinosa}$), which increases the amount of organic matter by adding and decomposing plant litter. Similar results were obtained by Al-seikh (2006), who found that organic matter content in shrub lands dominated by $S. \text{spinosa}$ was the highest compared to other treatments; however, in other treatments, the amounts of organic matter were lower due to different causes. Cultivated land had lower quantities of organic matter due to the removal of most of the vegetative cover, which is the source of organic matter. Similar results were also observed by (Al-seikh, 2006; Fu et al, 2004); wherein the amount of organic matter was found to be lower in cultivated land than that in land with natural vegetation. The tillage practices used in cultivation have also been found to increase and enhance the
biological activity, and thus, increase the decomposition rate of organic matter (Dunjo et al., 2003).

Soil pH is considered one of the most important soil parameters because it directly affects the growth of plants and influences other soil parameters. In all of the treatments, the pH values were within the range for optimal plant growth conditions (6–7.5) (Marx et al., 1999). The higher soil pH values found in deforestation and cultivated treatments might be related to low soil moisture and a low amount of organic matter (Rezaei and Gilkes, 2005). In treatments with *S. spinosum* (WS), forest (F), and without *S. spinosum* (W/o/S), no significant difference was found in soil pH (*Table 1*).

The EC was significantly higher in the forest treatment compared to the others, which might be related to the higher content of organic matter and low amount of runoff. Results showed that strong negative relationship with an r value of -0.89 was found between runoff and EC values. Zhang, et al (1997) found that EC decrease exponentially with time during the initial stages of wet and water table runs. On the other hand, decreases of EC on other treatment may relate to raindrop impact and confined to mixing zone, causes an exponential depletion of chemicals (Zhang, et al, 1997).

4.2. Surface runoff

There is a close relationship between each rainfall event and the amount of runoff, which depends directly on the type of vegetative cover. In addition to the current season’s growth, the presence of sparse dead vegetation from the previous season is sufficient to decrease runoff generation during the early stages of the rainy season (Merzer, 2007). Data from *Fig. 4* show that there is variation in the total runoff under different types of vegetative cover.

Removing the *S. spinosum* increased the surface runoff during the study period; these results can be explained by the fact that the differences between treatments in the percentages of plant cover, bare soil, rock cover, type of vegetative cover, and organic matter directly affect the amount of runoff (*Table 3*). Data in *Fig. 4* show that the deforestation treatment had the highest total amount of runoff compared to all other treatments for all three years, except for the treatment without *S. spinosum* in 2006. This might be related to the disturbance of the land when the forest was removed, which decreased the impact of canopy interception of raindrops. In addition, this land was exposed to overgrazing for a long period of time after the trees were cleared. In addition, the high rock cover in the deforestation compared to the other treatments explains the high runoff (Adam, 2007). *Fig. 4* shows that the forest and *S. spinosum* treatments had a significantly lower amount of total runoff (mm) compared to other treatments during the three seasons. These results might be due to the interception phenomenon, which decreases the velocity of raindrops and prevents them from directly impacting the soil surface in a way that splashes the soil particles. In addition, some raindrops that are intercepted by plants might evaporate directly to the atmosphere and never reach the soil. Further, high vegetative cover slows the overland flow, and the root systems of trees and shrubs play an important role in decreasing runoff by improving soil characteristics, such as soil porosity and organic matter content, thus increasing the infiltration rate and decreasing the runoff. Furthermore, our results show that the forest and *S. spinosum* treatments have higher organic matter contents compared to the other treatments, which contributed to better soil properties, such as porosity and aggregate stability, again increasing the infiltration rate and decreasing water runoff and sedimentation. Ultimately this lead to increasing the infiltration rate and decreasing the runoff. Furthermore, we results show that the forest and *S. spinosum* treatments have higher organic matter contents compared to the other treatments, which contributed to better soil properties, such as porosity and aggregate stability, again increasing the infiltration rate and decreasing water runoff and sedimentation. Ultimately this lead to increasing the infiltration rate and decreasing the runoff.

4.3. Soil erosion

The EC was significantly higher in the forest treatment compared to the others, which might be related to the higher content of organic matter and low amount of runoff. Results showed that strong negative relationship with an r value of -0.89 was found between runoff and EC values. Zhang, et al (1997) found that EC decrease exponentially with time during the initial stages of wet and water table runs. On the other hand, decreases of EC on other treatment may relate to raindrop impact and confined to mixing zone, causes an exponential depletion of chemicals (Zhang, et al, 1997).

The soil losses generated from cultivated treatment were equal to 0.58 g/m², 0.9 g/m², and 0.6 in 2005, 2006, and 2007, respectively. These were higher than other treatments, except for deforestation. Soil loss is high in cultivated treatments, despite the low amount of runoff compared to other treatments. These results might be related to the fact that cultivating the land leads to breakdowns of aggregate stability, loss of vegetative cover, exposure of the soil particles to direct impact of rain drops and the resulting detachment; these factors enable the soil particles to be easily moved by overland flow. In addition, most of the prevailing erosion events were transport-limited or detachment-limited; in the case of cultivation, the erosion occurred by transport-limited factors (Abu Hammad, 2004). In addition, Al-Seikh (2006) reported that the amount of sedimentation was higher in cultivated land in comparison to natural vegetation due to the loss of vegetative cover and the detachment of soil particles. In the conditions under which the research was carried out, the forest with *P. halepensis* did not significantly reduce the runoff or sedimentation in comparison to natural vegetation dominated by *S. spinosum*. Therefore, the risk of runoff and soil erosion after removing *S. spinosum* can be decreased by increasing the growth of shrubs or trees in the cleared site to maintain a stable and suitable plant cover.

The variation in total runoff and soil erosion under different vegetation states reflects the great importance of vegetative cover type.

5. Conclusions

The results of this research can be summarized as follows:

- The runoff and soil erosion measured in the five vegetation systems show significant differences, wherein the lowest runoff and soil erosion rates are associated with the forest and with natural vegetation dominated by *S. spinosum*.
- Deforestation and the removal of *S. spinosum* have a directly increasing effect on runoff and soil erosion losses.
- Land cultivation and deforestation create conditions that are much more favorable for surface runoff and soil erosion, and therefore have a negative impact in terms of increased runoff, and soil erosion.
Runoff and soil erosion were found to be more reduced based on the type of vegetative cover rather than the percent of vegetative cover.

6. Recommendation

Human activities such as deforestation, the removal of $S. \text{spinosa}$ for firewood and other purpose, and interchangeably using arid— and semi-arid lands between cultivation and grazing significantly increase runoff generation and sedimentation production, which in turn increases the potential for land degradation. Consequently, the removal of $S. \text{spinosa}$ as a means to improve rangeland productivity must be accompanied by careful grazing management.

Therefore, keeping suitable vegetative cover should be considered for soil and water conservation in forests and rangeland, and any cultivation or brush control should be carefully practiced to avoid retrogressive trends in these lands.

Acknowledgement

Finally we extend our thanks and appreciation for the funding agencies: USDA Forest Service, USAID Middle East Regional Cooperation (MERC), the US State Department and to those who support this study as part of a large project (Monitoring and Evaluation of Watersheds in the Middle East Region). Also we extend our appreciation for Saleh Al-Seikh and Osama Al-Joaba for their help in data collection.

References

