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Abstrat

The Adomian deomposition method was �rstly introdued in 1980 by George Ado-

mian. This method is analytial numerial method for solving di�erential equations.

Indeed, the Adomian deomposition method is based on splitting the given equation

into linear and nonlinear parts. The nonlinear part is deomposed into a series of

Adomian polynomials.

This thesis is mainly onerned with the Adomian deomposition method for both

ordinary and partial di�erential equations. Firstly, we introdue the Adomian de-

omposition method and Adomian polynomials. Seondly, we use Adomian deom-

position method for solving linear and nonlinear di�erential equations. Finally, we

solve a onvetion between two parallel walls equation, a di�usion of oxygen in

absorbing tissue equation and Burgers' equation by using Adomian deomposition

method.
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Chapter 1

Adomian Deomposition Method

1.1 Introdution

Sine its introdution in the 1980s, the Adomian Deomposition Method (ADM)

has proven to be an e�ient and reliable method for solving many types of

problems. Originally developed to solve nonlinear funtional equations, the ADM

has sine been used for a wide range of equation types (like boundary value

problems, integral equations, equations arising in �ow of inompressible and

ompressible �uids, et...), [11℄.

The ADM involves separating the equation under investigation into linear and

nonlinear portions. The linear operator representing the linear portion of the

equation is inverted and the inverse operator is then applied to the equation. Any

given onditions are taken into onsideration. The nonlinear portion is

deomposed into a series of Adomian polynomials. ADM generates a solution in

the form of a series whose terms are determined by a reursive relationship using

these Adomian polynomials. The method provides the solution in a rapidly

onvergent series with omponents that an be elegantly omputed [1℄.

The main advantage of the method is that it an be applied diretly for all types

of di�erential and integral equations, linear or nonlinear, homogeneous or

1



2 Chapter 1. Adomian Deomposition Method

inhomogeneous, with onstant oe�ients or with variable oe�ients. Another

important advantage is that the method is apable of greatly reduing the size of

omputation work while still maintaining high auray of the numerial solution

[9℄.

1.2 Deomposition method and Adomian polyno-

mials

Solution of linear and nonlinear di�erential equations an be arried out by using

an approximation method alled the deomposition method. Deomposition

method an be used for solving operator equation of the form Fu = g where the

operator F may be partial di�erential operator, our attention here is the ase

where F is di�erential operator.

Basially two tehniques are involved in applying this method. First, the nonlinear

part in the equation to be solved is written in terms of the Adomian's polynomials.

Seond, the assumed solution u = F−1g is deomposed into omponents to be

determined, suh that the �rst omponents is the solution for the linear part of F ,

or of a suitable invertible part, inluding onditions on u, the other omponents

are then found in terms of preeding omponents [3℄.

De�nition 1.1. [22℄ (Deomposition series of �nite-order p) A deomposition

series of �nite-order p is a series

∑
Ck, where eah Ck is an E-valued funtion of

the p(k + 1) variables X
(1)
0 , . . . , X

(1)
k , . . . , X

(p)
0 , . . . , X

(p)
k

The deomposition series of �rst order is simply alled the deomposition series.

De�nition 1.2. [22℄ (Weak onvergene of the deomposition series of �nite-order

p) A deomposition series of �nite-order p is weakly onvergent if for eah
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olletion of p onvergent series in E
(
∑
u
(1)
n , . . . , u

(p)
n

)

, the series

∑

Ck

(

u
(1)
0 , . . . , u

(1)
k , . . . , u

(p)
0 , . . . , u

(p)
k

)

in E onverge.

De�nition 1.3. [22℄ (Strong onvergene of the deomposition of

nite-order p) A deomposition series of �nite-order p is strongly onvergent if it is

weakly onvergent and if its sum is depends only on the sum of the series in E, i.e.

∞∑

n=0

u(i)n =
∞∑

n=0

v(i)n

⇒ S
(∑

u(1)n , . . . , u(p)n

)

= S
(∑

v(1)n , . . . , v(p)n

)

, ∀i ∈ [1, p]

De�nition 1.4. [22℄ (Deomposition Sheme) Let

∑
Ck(x0, . . . , xk) be a strongly

onvergent deomposition series. The deomposition sheme assoiated with

∑
Ck

is the reurrent sheme u0 = 0, un+1 = Cn(u0, . . . , un),

whih onstruts a series

∑
Cn in a Banah spae E.

De�nition 1.5. [22℄ (Deomposition Method) Is the method onsisting of

onstruting the solution of an equation with a deomposition sheme

The ADM onsists of deomposing the unknown funtion u(x, t) of any equation

into sum of in�nite number of omponents de�ned by

u(x, t) =

∞∑

n=0

un(x, t).

The ADM onsists of splitting the given equation into linear and nonlinear parts,

inverting the highest-order derivative operator ontained in the linear operator on

both sides, identifying the initial and/or boundary onditions and the terms

involving the independent variable alone as initial approximation, deomposing the

unknown funtion into a series whose omponents are to be determined,

deomposing the nonlinear funtion in terms of speial polynomials alled

Adomian polynomials and �nding the suessive terms of the series solution by

reurrent relation using Adomian polynomials.
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Adomian polynomials are the key in solving nonlinear equations, and whih notion

was named the Adomian polynomials by Rah [19℄. The Adomian deomposition

tehnique suggests that the unknown solution u(x, t) an be represented by the

following deomposition series

u(x, t) =
∞∑

n=0

un(x, t),

with un being omputed reursively in an elegant way. However, the nonlinear

term F (u), suh as u2, u3, sin u, eu, uux, et, an be expressed by an in�nite series

of the Adomian polynomials An

F (u) =
∞∑

n

An=0(u0, u1, u2, . . . , un), (1.1)

where the Adomian polynomials An an be evaluated for all forms of nonlinearity.

De�nition 1.6. [19℄ (Adomian Polynomials) Let F be an analytial funtion and

∑
un a onvergent series in a Banah spae E. Then the Adomian polynomials An

for the nonlinear term F (u) an be evaluated by the following expression

An =
1

n!

dn

dλn

(

F (
∞∑

n=0

λnun)

)∣
∣
∣
∣
λ=0

.

Example 1.1. The Adomian polynomials for F (u) = u2 are

A0 = u20,

A1 = 2u0u1,

A2 = u21 + 2u0u2,

A3 = 2u1u2 + 2u0u3,

A4 = u22 + 2u1u3 + 2u0u4,
.

.

.
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Example 1.2. The Adomian polynomials for F (u) = sin u are

A0 = sin u0,

A1 = u1 cosu0, (1.2)

A2 = u2 cosu0 −
1

2!
u21 sin u0,

.

.

.

Remark: In ADM, the solution u(x, t) is deomposed in the form of an in�nite

series given by

u(x, t) =
∞∑

n=0

un(x, t).

Further, the nonlinear funtion N(u) is assumed to admit the representation

N(u) =

∞∑

n=0

An(u0, u1, . . . , un),

where A′

ns are alled k − th order Adomian polynomials. In the linear ase

N(u) = u, An simply redues to un. Adomian's method is simple in priniple, but

involves tedious alulations of Adomian polynomials. Adomian gave a method for

determining these Adomian polynomials by parameterizing u(x, t) as

uλ(x, t) =

∞∑

n=0

un(x, t)λ
n,

and assuming N(uλ) to be analyti in λ, whih is deomposed as

N(uλ) =
∞∑

n=0

An(u0, u1, . . . , un)λ
k.

Hene, the Adomian polynomials Am are given by

Am(u0, u1, . . . , un) =
1

m!

∂mN(uλ)

∂λm

∣
∣
∣
∣
λ=0

, ∀m ∈ N

⋃

0,

Theorem 1.1. [15℄ Let φand ψ be funtions of the parameter λ

φ =
∑

∞

k=0 unλ
n
, ψ =

∑
∞

k=0wnλ
n, then it holds
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(i) Am(φ) = um,

(ii) Am(λ
kφ) = Am−k(φ),

(iii) Am(φψ) =

m∑

k=0

Ak(φ)Am−k(ψ) =

m∑

k=0

Ak(ψ)Am−k(φ),

(iv) Am(φ
n+1) =

m∑

k=0

Ak(φ)Am−k(φ
n) =

m∑

k=0

Am−k(φ)Ak(φ
n)

where m ≥ 0 and 0 ≤ k ≤ m are integers.

Proof. (i) Aording to Taylor theorem, the unique oe�ient um of the Malaurin

series of φ is given by

um =
1

m!

∂mφ

∂λm

∣
∣
∣
∣
λ=0

,

whih gives (i) by means of the de�nition of Am(φ).

(ii) It holds

λkφ = λk
∞∑

i=0

uiλ
i =

∞∑

i=0

uiλ
i+k =

∞∑

m=k

um−kλ
m,

whih gives by means of (i) that

Am(λ
kφ) = um−k = Am−k(φ).

(iii) Aording to Leibnitz's rule for derivatives of produt, it holds

∂m(φψ)

∂λm
=

m∑

i=0

m!

i!(m− i)!

∂iφ

∂λi
∂m−iψ

∂λm−i
=

m∑

i=0

m!

i!(m− i)!

∂iψ

∂λi
∂m−iφ

∂λm−i
,

whih gives that

Am(φψ) =
1

m!

∂m(φψ)

∂λm

∣
∣
∣
∣
λ=0

=

∞∑

k=0

(
1

k!

∂k(φ)

∂λi
|λ=0

)(
1

(m− k)!

∂mk(ψ)

∂λmk

∣
∣
∣
∣
λ=0

)

=

m∑

k=0

Ak(ψ)Am−k(φ).

Similarly, it holds

Am(φψ) =
∞∑

k=0

Ak(ψ)Am−k(φ).

(iv) Write Φ = φn
. Aording to (iii), it holds

Am(φ
n+1) = Am(Φ

nφ) =
∞∑

k=0

Ak(Φ)Am−k(φ).



1.2. Deomposition method and Adomian polynomials 7

Similarly, it holds

Am(φ
n+1) =

∞∑

k=0

Ak(φ)Am−k(Φ).

Theorem 1.2. [18℄ For funtion f(u) = uk, the orresponding mth-order Adomian

polynomial is given by

Am(u
k) =

m∑

r1=0

um−r1

r1∑

r2=0

ur1−r2

r2∑

r3=0

ur2−r3 · · ·
rk−3∑

rk−2=0

urk−3−rk−2

rk−2∑

rk−1=0

urk−2−rk−1
urk−1

,

(1.3)

where m ≥ 0 and k ≥ 0 are positive integers.

Proof. The statement an be proved by the method of mathematial indution.

(i) Aording to (1.1), it is obvious that the statement holds when σ = 2.

(ii) Assume that the statement holds when σ = 2, i.e.

Am(u
k) =

m∑

r1=0

um−r1

r1∑

r2=0

ur1−r2

r2∑

r3=0

ur2−r3 · · ·
rk−3∑

rk−2=0

urk−3−rk−2

rk−2∑

rk−1=0

urk−2−rk−1
urk−1

,

where m ≥ 0 and k ≥ 2 are integers. Replaing rj by r
′

j+1 and m by r′1, the above

expression reads

Ar′1
(uk) =

r′1∑

r′2=0

ur′1−r′2

r′2∑

r′3=0

ur′2−r′3

r′3∑

r′4=0

ur′3−r′4
· · ·

r′
k−1∑

r′
k
=0

ur′
k−1−r′

k
ur′

k
,

using the above expression and by means

Am(u
k+1) =

m∑

r′1=0

Am−r′1
(u)Ar′1

(uk)

=

m∑

r′1=0

um−r′1

r′1∑

r′2=0

ur′1−r′2

r′2∑

r′3=0

ur′2−r′3

r′3∑

r′4=0

ur′3−r′4
· · ·

r′
k−1∑

r′
k
=0

ur′
k−1−r′

k
ur′

k
.

Therefor, the statement holds for σ = k + 1.

(iii) Aording to (i) and (ii), the statement holds for any positive integer

σ ≥ 2.
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Theorem 1.3. [18℄ For a parametri series u(λ) =
∑

∞

n=0 unλ
n
, it holds

1

m!

∂mf(u(λ))

∂λm
=

1

m!

∂m

∂λm
f

(
m∑

i=0

uiλ
i

)

, (1.4)

where f is a smooth funtion.

Proof. Suppose f(u) is a nonlinear funtion, sine

u =

∞∑

i=0

uiλ
i =

m∑

i=0

uiλ
i +

∞∑

i=m+1

uiλ
i,

we have suh result as following:

∂mf(u(λ))

∂λm
=

∂m

∂λm
f

(
∞∑

i=0

uiλ
i

)

=
∂m

∂λm
f

(
m∑

i=0

uiλ
i +

∞∑

i=m+1

uiλ
i

)

=
∂m

∂λm
f

(
m∑

i=0

uiλ
i

)

.

Therefore, we obtain

∂mf(u(λ))

∂λm
=

∂m

∂λm
f

(
∞∑

i=0

uiλ
i

)

=
∂m

∂λm
f

(
m∑

i=0

uiλ
i

)

.

Corollary 1.1. From Thm. (1.2), we �nd

uk(λ) =

(
∞∑

n=0

unλ
n

)k

= uk0 +
∞∑

m=1

Am(u
k)λm, (1.5)

Example 1.3. For F (u) = u2

we �rst set

u =

∞∑

n=0

un. (1.6)

Substitute equation (1.6) into F (u) = u2 gives
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F (u) = (u0 + u1 + u2 + u3 + u4 + u5 + . . .)2

= u20 + 2u0u1 + 2u0u2 + u21 + 2u0u3 + 2u1u2 + . . .

= u20
︸︷︷︸

A0

+2u0u1
︸ ︷︷ ︸

A1

+2u0u2 + u21
︸ ︷︷ ︸

A2

+

2u0u3 + 2u1u2
︸ ︷︷ ︸

A3

+2u0u4 + 2u1u3 + u22
︸ ︷︷ ︸

A4

.

This is onsistent with the results obtained before using Adomians algorithm.

Theorem 1.4. [18℄ Assume that f(u) has the Taylor expansion with respet to u0,

then

Am(f(u)) =

m∑

k=1

f (k)(u0)

k!

1

m!

∂m(
∑m

i=1 uiλ
i)k

∂λm

∣
∣
∣
∣
λ=0

. (1.7)

Proof. Expanding f(u) in Taylor series with respet to u0, one has

f(u) = f(u0) +
∞∑

k=1

f (k)(u0)

k!
(u− u0)

k. (1.8)

From (1.8), we have

Am(f(u)) =
1

m!

∂m
(
∑

∞

k=1
f(k)(u0)

k!
(u(λ)− u0)

k
)

∂λm

∣
∣
∣
∣
λ=0

.

Corollary 1.2. From Thm. (1.4), we �nd

f(u(λ)) = f(u0) +

∞∑

n=1

Am(f(u))λ
m.

Example 1.4. Take F (u) = sin u.

Note that it is impossible to perform algebrai operations here. Therefore, our

main aim is to separate A0 = F (u0) from other terms. To ahieve this goal, we

�rst substitute

u =
∞∑

n=0

un (1.9)
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into F (u) = sin u to obtain

F (u) = sin(u0 + u1 + u2 + . . .) = sin(u0 + [u1 + u2 + . . .]).

Thus

sin(u0 + [u1 + u2 + . . .]) = sin u0 cos(u1 + u2 + . . .) + cosu0 sin(u1 + u2 + . . .)

Applying the Taylor expansion for sin(u1 + u2 + . . .) and cos(u1 + u2 + . . .).

F (u) = sin u0

[

1− (u1 + u2 + . . .)2

2!
+

(u1 + u2 + . . .)4

4!
− . . .

]

+

cosu0

[

(u1 + u2 + . . .)− (u1 + u2 + . . .)3

3!
+ . . .

]

= sin u0

[

1− 1

2!
(u21 + 2u1u2 + . . .) + . . .

]

+ (1.10)

cosu0[(u1 + u2 + . . .)− 1

3!
(u31 + 3u21u2 + 3u21u3 + . . .) + . . .]

= sin u0
︸ ︷︷ ︸

A0

+ u1 cosu0
︸ ︷︷ ︸

A1

+ u2 cosu0 −
1

2!
u21 sin u0

︸ ︷︷ ︸

A2

+ . . .

When we ompare the Adomian polynomials found in eq. (1.10) with the ones

found in eq. (1.2) we see that we have the same Adomian polynomials omputed

using two di�erent methods.
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1.3 ADM and Taylor series method

In this setion an important observation an be made here. If we substitute

Adomian polynomials into eq. (1.1) we obtain

F (u) = A0 + A1 + A2 + A3 + A4 + · · ·

= u0 + (u1 + u2 + u3)F
′(u0) +

1

2!
(u21 + 2u1u2 + 2u1u3 + u22 + · · · )F ′′(u0) +

1

3!
(u31 + 3u21u2 + 3u21u3 + 6u1u2u3 + · · · )F ′′′(u0)

= F (u0) + (u− u0)F
′(u0) +

1

2!
(u− u0)

2F ′′(u0) +

1

3!
(u− u0)

3F ′′′(u0) + · · ·

=
∞∑

n=0

F (n)(u0)

n!
(u− u0)

n.

The last expansion on�rms that the series of An polynomials is a Taylor series

expansion about a funtion u0 and not about a point as usually used.

Proposition 1.1. [5℄ Consider the di�erential equation

du

dx
= N(u(x)), (1.11)

together the initial ondition

u(x0) = u0. (1.12)

Then, the general solution given by the Taylors series method is preisely the

ADM, where

uk(x) =
u(k)(x0)

k!
(x− x0)

k, k = 0, 1, 2, . . .

and uk, k=0,1,. . . , ome determined by the iterative sheme:

u0 = u(x0),

un(x) =

∫ x

x0

An−1(s)ds, n = 1, 2, 3, . . .
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where Ak, k=0,1,2,. . . , satis�es

Ak(x) =
1

k!

dk

dxk
(N(u(x)))

∣
∣
∣
∣
x=x0

(x− x0)
k−1, k = 1, 2, . . .

Proof. Replaing the initial ondition (1.12) into eq. (1.11) to get

u′(x0) = f(x0, u0) = N(u0),

so that

A0 = u′(x0).

Now, by di�erentiating eq. (1.11) with respet to x, we obtain

u′′(x) =
d

dx
[N(u(x))] = N ′(u(x))u′(x), (1.13)

by using the initial onditions: u(x0) = u0 and u
′(x0) = N(u0) we obtain

u′′(x0) = N ′(u0)u
′(x0). (1.14)

Then, by multiplying (x− x0) both sides of eq.(1.14), we have

u′′(x0)(x− x0) = u′(x0)(x− x0)N
′(u0) = u1(x)N

′(u0) =: A1(x). (1.15)

Now, the next step is to integrate eq.(1.15) over [x0, x]

∫ x

x0

u′′(x0)(s− x0)ds =

∫ x

x0

A1(s)ds.

That is, sine

∫ x

x0

u′′(x0)(s− x0)ds =
u′′(x0)

2!
(s− x0)

2

∣
∣
∣
∣
xx

0

= u2(x),

we have

u2(x) =

∫ x

x0

A1(s)ds.

By di�erentiating eq. (1.13) again, we obtain

u′′′(x) =
d2

dx2
N(u(x))

= N ′′(u(x))(u′(x))2 +N ′(u(x))u′(x)u′′(x), (1.16)
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Let x = x0 in eq. (1.16) and divide by 2!, then multiplying by (x− x0)
2
we have

1

2!
u′′′(x0)(x− x0)

2 =
1

2!

(
N ′′(u(x0))[u

′(x0)]
2 +N ′(u(x0))u

′(x0)u
′′(x0)

)
(x− x0)

2

=
1

2!
[u′(x0)(x− x0)]

2N ′′(u0) +

(
u′′(x0)

2!
(x− x0)

2

)

N ′(u0).

Now,

1

2!
u′′′(x0)(x− x0)

2 =
1

2!
u21(x)N

′′(u0) + u2(x)N
′(u0) =: A2(x), (1.17)

and integrating both sides of eq. (1.17) over [x0, x], we obtain

u3(x) =
u′′′(x0)

3!
(x− x0)

3 =

∫ x

x0

u′′′(x0)

2!
(s− x0)

2ds =

∫ x

x0

A2(s)ds.

Then,

u3(x) =

∫ x

x0

A2(s)ds.

By ontinuing of the same way this proess, one gets

u(n+1)(x0)

n!
(x− x0)

n =
1

n!

dn

dxn
N(u(x))

∣
∣
∣
∣
x=x0

(x− x0)
n = An(x). (1.18)

Integrate both sides of eq. (1.18) over [x0, x], we have

un(x) =

∫ x

x0

An−1(s)ds.

Therefore,

u0 = u(x0),

un(x) =

∫ x

x0

An−1(s)ds, n = 1, 2, 3, . . .

where Ai(x), i = 1, 2, 3, . . . veri�es

Ak(x) =
1

k!

dk

dxk
N(u(x))

∣
∣
∣
∣
x=x0

(x− x0)
k−1. k = 1, 2, . . .



Chapter 2

ADM for Ordinary Di�erential

Equations

2.1 Analysis of ADM

The disussion of deomposition tehnique for solving nonlinear di�erential

equation will be disuss in this setion.

Consider equation

Fu(t) = g(t), (2.1)

where F represents a general nonlinear ordinary or partial di�erential operator

inluding both linear and non linear terms. The linear terms are deomposed into

L+R, where L is easily invertible (usually the highest order derivative) and R is

the remained term of the linear operator. Thus, the equation an be written as

Lu+Nu+Ru = g, (2.2)

where Nu presents the nonlinear term. By solving this equation for Lu, sine L is

14
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invertible, we an write

L−1Lu = L−1g − L−1Ru− L−1Nu, (2.3)

u = h+ L−1g − L−1Ru− L−1Nu, (2.4)

where h is the solution of the homogeneous equation Lu = 0, with the presribed

initial or boundary onditions in some suitable way. The problem now is the

deomposition of the nonlinear term Nu. To do so, Adomain develop a tehnique

in whih he parametrized λ in a suitable way using

u =
n∑

i=0

λiui, (2.5)

then Nu will be a funtion of λ, u0, u1, . . . . Suppose the nonlinearity term is of the

form Nu = f(u) whih is analyti in λ, expanding Nu with respet to λ to obtain

f(u(λ)) =
n∑

i=0

λiAi, (2.6)

then An are polynomials de�ned suh that eah Ai depends only on u0, ..., un,

An = An(u0, ..., un) and they an be alulated from the following expression

An =
1

n!

(

dn

dλn
N

(
∞∑

k=0

λkuk

))

=
1

n!

dn

dλu
f(u(λ))

∣
∣
∣
∣
λ

, (2.7)

using that

d

dλ
=
du

dλ

d

du
, f = f(u), u = u(λ),

then eah

du

dλ
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is evaluated at λ = 0 and dividing by n!. Hene,

d

dλ
f(u) =

df

du

du

dλ
,

d2

dλ2
f(u) =

d2f

du2

(
du

dλ

)2

+
df

du

d2u

dλ2
,

d3

dλ3
f(u) =

d3f

du3

(
du

dλ

)3

+ 3
d2f

du2
du

dλ

d2u

dλ2
+
df

du

d3u

dλ3
,

for the nth
derivatives

djf

dλj
=

j
∑

i=0

c(i, j)
dif

dui
,

where

c(i, j) =
d

dλ
(c(i, j − 1)) +

du

dλ
(c(i− 1, j − 1)),

suh that c(0, 0) = 1, c(0, 1) = 0, and noting that c(i, j) = 0, i > j, and c(0, j) = 0,

j > 0.

If i = j = 2, then c(2, 2) = (du
dλ
)2 = u21.

c(2, 3) = 3du
dλ

d2u
dλ2 = 3u1u2 Now, by (2.5)

u = u0 + λu1 + λ2u2 + · · · ,

the following are useful relations

(
dn

dλn
u(λ)

)

λ=0

= n!u,

and

(
dn

dun
f(u(λ))

)

λ=0

=
duf

dun
,
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hene, by eq. (2.7)

A0 = f(u0),

A1 =

(
d

dλ
f(u)

)

λ=0

=

(
df

du

du

dλ

)

λ=0

= u1f
′(u0),

A2 =
1

2

(
d2

dλ2
f(u)

)

λ=0

=

(

d2f

du2

(
du

dλ

)2

+
df

du

d2

dλ2

)

λ=0

= u2f
′(u0) +

u21
2
f ′′(u0),

A3 = u3f
′(u0) + u1u2f

′′(u0) +
u31
3!
f ′′′(u0).

In general, a onvenient omputational form for A′

ns polynomials is

An =
1

n!

(
n∑

v=1

c(v, n)
dvf

duv

) ∣
∣
∣
∣
λ=0

.

Parameterize eq. (2.4) in the form

u = h+ L−1g − λL−1Ru− λL−1Nu, (2.8)

where λ is just an identi�er for olletion the terms in a suitable way suh that un

depends on u0, u1, ..., un−1

∞∑

n=0

λnun = h+ L−1g − λL−1R

∞∑

n=0

λnAn − λL−1
∞∑

n=0

λnun. (2.9)

Equating the oe�ients of equal powers of λ, we obtain

u0 = h + L−1g,

un = −L−1Run−1 − L−1An−1.

Hene, un is alulable for n ≥ 1, as well u =
∑

∞

n=0 un. But when we tried to solve

the equation in analytial form, the proess is longer. However, all the terms of

(2.9) an be determined and the solution is approximated by the trunated series

u =
∑N

n=0 un, see [3℄.
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2.2 Examples

Example 2.1. As a simple example, onsider the nonlinear, initial value problem

dy

dx
= y2, (2.10)

with the initial ondition y(0) = 1.

This di�erential equation has the exat solution of

y(x) =
1

1− x
,

following the method desribed above, we de�ne a linear operator

L =
d

dx
,

the inverse operator is then

L−1 =

∫ x

0

(.)dx,

rewriting the di�erential equation (2.10) in operator form, we have

Ly = Ny,

where N is a nonlinear operator suh that

Ny = y2,

next we apply the inverse operator for L to the equation. On the left hand side of

the equation, this gives

L−1Ly = y(x)− y(0),

using the initial ondition, this beomes

L−1Ly = y(x)− 1,
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returning this to equation (2.5), we now have

y(x)− 1 = L−1(Ny),

or

y(x) = 1 + L−1(Ny).

Next, we need to generate the Adomian polynomials, An. Let y be expanded as an

in�nite series

y(t) =

∞∑

n=0

yn(t),

and de�ne

Ny =

∞∑

n=0

An.

To �nd An, we introdue the salar λ suh that,

∞∑

n=0

yn(t) = 1 + L−1(

∞∑

n=0

An), (2.11)

y(λ) =
∞∑

n=0

λnyn,

From the de�nition of the Adomian polynomials,

An =
1

n!

dn

dλn
(Ny(λ)) |λ=0,



20 Chapter 2. ADM for Ordinary Di�erential Equations

we �nd the Adomian polynomials.

A0 = y20,

A1 = 2y0y1,

A2 = 2y0y2 + y2,

A3 = 2y0y3 + 2y1y2,

A4 = 2y0y4 + 2y1y3 + y22,

.

.

.

Returning the Adomian polynomials to equation (2.11), we an determine the

reursive relationship that will be used to generate the solution

y0(x) = 1,

yn+1(x) = L−1(An),

solving this yields

y0 = 1,

y1 = x,

y2 = x2,

y3 = x3,

y4 = x4,

.

.

.

we an see that the series solution generated by this method is

y(x) = 1 + x+ x2 + x3 + x4 + ... =

∞∑

n=0

xn,
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whih we reognize as the Taylor series for the exat solution

y(x) =
1

1− x

Example 2.2. If we onsider the anharmoni osillator desribed by

d2θ

dt2
+ k2 sin(θ) = 0 (2.12)

with k2 = g\l and large amplitude motion and assuming θ(0) = γ and θ′(0) = 0.

we write

Lθ +Nθ = 0.

We obtain

θ = θ(0)− L−1Nθ = θ(0)− L−1

∞∑

n=0

An,

where

Nθ = k2 sin θ,

sine for

Nθ = sin θ,

we have

A0 = sin θ0,

A1 = θ1 cos θ0,

A2 = −θ
2
1

2
sin θ0 + θ2 cos θ0,

A3 = −θ
3
1

6
cos θ0 − θ1θ2 sin θ0 + θ3 cos θ0,

.

.

.
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we get

θ0 = γ,

θ1 = −L−1k2A0,

θ2 = −L−1k2A1,

.

.

.

Sine L−1
represents a twofold de�nite integration from 0 to t,

θ1 = −
(
k2t2

2!

)

sin γ,

θ2 =

(
k4t4

4!

)

sin γ cos γ,

θ3 = −
(
k6t6

6!

)
(
sin γ cos2 γ − 3 sin3 γ

)
,

.

.

.

For more example see [11℄.

2.3 A omparison between ADM and Taylor series

method

In this setion, we will ompare the performane of the ADM and the Taylor series

method applied to the solution of linear ordinary di�erential equation.

Example 2.3. For omparison purposes, onsider the linear initial value problem

exu′′ + xu = 0, (2.13)

subjet to the initial onditions

u(0) = α, u′(0) = β. (2.14)
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We will use two di�erent methods to solve this example.

ADM method:-

Eq. (2.14) an be written in an operator form as

Lxxu = −xe−xu, (2.15)

where Lxx(.) =
d2

dx2 (.). Then the inverse of Lxx is, L−1
xx (.) =

∫ x

0

∫ x

0
(.)dxdx. Applying

L−1
xx to both sides of (2.15) we �nd that

u(x) = α + βx− L−1
xx (xe

−xu). (2.16)

The deomposition method onsists of deomposing u(x) into a sum of

omponents given by the in�nite series

u(x) =
∞∑

n=0

un. (2.17)

Substituting (2.17) into (2.16) yields

∞∑

n=0

un(x) = α + βx− L−1
xx

(

xe−x

∞∑

n=0

un

)

. (2.18)

Next, we equate seleted omponents on both sides using the following reursive

relationship:

u0 = α + βx,

uk+1 = −L−1
xx (xe

−x
∞∑

n=0

uk(x)), (k ≥ 0).

Aordingly, we �nd

u0 = α + βx
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u1 = −L−1
xx (xe

−xu0) = −L−1
xx (α

∞∑

n=0

(−1)n

n!
xn+1 + β

∞∑

n=0

(−1)n

n!
xn+2)

= α

∞∑

n=0

(−1)n

(n + 3)(n+ 2)n!
xn+3 − β

∞∑

n=0

(−1)n

(n+ 4)(n+ 3)n!
xn+4

= α(
1

6
x3 − 1

12
x4 +

1

40
x5 + . . .) + β(

1

12
x4 − 1

20
x5 + . . .).

So,

u(x) = α(1− 1

6
x3 +

1

12
x4 − 1

40
x5 + . . .) + β(1− 1

12
x4 +

1

20
x5 + . . .). (2.19)

As an be veri�ed by the above omputation, two omponents only were used to

obtain the approximation. Furthermore, the auray level of the approximation

an be inreased by evaluating further omponents.

The Taylor series method:-

The Taylor series method introdues the solution by an in�nite series given by

u(x) =
∞∑

n=0

anx
n. (2.20)

Substituting eq. (2.20) into eq. (2.13) gives

ex

(
∞∑

n=2

n(n− 1)anx
n−2

)

= −
∞∑

n=0

anx
n+1,

or, equivalently

(
∞∑

n=0

xn

n!

)(
∞∑

n=0

n(n− 1)anx
n−2

)

= −
∞∑

n=0

anx
n+1. (2.21)

The oe�ients an, n ≥ 0, are determined by equating oe�ients of like powers of

x through determining a formal reurrene relation. It is obvious that an expliit

reurrene relation is di�ult to derive. Alternatively, we multiply the series

involved, term by term, to �nd a0 = α, a1 = β, a2 = 0, a3 = −1
6
α,
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a4 =
1
12
α− 1

12
β and a5 = − 1

40
α+ 1

20
β. In view of eq. (2.21), the series solution eq.

(2.20) follows immediately. At this point, it should be noted that using the Taylor

series method, six iterations were evaluated to obtain the same result provided by

the deomposition method where two omponents only were omputed.

The two series methods were applied separately to linear and nonlinear ordinary

di�erential equations. The study showed that the deomposition method is simple

and easy to use and produes reliable results with few iterations used. The method

also minimizes the omputational di�ulties of the Taylor series in that the

omponents are determined elegantly by using simple integrals [5℄.

2.4 Convetion between two parallel walls

In many physial appliations two parallel walls are maintained at uniform

temperatures. The transport phenomenon ourring as a result of a onvetive

�ow between the vertial walls is given by the following di�erential equation:

d4u

dx4
− Rau = ǫ

(
du

dx

)2

, ǫ << 1 (2.22)

where u represent the veloity of the partiles' between the parallel walls and Ra is

Rayleigh number, assoiated with the boundary onditions

u(0) = u(1) = 0, u′′(0) = u′′(1) = 1. (2.23)

Method of solution

We �rst write (2.22) in the form

Lu = ǫ

(
du

dx

)2

, (2.24)
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where L denotes the linear operator

L =
d4

dx4
− Ra, (2.25)

we hoose the linear operator to be (2.25) rather than

d4

dx4

as it is usually done in this method, sine we are interested in osillatory solutions

and these are generated by (2.25) more easily.

The operator L is invertible and its inverse is given by

L−1[.] =

∫ 1

0

g(x, s)[.]ds, (2.26)

where g(x, s) is the Green's funtion whih satis�es the boundary value problem

Lg = δ(x− s), (2.27)

g(0, s) = g(1, s) = 0, g′′(0, s) = g′′(1, s) = 0. (2.28)

The homogeneous equation

d4u

dx4
− Rau = 0

has the four linearly independent solution sinh((Ra)1/4x), sin((Ra)1/4x),

cosh((Ra)1/4x) and cos((Ra)1/4x), therefor we take the value of g(x, s) to be

g(x, s) =

{

c1 cosh(bx) + c2 sinh(bx) + c3 sin(bx) + c4 cos(bx), x < s

a1 cosh(bx) + a2 sinh(bx) + a3 sin(bx) + a4 cos(bx), x > s
(2.29)

where

b = (Ra)1/4,
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applying the boundary onditions

g(0, s) = 0 gives c1 + c4 = 0,

g(1, s) = 0 gives a1 cosh(b) + a2 sinh(b) + a3 sin(b) + a4 cos(b) = 0,

g′′(0, s) = 0 gives c1 + c4 = 0,

g′′(1, s) = 0 gives a1 cosh(b) + a2 sinh(b) + a3 sin(b) + a4 cos(b) = 0,

whih gives c1 = c4 = 0, a3 = −a4 cos(b)
sin(b)

and a1 = −a2 sinh(b)
cosh(b)

thus,the relation (2.29)

beomes

g(x, s) =

{

c2 sinh(bx) + c3 sin(bx) , x < s

a2
cosh(b)

sinh(b(x− 1)) + a4
sin(b)

sin(b(1− x)) , x > s
(2.30)

The remaining onstants are determined by applying the mathing onditions at

x = s, ontinuity of g, ∂g
∂x

and

∂2g
∂2x

at x = s,

c2 sinh(bs) + c3 sin(bs) = a2
sinh(b(s− 1))

cosh(b)
+ a4

sin(b(1− s))

sin(b)
,

c2 cosh(bs) + c3 cos(bs) = a2
cosh(b(s− 1))

cosh(b)
− a4

cos(b(1− s))

sin(b)
,

c2 sinh(bs)− c3 sin(bs) = a2
sinh(b(s− 1))

cosh(b)
− a4

sin(b(1− s))

sin(b)
,

and the value of the jump in the third derivative g is

a2
cosh(b(s− 1))

cosh(b)
+ a4

cos(b(1− s))

sin(b)
− c2 cosh(bs) + c3 cos(bs) =

1

b3
,

solving these four equations gives

c2 =
sinh(b(s− 1))

2b3 sinh(b)
,

c3 =
sin(b(s− 1))

2b3 sin(b)
,
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a2 =
sinh(bs)cosh(b)

2b3 sinh(b)
,

a4 =
sin(bs)

2b3
,

hene,

g(x, s) =
1

2b3







sinh(b(s−1))
sinh(b)

sinh(bx) + sin(b(1−s))
sin(b)

sin(bx) , x < s
sinh(bs)
sinh(b)

sinh(b(x− 1)) + sin(bs)
sin(b)

sin(b(1− x)) , x > s
(2.31)

Clearly, g(x, s) is symmetri and not de�ned for Ra = (kπ)4, whih are known as

the ritial frequenies. In this setion, we treat only the ase Ra 6= (kπ)4 for

whih g(x, s) is de�ned and unique.To �nd the inverse, L−1
, of the operator L,

solving the homogenous di�erential equation of (2.22) with presribed boundary

onditions (2.23)

d4u

dx4
− Rau = 0

with u(0) = u(1) = 0, u′′(0) = u′′(1) = 1 gives,

uc(x) =
1
2b2

(
sinh(bx)−sinh(b(x−1))

sinh(b)
− sin(b(1−x))+sin(bx)

sin(b)

)

applying L−1
on both sides of (2.24) and using the solution of homogenous

equation with given boundary onditions gives

u(x) =
1

2b2

(
sinh(bx)− sinh(b(x− 1))

sinh(b)
− sin(b(1− x)) + sin(bx)

sin(b)

)

+ ε

∫ 1

0

g(x, s)

(
du

ds

)

ds, (2.32)

write u in the deomposition form

u =

∞∑

n=0

un (2.33)
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and expand the nonlinear term

(
du
dx

)2
as

(
du

dx

)2

=
∞∑

n=0

An, (2.34)

as follows

A0(x) =

(
du0
dx

)2

,

A1(x) = 2
du0
dx

du1
dx

,

A2(x) = 2
du0
dx

du2
dx

+

(
du1
dx

)2

,

A3(x) = 2
du0
dx

du3
dx

+ 2
du1
dx

du2
dx

,

A4(x) = 2
du0
dx

du4
dx

+ 2
du1
dx

du3
dx

+

(
du2
dx

)2

,

next, substituting (2.33), (2.34) into (2.32) we get:

u0(x) =
1

2b2

(
sinh(bx)− sinh(b(x− 1))

sinh(b)
− sin(b(1− x)) + sin(bx)

sin(b)

)

,

un(x) = ε

∫ 1

0

g(x, s)An−1(s)ds, n ≥ 1.

See [3℄



Chapter 3

ADM for Partial Di�erential

Equations

3.1 ADM for linear partial di�erential equations

For instane, in order to solve a linear PDE with two operators

Lxu+ Lyu = g,

three general algorithms an be used. The �rst of them inverses the operator Lx:

un = −L−1
x Lyun−1, ∀n ≥ 1,

the seond inverses Ly:

un = −L−1
y Lxun−1, ∀n ≥ 1,

and the third uses a double inversion:

un = −1

2
(L−1

x Ly + L−1
y Lx)un−1, ∀n ≥ 1,

we an implement these general algorithms with or without alulating integral

onstants. The algorithm hoie doesn't depend only on the onsidered equation

but also on the boundary or initial onditions. When someone is unfamiliar with

30
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this method, solutions of equations often alulated don't verify the onditions and

so they an make believe that the method is not e�ient. This is beause most of

the algorithms don't use all the onditions and so don't diretly impose them on

the solution. Of ourse, this problem doesn't exist when the equation is a

di�erential equation beause the integration onstants only have to be orretly

identi�ed. In the following we present the illustration of the implementation of

several sheme on a simple ase [7℄.

Consider the equation:

Lxu+ Lyyu = 2x+ y2,

where u is a funtion of the two variables x and y, Lx is the �rst order derivation

operator onerning the variable x and Lyy is the seond order derivation operator

assoiated to the variable y. Consider also the initial onditions:

u(x = 0) = 0, u(y = 0) = 0,
∂u

∂y
(y = 0) = 0.

One of the algorithms onsists in inverting the operator L1
x and to alulate the

integration onstant reated by this operation. So we an implement this sheme:

u0 = L−1
x (2x+ y2) + a0(y),

un+1 = L−1
x Lyyun + an+1(y), ∀n ≥ 0,

the �rst term of the series is

u0 = x2 + xy2 + a0(y),
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where a0(y) is a onstant funtion that is alulated with the �rst ondition. We

obtain:

u0 = x2 + xy2.

Then we have

u1 = −L−1
x (2x) = −x2 + al(y),

and the integration onstant is still null,

u1 = −x2,

the next term is

u2 = a2 = 0.

So the terms of the series are null after the seond rank:

un = 0, ∀n ≥ 2.

The �nal result is:

u =

∞∑

n=0

un = u0 + u1 = xy2,

whih is atually the solution of our equation. A similar method onsists in

inverting the other di�erential operator Lyy and to implement the following

sheme:

u0 = L−1
yy (2x+ y2) + a0(x)y + b0(x),

un+1 = L−1
yy Lxun + an+1(x)y + bn+1(x), ∀n ≥ 0.

The alulation is a bit longer beause a double integration has to be made at eah

step and beause the two integration onstants generated have to be identi�ed
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with the two last onditions. We suessively obtain:

u0 = xy2 +
y4

12
+ a0y + b0 = xy2 +

y4

12
,

u1 = −y
4

12
+ a1y + b1 = −y

4

12
,

u2 = a2y + b2 = 0,

un = 0, ∀n > 2,

and �nally the aurate solution is obtained:

u =
∞∑

n=0

un = u0 + u1 = xy2.

A third method onsists in simultaneously inverting the two derivation operators

without alulating any integration onstants:

u0 =
1

2
(L−1

x + L−1
yy )(2x+ y2),

un+1 = −1

2
(L−1

x Lyy + L−1
yy Lxun), ∀n ≥ 0.

Simple alulations lead to:

u0 =
x2

2
+ xy2 +

y4

24
,

u1 = −x
2

2
− 1

2
xy2 − y4

24
,

u2 =
x2

4
+

1

2
xy2 +

y4

48
,

u3 = −x
2

4
− 1

4
xy2 − y4

48
,

.

.

.
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and with an immediate reursion:

ϕ2p =

2p
∑

n=0

un =
x2

2p+1
+ xy2 +

y4

3× 2p+3
,

ϕ2p+1 =

2p+1
∑

n=0

un = (1− 1

2p+1
)xy2,

so we have:

limϕ2p = limϕ2p+1 = xy2,

giving the expeted result:

u =

∞∑

n=0

un = limϕn = xy2.

3.2 ADM for seond order linear partial

di�erential equations

Hyperboli Equation

Consider the hyperboli equation

Lttu = 9Lxxu, (3.1)

with the assoiated onditions

u(x = 0) = 0 = u(x = 1) = 0, u(t = 0) = sin(πx),
∂u

∂t
(t = 0) = 0.

The analytial solution of this equation is

u(x, t) = cos(3πt) sin(πx).

Here we are going to prove that this solution an be obtained with the

deomposition method. As a �rst term of the series, we an use the funtion u0

that veri�es the boundary onditions and the equation Ltt = 0. Then we an
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implement the reurrent and invert Ltt:

u0 = sin(πx),

un+1 = L−1
tt Lxxun, n ≥ 0,

so we alulate:

u0 = sin(πx),

u1 = −9

2
(πt)2 sin(πx),

u2 =
27

8
(πt)4 sin(πx),

u3 = −81

80
(πt)6 sin(πx),

.

.

.

un ≈ (−1)n(πt)2n
9n

(2n)!
sin(πx).

We an notie that we have the �rst terms of the development as an entire series of

a osinus funtion. As n inreases towards in�nity, we obtain the exat solution of

our hyperboli equation:

u =
∞∑

n=0

un ≈ cos(3πt) sin(πx).

Ellipti Equation

Now onsider the ellipti equation

Lxxu+ Lyyu = 0. (3.2)

Consider also the onditions:

u(y = 0) = u(y = 1) = u(x = 0) = 0, u(x = 1) = sin(πy).
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It an be solved by inverting the seond order derivation operator onerning the

variable x, if the integration onstants are alulated.

u0 = L−2
x (0) + a0(y)x+ b0(y),

un+1 = −L−2
x L2

yun + an+1(y)x+ bn+1(y), n ≥ 0.

So we alulate:

u0 = sin(πy)x,

u1 =

(
1

6
x3 − 1

6
x

)

π2 sin(πy),

u2 =

(
1

120
x5 − 1

36
x3 +

7

360
x

)

π4 sin(πy),

u3 =

(
1

5040
x7 − 1

720
x5 +

7

2160
x3 − 31

15120

)

π6 sin(πy),

.

.

.

In this ase, a simple expression of un, an't be found. This observation is the

result of the alulation of the integration onstants and partiularly of the term

that is proportional to x and whih has been reated by the ondition at x = 1.

Finally, we an't obtain a general expression of ϕn for all integers n nor

onsequently an aurate expression of u.

Paraboli Equation

We an try to solve, on the �eld that is de�ned by x ≥ 0, 0 ≤ y ≤ 1, the

hyperboli equation

Lxu = Lyyu (3.3)

assoiated to the boundary onditions

u(x = 0) = 0, u(y = 0) = 1− e(−x), u(y = 1) = sin(x)
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The deomposition method an be implemented by inverting the operator L2
y but

without alulating the integration onstants. We have to initialize the reurrent

with u0 that veri�es the onditions and the equation Lyyu0:

u0 = (1− y)(1− e−x) + y sin(x),

un+1 = L−1
yy Lxun, ∀n > 0.

The alulation is easy and leads to:

u0 = −e−x(1− y) + y sin(x) + 1− y,

u1 = e−x

(
y2

2
− y3

6

)

+
y3

6
cos(x),

u2 = −e−x(
y4

24
− y5

120
)− y5

120
sin(x),

u3 = e−x

(
y6

720
− y7

5040

)

− y7

5040
cos(x),

.

.

.

u2n = −e−x

(
y4n

(4n)!
− y4n+1

(4n+ 1)!

)

− y4n+1

(4n+ 1)!
sin(x),

u2n+1 = e−x

(
y4n+2

(4n+ 2)!
− y4n+3

(4n+ 3)!

)

− y4n+3

(4n+ 3)!
cos(x).

We an't �nd an analytial expression of the sum of this series but we an assert

that there are two funtions f and g of the variable y so that this sum an be

written

u(t, y) = e−x(sin(y)− cos(y)) + sin(x)f(y) + cos(x)g(y),

where f and g verify f ′′ = −g and g′′ = f , see [7℄
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3.3 A di�usion of oxygen in absorbing tissue

The suessful treatment of aner by radiotherapy is ditated primarily by the

ability to apply a radiation dosage large enough to do substantial damage to the

anerous ells without damaging surrounding healthy ells, and still remain

within the tissue tolerane level of radiation. The suseptibility of anerous ells

to radiation has been shown to inrease with inreasing oxygen onentrations

within the tumor. Many experiments have shown that the dependene of tissue

radiosensitivity, for baterial ells, indiates a 2-3-fold inrease in the radiation

dosage would be required to obtain the degree of destrution for ells in the total

absene of oxygen in omparison with oxygenated ells. This e�et of oxygen

allows the use of smaller radiation doses to ahieve the desired perentage of

destrution of anerous ells. It should be noted that the solution of the di�usion

of oxygen in absorbing tissues here is not limited to anerous tumors, but may be

used in the di�usion of oxygen in absorbing tissues in general [4℄.

The solution of the oxygen di�usion problem in a medium, whih simultaneously

absorbs the oxygen, onsists of �nding u and s suh that

∂u

∂t
=
∂2u

∂x2
− 1, (3.4)

subjet to

∂u

∂x
(t, 0) = 0,

u(t, s(t)) = 0, (3.5)

∂u

∂x
(t, s(t)) = 0, (3.6)

and the initial ondition

u(0, x) =
1

2
(1− x)2, 0 < x < s(0) = 1. (3.7)
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Method of solution

Consider the general problem:

∂u

∂t
=
∂2u

∂x2
− g(x), 0 < x < s(t), (3.8)

whih is the governing equation, subjet to the boundary ondition

∂u

∂x
(t, 0) = h(t),

the Dirihlet boundary ondition

u(t, s(t)) = p(t),

the Neumann boundary ondition

∂u

∂x
(t, s(t)) = q(t),

and the initial ondition

u(0, x) = ϕ(x), 0 < x < s(0).

Our problem ontains, as a speial ase, the above system whih desribes the

oxygen di�usion problem. Based on the ADM, we write (3.4) in Adomians

operator-theoreti notation as

Lxxu =
∂u

∂t
+ g(x), (3.9)

where

Lxx =
∂2

∂x2
. (3.10)
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Applying the inverse linear operator

∫ s(t)

x

∫ s(t)

x

(.)dxdx

to (3.10) and taking into aount that

u(t, s(t)) = p(t)

and

(∂u/∂x)(t, s) = q(t),

we obtain

u(t, x) = p(t)− q(t)(s− x) +

∫ s(t)

x

∫ s(t)

x

g(x)dxdx+

∫ s(t)

x

∫ s(t)

x

∂u

∂t
dxdx.

De�ne the solution u(t, x) by an in�nite series of omponents in the form

u(t, x) =

∞∑

n=0

un(t, x).

Consequently, the omponents un an be elegantly determined by setting the

reursion sheme:

u0 = p(t)− q(t)(s− x) +

∫ s(t)

x

∫ s(t)

x

g(x)dxdx,

un+1(t, x) =

∫ s(t)

x

∫ s(t)

x

∂un
∂t

dxdx, n ≥ 0,
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for the omplete determination of these omponents. Replae p(t) = q(t) = 0 and

g(x) = 1 into the reursion sheme to get

u0 =
1

2!
(s− x)2,

u1 =
s
′

3!
(s− x)3,

u2 =
s
′2

4!
(s− x)4 +

s
′′

5!
(s− x)5,

.

.

.

A polynomial pro�le of �fth degree is now obtained by the ADM, whih is the

trunated deomposition series

u(t, x) = u0(t, x) + u1(t, x) + u2(t, x),

so that

u(t, x) =
1

2!
(s− x)2 +

s
′

3!
(s− x)3 +

s
′2

4!
(s− x)4 +

s
′′

5!
(s− x)5, (3.11)

and whih automatially satis�es the boundary onditions (3.5) and (3.6). We an

now obtain an expression for the loation of the moving boundary, s(t). This is

derived from integrating (3.8) with respet to x from 0 to x and taking into

aount that (∂u
∂x
)(t, 0) = h(t); we obtain

∂u

∂x
= h(t) +

∫ x

0

g(x)dx+

∫ x

0

∂u

∂t
dx. (3.12)

Substitute x = s into (3.12) and using the fat that (∂u/∂x)(t, s) = q(t). Thus

∫ s(t)

0

g(x)dx+

∫ s(t)

0

∂u

∂t
dx = q(t)− h(t), (3.13)

s(0) = 1.
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Using the following Leibniz's rule for di�erentiation under the integral sign:

d

dt

∫ s(t)

0

u(t, x)dx =

∫ s(t)

0

∂u

∂t
dx+ u(t, s(t))

ds

dt
,

and taking into aount that u(t, s(t)) = p(t), we obtain

∫ s(t)

0

∂u

∂t
dx =

d

dt

∫ s(t)

0

u(t, x)dx− p(t)
ds

dt
. (3.14)

substituting (3.14) into (3.13), we get

∫ s(t)

0

g(x)dx+
d

dt

∫ s(t)

0

u(t, x)dx− p(t)
ds

dt
= q(t)− h(t),

where s(0) = 1. If we onsider p(t) = q(t) = h(t) = 0 and g(x) = 1, then (1.8)

beomes

d

dt

∫ s(t)

0

u(t, x)dx = −s, (3.15)

substitute the pro�le equation (3.11) into (3.15) gives an ODE to solve for s(t),

namely,

s2s′

2!
+
s3s

′2

3!
+
s4s′′

4!
+
s4s

′3

4!
+
s5s′s′′

5!
+
s6s′′′

6!
= −s,

with s(0) = 1. So that

ss′

2!
+
s2s

′2

3!
+
s3s′′

4!
+
s3s

′3

4!
+ 3

s4s′s′′

5!
+
s5s′′′

6!
+ 1 = 0, (3.16)

we now an determine the loation of the moving boundary s(t) as a funtion of

time by solving the nonlinear equation. Indeed, the solution s(t) follows

immediately by setting the following form:

√
1 + 2λt, (3.17)
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where λ ∈ R is a parameter to be determined. Simple omputations lead to

ss′ = λ,

s′′s3 = −λ2,

s′′′s5 = 3λ3,

s′′s′s4 = −λ3.

Substituting these expressions into (3.16), we obtain λ3 + 6λ2 + 24λ+ 48 = 0.

Consequently, we �nd λ ≈ −3.19 whih is a real root of this equation. Hene, the

onentration and the loation of the moving boundary for 0 ≤ t ≤ 1/6.4 an be

represented fairly aurately by the approximate expression equation (3.11) and

√
1− 6.4t, respetively.

It should be noted that this solution is appliable for the time 0 ≤ t ≤ 1/6.4 only.

An important note an be made here that the t-solution an be obtained by using

the initial ondition equation (3.7) only. To do this, we apply the inverse linear

operator L−1
t (.) =

∫ t

0
(.)dt to both sides of (3.8) and use the initial ondition

equation (3.7) to obtain

u(t, x) = ϕ(x)− g(x)t+

∫ t

0

∂2u

∂x2
dt,

where

ϕ(x) = (1/2)(1− x)2 and g(x) = 1.

So that the deomposition method onsists of deomposing the unknown funtion

u(x, t) into a sum of omponents de�ned by the series u(t, x) =
∑

∞

n=0 un(t, x).

Thus the omponents an be elegantly determined in a reursive manner as will be
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disussed later; we therefore set the reurrene sheme:

u0 = (1/2)(1− x)2 − t,

un+1 =

∫ t

0

∂2un
∂x2

dt, n ≥ 0.

3.4 ADM for nonlinear wave equation

In this setion, we will again make use of the ADM in order to obtain analyti

nonhomogeneous solutions of the nonlinear partial di�erential equation

uxx − uutt = ϕ(x, t), (3.18)

with initial onditions

u(0, t) = f(t), ux(0, t) = g(t). (3.19)

To apply the deomposition method, we write equation (3.18) in an operator form

Lxx(u(x, t)) = ϕ(x, t) +Nu, (3.20)

with nonlinear term Nu = uutt and Lxx = ∂2

∂x2 are the di�erential operators. It is

lear that L−1
xx is the two fold integration from 0 to x, Applying the inverse

operator to (3.20) yields

L−1
xxLxx(u(x, t)) = L−1

xx (ϕ(x, t)) + L−1
xx (Nu),

from whih it follows that

u(x, t) = f(t) + xg(t) + L−1
xx (ϕ(x, t)) + L−1

xx (Nu). (3.21)
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The deomposition method onsists of deomposing the unknown funtion u(x, t)

into a sum of omponents de�ned by the deomposition series

u(x, t) =
∞∑

n=0

un(x, t), (3.22)

and the nonlinear term Nu = uutt an be expressed in the An Adomian's

polynomials, thus;

Nu =

∞∑

n=0

An,

where

A0 = u0
∂2

∂t2
u0,

A1 = u0
∂2

∂t2
u1 + u1

∂2

∂t2
u0,

A2 = u0
∂2

∂t2
u2 + u1

∂2

∂t2
u1 + u2

∂2

∂t2
u0,

.

.

.

whih leads to the reursive relationship

u0 = f(t) + xg(t) + L−1
x φ(x, t),

u1 = L−1
xx (A0),

u2 = L−1
xx (A1), (3.23)

.

.

.

un+1 = L−1
x (An), n ≥ 0.

Example 3.1. Let us onsider a nonhomogeneous nonlinear wave equation. The

equation of the form

uxx − uutt = 2− 2(t2 + x2), (3.24)

the initial onditions posed are

u(x, 0) = x2, (3.25)

u(0, t) = t2, (3.26)
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ux(0, t) = 0. (3.27)

Using (3.23) to determine the individual terms of the deomposition, we �nd

u0 = x2 + t2 − x2t2 − 1

6
x4, (3.28)

and

u1 = L−1
x (A0) = x2t2 +

1

6
x4 − 1

3
x4t2 − 7

90
x6 +

2

15
x6t2 +

1

16
x8,

u2 = L−1
x (A1) =

1

3
x4t2 +

7

90
x6 − 2

15
x6t2 − 1

16
x8 − · · · ,

and so on for other omponents. It an be easily observed that the self aneling

noise terms appear between various omponents. Caneling the third term in u0

and the �rst term in u1 , the fourth term in u0 and the �rst term in u1 , in keeping

the non aneled terms in u0 yields the exat solution of (3.24) given by

u(x, t) = x2 + t2. (3.29)

This an be veri�ed through substitution, see [12℄

3.5 One dimensional nonlinear Burgers' equation

The study of Burgers' equation is important sine it arises in the approximate

theory of �ow through a shok wave propagating in a visous �uid and in the

modeling of turbulene [10℄. The exat solutions of Burgers' equation have been

surveyed by Benton and Platzman [20℄. In many ases these solutions involve

in�nite series whih may onverge very slowly or for small values of the visosity

oe�ients.

Consider the one-dimensional nonlinear Burgers' equation for a given �eld u(x, t)

and di�usion oe�ient (or visosity, as in the original �uid mehanial ontext) v,
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see [6℄.

ut + ε uux − vuxx = 0, a ≤ x ≤ b, (3.30)

with initial onditions:

u(x, 0) = f(x) (3.31)

u(a, t) = β1, u(b, t) = β2 ∀ t > 0, (3.32)

In this setion, the use of tanh funtion method is demonstrated to get an

analytial solution of eq. (3.30) whih is not of series form. Seondly, an

approximate solution is obtained by applying ADM using the initial ondition

u(x, 0) = f(x) only. Then, a test example is given to demonstrate the auray of

the method and to illustrate its pertinent feature, another approah for using ADM

with the boundary onditions is proposed to get a numerial solution of eq. (3.30).

Analytial solution using the tanh funtion method for

Burgers' equation

we �nd partiular solutions for Burgers' eq. (3.30) using the reent tanh funtion

method. For this, onsider the transformations:

u(x, t) = f(ξ), (3.33)

where ξ = c(x− λt), where  and λ are arbitrary (real) onstants. Based on this

we use the following hange of variables

∂

∂t
(.) = −cλ d

dξ
(.),

∂

∂x
(.) = c

d

dξ
(.),

∂2

∂x2
(.) = c2

d2

dξ2
. (3.34)
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Applying the hange of variable to Burgers' eq.(3.30), the following ordinary

di�erential equation is obtained.

−cλdf (ξ)
dξ

+ εcf (ξ)
df (ξ)

dξ
− c2v

d2f (ξ)

dξ2
= 0, (3.35)

Integrating eq. (3.35), we get

−cλf (ξ) + εc

2
f 2 (ξ)− c2v

df (ξ)

dξ
= B, (3.36)

where B is the onstant of integration. Now we introdue a new independent

variable:

y = tanh (ξ) ,

that leads to the hange of derivative

d

dξ
(.) = (1− y2)

d

dy
(.). (3.37)

We introdue the following tanh series

f (ξ) = s (y) =
m∑

i=0

aty
t, (3.38)

where m is a positive integer. From eqns. (3.37) and (3.38) we get

−cλs + cε

2
s2 − c2v

(
1− y2

) ds

dy
= 0. (3.39)

To determine the parameter m we balane the linear term of highest order in eq.

(3.39) with the highest order nonlinear term. This in turn gives m=1, so we get

s (y) = a0 + a1y. (3.40)
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Substituting s(y), and s′(y), from eq. (3.40) into eq. (3.39) yields the system of

algebrai equations for a0 ,a1, , and λ :

y0 : −c2va1 + 0.5cεa20 − cλa0 = 0,

y1 : a0a1cε− a1cλ = 0,

y2 : 0.5cεa2 + c2va1 = 0,

(3.41)

with the aid of Mathematia we �nd two solutions:

a0 =
−2cv

ε
, a1 =

−2cv

ε
, λ = −2cv,

a0 =
2cv

ε
, a1 =

−2cv

ε
, λ = 2cv.

So we obtain the solutions

u(x, t) =
2cv

ε
(−1− tanh [c (x+ 2cvt)]) ,

u(x, t) =
2cv

ε
(1− tanh [c (x− 2cvt)]) ,

(3.42)

The ADM for Burgers' equation using the initial ondition

Let L
(

L(.) = ∂(.)
∂t

)

is a linear operator. Then the approximate solution of the

nonlinear Burgers' equation (3.30) is rewritten in the operator form with the initial

ondition u(x, 0) = u0 = f(x), an be determined by Adomian's polynomials with

the iterative proess:

u0 (x, t) = f (x) ,

un+1 (x, t) = L−1 (g (t)− R (un)− An) , n ≥ 0. (3.43)

Applying the inverse operator L−1
on both sides of eq. (3.30) we get:

u (x, t) = f (x)− L−1 (uux − vuxx) . (3.44)
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Now, we get

∞∑

n=0

un (x, t) = f (x)− L−1

(
∞∑

n=0

An − v

(
∞∑

n=0

un

) ∣
∣
∣
∣
xx

)

(3.45)

Identifying the zeroth omponent u0(x, t) as f(x), the remaining omponents

un(x, t), n > 1 an be determined by using the reurrene relation (3.45). That is,

u0 (x, t) = f (x) ,

un+1 (x, t) = L−1 (An − v (un)xx) , n ≥ 0. (3.46)

where An are adomian's polynomials that represent the nonlinear term (uux). One

an see that the �rst few terms of An are given by:

A0 = u0xu0,

A1 = u0xu1 + u1xu0,

A2 = u0xu2 + u1xu1 + u2xu0,

A3 = u0xu3 + u1xu2 + u2xu1 + u3xu0.

The rest of polynomials an be generated in a similar way. The sheme in (3.46)

an easily determine the omponents un(x, t), n > 0 and the �rst few omponents

of un(x, t) take the following form

u0 (x, t) = f (x) ,

u1 (x, t) = L−1 (A0 − v (u0)xx) ,

u2 (x, t) = L−1 (A1 − v (u1)xx) , (3.47)

u3 (x, t) = L−1 (A2 − v (u2)xx) ,

u4 (x, t) = L−1 (A3 − v (u3)xx) .
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Calulating more omponents in the solution series an enhane the numerial

solution obtained by deomposition series. Consequently, one an reursively

determine eah individual term of the series

∑
∞

n=0 un(x, t), and hene the solution

u(x, t) is readily obtained in a series form. For numerial purposes to test the

auray of the proposed method, based on ADM, we onsider two test ases for

the Burgers' equation. The obtained numerial approximate solution for eah ase,

uappr.(x, t), is ompared with the exat solution where

uappr.(x, t) = u0(x, t) + u1(x, t) + u2(x, t)

+u3(x, t) + u4(x, t) + ...
(3.48)

Test Case :

Consider the following analyti solution of Burgers' eq. (3.30):

u(x, t) =
1

2

[

1− tanh

{
1

4v

(

x− 15− 1

2
t

)}]

, t ≥ 0,

and the initial ondition

u(x, 0) =
1

2

[

1− tanh

{
1

4v
(x− 15)

}]

, t ≥ 0,

where x ∈ [0, 28]

This test problem has known initial onditions and applying ADM one needs initial

onditions only the Aording to this example and the sheme in (3.47), we get:

u1 =
0.0625t

v

[

1− tanh2

{
1

4v
(x− 15)

}]

,

u2 =
0.0078125t2

v2
sec h2

{
1

4v
(x− 15)

}

tanh

{
1

4v
(x− 15)

}

,

u3 = − t3

3072v3
sec h2

{
1

4v
(x− 15)

}[

1− 3 tanh2
{

1

4v
(x− 15)

}]

.

We obtain a numerial approximate solution for Burgers' equation. The obtained
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numerial results are summarized in Tables 1-4. From these results, we onlude

that the proposed method, to alulate the approximate numerial solution of the

Burgers' equation, gives remarkable auray in omparison with the exat

solution for some values of time t.
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x U Approximate U Exat Absolute error

4 0.99998986 0.99998987 4.00932 ∗ 10−9

8 0.99944700 0.99944722 2.13127 ∗ 10−7

12 0.97068831 0.97068776 5.45743 ∗ 10−7

16 0.37754702 0.37754066 6.35561 ∗ 10−6

20 0.01098545 0.01098694 1.48505 ∗ 10−6

24 0.00020339 0.00020342 3.48687 ∗ 10−8

28 3.726 ∗ 10−6 3.7266 ∗ 10−6 6.4136 ∗ 10−10

Table 3.1: Absolute errors at t = 1 and v = 0.5.

x U Approximate U Exat Absolute error

4 0.99999543 0.99999627 8.39849 ∗ 10−7

8 0.99975179 0.99979657 4.47788 ∗ 10−5

12 0.98891035 0.98901305 1.02707 ∗ 10−4

16 0.62015142 0.62245933 2.30791 ∗ 10−3

20 0.02890743 0.02931223 4.04797 ∗ 10−4

24 0.00054256 0.00055277 1.02176 ∗ 10−5

28 9.9418 ∗ 10−6 1.013 ∗ 10−5 1.88157 ∗ 10−7

Table 3.2: Absolute errors at t = 3 and v = 0.5.

x U Approximate U Exat Absolute error

4 0.99999942 0.99999942 7.6743 ∗ 10−10

8 0.99991507 0.99991518 1.1337 ∗ 10−7

12 0.98756129 0.98756834 7.0518 ∗ 10−6

16 0.34871176 0.34864513 6.66311 ∗ 10−5

20 0.00359200 0.00359360 1.5927 ∗ 10−6

24 0.00002428 0.00002430 1.1512 ∗ 10−8

28 1.6366 ∗ 10−7 1.6373 ∗ 10−7 7.7609 ∗ 10−11

Table 3.3: Absolute errors at t = 1 and v = 0.4.
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The following �gures (3-1-3-3) show the behavior of the approximation solutions

for the �rst test ase.
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Figure 3-1: The numerial solution (v=0.5 from t=0 to t=1).
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Figure 3-2: The numerial solution (v=0.5 from t=0 to t=3).



3.5. One dimensional nonlinear Burgers' equation 55

0
0.2

0.4
0.6

0.8
1

0

10

20

30
0

0.2

0.4

0.6

0.8

1

Figure 3-3: The numerial solution (v=0.4 from t=0 to t=1).

The ADM for Burgers' equation (onsidering the boundary

onditions)

Let R = ∂2

∂x2 . Then eq. (3.30) an be expressed as

Ru =
1

v
[ut + uux], x ∈ [a, b]. (3.49)

Applying the inverse operator R−1
on both sides to eq. (3.49) yields

u(x, t) = µ+
1

v
[ut + uux], (3.50)

where R−1 =
∫ ∫

(.)dxdx and µ = C(t) + xB(t). Using eq.(3.50) beomes

∞∑

n=0

un(x, t) = µ+
1

v
R−1

[
∞∑

n=0

unt +
∞∑

n=0

An

]

,

where An =
∑n

m=0 un−mumx. Now we deompose µ into µ =
∑

∞

n=0 µn.

We have

∞∑

n=0

un(x, t) =
∞∑

n=0

µn +
1

v
R−1

[
∞∑

n=0

unt +
∞∑

n=0

An

]

,
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Identify u0 = µ0 = C0(t) + xB0(t), all other omponents are determined by

un+1 = µn+1 +
1

v
R−1 [unt + Am] ,

where µn+1 = Cn+1 + xBn+1, n ≥ 0. The integration onstants C's and B's are

determined by satisfying the boundary onditions with the approximate

solutionφn+1 =
∑n

k=0 uk, n ≥ 0; Thus,

φn+1(a, t) = u(a, t) = β1,

φn+1(b, t) = u(b, t) = β2.

Our �rst approximation is φ1 = u0, orφ1 = C0(t) + xB0(t). Sine

φ1(a, t) = u(a, t) = β1, φ1(b, t) = u(b, t) = β2.

Therefor,

C0 + aB0 = β1, (3.51)

C0 + bB0 = β2. (3.52)

Solving (3.51) and (3.52), we get

B0 =
β2 − β1
b− a

,

C0 =
bβ1 − aβ2
b− a

.

Hene,

u0 =
(x− a)bβ2 − (b− x)β1

b− a
.

To alulate u1, we have

u1 = C1 + xB1 +
1

v
R−1 [u0t + A0] .



3.5. One dimensional nonlinear Burgers' equation 57

A two term approximation is given by

φ2 = φ0 + u1 = u0 + u1.

Hene,

φ2 =
(x− a)bβ2 − (b− x)β1

b− a
+ C1 + xB1 +

1

v
R−1 [u0t + A0] . (3.53)

Sine φ2(a, t) = β1 and φ2(b, t) = β2, we have

ξa + C1 + aB1 = 0, (3.54)

ξb + C1 + bB1 = 0, (3.55)

where,

ξa =
1

v

[
R−1 (u0t + A0)

]
|x=a,

and

ξb =
1

v

[
R−1 (u0t + A0)

]
|x=b .

Eqns. (3.54) and (3.55) give

B1 =
ξa − ξb
b− a

, (3.56)

C1 =
aξa − bξb
b− a

. (3.57)

Using(3.56), (3.57) and (3.53), we get

u1 =
aξa − bξb
b− a

+ x
ξa − ξb
b− a

+
1

v

[
R−1 (u0t + A0)

]
,

we an ontinue in this manner to alulate u2, u3, . . .
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