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metical rings of the form RnM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3 Atomic rings and the ACCP via trivial ring extension . . . . . . . . . . . . . . . . . 43

4 Applications 50
4.1 Structure of Boolean-like rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.2 Clean and nil-clean rings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

v



Abstract

Let R be a commutative ring and M an R-module. The trivial ring extension of R by M is the ring

R nM with coordinate-wise addition and multiplication (r1,m1)(r2,m2) = (r1r2, r1m2 + r2m1).

This construction was introduced by Nagata in 1962 in order to facilitate interaction between rings

and their modules. The ring R nM is also called the idealization of M over R. The trivial ring

extension can be used to extend results about ideals to modules and to provide interesting examples

of commutative rings with zero divisors. The main discussed results deal with how properties of

R nM are related to those of R and M . For example, R nM is Noetherian if and only if R is

Noetherian and M is finitely generated, R nM is a Manis valuation ring if and only if R is a

valuation ring on RS and M = MS , and R nM is a Prüfer ring if and only if for each finitely

generated ideal I of R with I∩S 6= ∅, I is invertible, and M = MS , where S = R−(Z(R)∪ZR(M)).
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 يهخص انرسانة

 

 

يع اندًع انعادي     ، فاٌ انتًذٌذ انحهقً انثذٌهً هى  -هى يقٍاس  حهقه تثذٌهٍه و   نٍكٍ 

(     )(     )نلازواج انًرتثه وانضرب  ، وهذا انتركٍة (              ) 

  وانًقٍاس    يٍ اخم استخذاو انتفاعم تٍٍ انحهقه 1962فه أولاً َاخاتا فً سُه عر  اندثري انذي 

، ويٍ اخم تُاء    هى يثانٍه فً     فً َقم َتائح حىل انًثانٍات انى انًقاٌٍس حٍث أٌ 
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Introduction

Throughout, all rings considered in this thesis are commutative with unity. Let R be a ring

and M an R module. Then R nM = R ⊕M with coordinate-wise addition and multiplication

(r1,m1)(r2,m2) = (r1r2, r1m2 +r2m1) is a commutative ring with identity called the idealization of

M or the trivial ring extension of R by M . The name comes from the fact that if N is a submodule

of M , then 0nN is an ideal of RnM . This construction was first introduced, in 1962, by Nagata [21]

in order to facilitate interaction between rings and their modules and also to give either examples

or counterexamples of commutative rings with zero divisors. Some general references are Gilmer

[13] and Kaplansky [17]. An excellent introduction to idealization and commutative rings with zero

divisors can be found in Huckaba’s book [14], and also D.D. Anderson and M. Winders survey

paper [6].

This MS. thesis consists of four chapters. In chapter one we review some basic definitions and facts

from ring and module theory that will be needed in the next chapters. Chapter two consists of two

sections: section 2.1 is devoted to study the structure of the elements and the ideals of the trivial

ring extension, namely, we will discuss the maximal, prime, radical, and primary ideals of R nM

as well as the units, idempotents, zero divisors, and nilpotents. Section 2.2 is devoted to study

the interaction between the trivial ring extension and some constructions such as localization and

taking the integral closure. Some of these constructions commutes with the trivial ring extension,

for example, (RnM)[x] is naturally isomorphic to R[x]nM [x].

Chapter three consists of three sections: section 3.1 is about the transfer of the notions Noetherian

and Artinian rings in trivial ring extension. Also we will use the idealization to construct a new

examples of Noetherian (Artinian) rings or non-Noetherian (non-Artinian rings). In Section 3.2

we investigate the transfer the notion of Prüfer ring and some related concepts such as valuation,

chained, and arithmetical rings in trivial ring extension. Section 3.3 is devoted to study the atomic

rings and the ascending condition on principal ideals via trivial ring extension, and we use the
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idealization to give some examples of rings with zero divisors with certain factorization properties.

Chapter four consists of two sections. Section 4.1 determines the structure theory for Boolean-like

rings using idealization. Section 4.2 is devoted to study clean and nil-clean rings via trivial ring

extension, and we use trivial ring extension to give a class of non-Boolean clean (nil-clean) rings,

also we will study weakly clean (weakly nil-clean) rings via trivial ring extension.
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Chapter 1

Preliminaries

In this chapter we review some basic definitions and facts from ring and module theory that will

be needed in the next chapters.

Theorem 1.0.1 ([15]). (The correspondence Theorem). If I is an ideal in a ring R, then there is

a one-to-one correspondence between the set of all ideals J of R which contain I and the set of all

ideals of R/I, given by J 7→ J/I. Hence every ideal of R/I is of the form J/I, where J is an ideal

of R which contains I.

Definition 1.0.2 ([7]). (Prime and maximal ideals). Let I be an ideal in a ring R with I 6= R.

1. I is called a prime ideal if for all a, b ∈ R, ab ∈ I implies a ∈ I or b ∈ I.

2. I is called a maximal ideal if there is no ideal J with I ( J ( R.

Definition 1.0.3 ([7]). (Jacobson radical). The Jacobson radical of J(R) of a ring R is defined to

be the intersection of all the maximal ideals of R.

Definition 1.0.4 ([7]). Let R be a ring.

1. If I is any ideal of R, the radical of I is

√
I = {a ∈ R | an ∈ I for some n ∈ N}

If
√
I = I, then I is called a radical ideal.

2. The ideal
√

0 = {a ∈ R | an = 0 for some n ∈ N} is called the nilradical of R and its denoted

by nil(R).
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Definition 1.0.5 ([7]). (Primary ideals). An ideal I in a ring R is called a primary ideal of R if

I 6= R and if

ab ∈ I implies a ∈ I or b ∈
√
I.

Example 1.0.6 ([7]). The primary ideals of Z are {0} and pnZ, where p is prime and n ≥ 1.

Proposition 1.0.7 ([7]). Let I be a primary ideal in a ring R. Then
√
I is the smallest prime

ideal containing I.

Proof. See [7, Proposition 4.1].

Definition 1.0.8 ([7]). If I is a primary ideal of R and P =
√
I, then I is said to be P -primary.

Proposition 1.0.9 ([7]). The radical of an ideal I is the intersection of the prime ideals which

contain I.

Proof. See [7, Proposition 1.14].

Definition 1.0.10 ([7]). (Modules). Let R be a ring. An R-module is a set M together with two

operations

+ : M ×M →M and · : R×M →M

(an ”addition” in M and a ”scalar multiplication” with elements of R) such that for all m,n ∈M

and a, b ∈ R we have:

1. (M,+) is an Abelian group.

2. (a+ b) ·m = a ·m+ b ·m and a · (m+ n) = a ·m+ a · n.

3. (ab) ·m = a · (b ·m).

4. 1 ·m = m.

An R-module M is also called a module over R.

Example 1.0.11 ([7]). 1. If R is a ring and I is an ideal of R, then I, R, and R/I are modules

over R.

2. If F is a field, then an F -module is the same as an F -vector space.
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3. A Z-module is just the same as an Abelian group.

Definition 1.0.12 ([15]). (Submodules and quotients). Let R be a ring and M an R-module.

1. A submodule of M is a nonempty subset N ⊂ M satisfying m + n ∈ N and am ∈ N for all

m,n ∈ N and a ∈ R.

2. If N is a submodule of M , then the set

M/N = {x+N | x ∈M}

of equivalence class modulo N is again an R-module called the quotient module of M modulo

N .

Definition 1.0.13 ([15]). Let M be an R-module.

1. For any subset S ⊂M the set

RS = {a1m1 + · · ·+ anmn | n ∈ N, ai ∈ R,mi ∈ S} ⊂M

of all finite R-linear combinations of elements of S is the smallest submodule of M that

contains S. If S = {m1, ...,mn} is finite, we write RS = Rm1 + · · ·+Rmn.

2. The module M is called finitely generated if M = RS for a finite set S ⊂ M , and its called

cyclic if M = Rm for some m ∈M .

Definition 1.0.14 ([15]). (Primary submodules). Let R be a ring, M an R-module.

A proper submodule N of M is primary provided that

r ∈ R, m /∈ N and rm ∈ N implies rnM ⊆ N for some n ∈ N.

Theorem 1.0.15 ([15]). Let R be a ring and N a primary submodule of an R-module M . Then

(N : M) = {r ∈ R | rM ⊆ N} is a primary ideal in R.

Definition 1.0.16 ([15]). Let P be a prime ideal in a ring R and M an R-module. A primary

submodule N of M is said to be a P -primary submodule of M if P =
√

(N : M) = {r ∈ R | rnM ⊆

N for some n ∈ N}.

Proof. See [15, Theorem 3.2].
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Definition 1.0.17 ([7]). (R-module homomorphisms). Let M and N be R-modules.

1. An R-module homomorphism from M to N is a map ϕ : M → N such that

ϕ(m+ n) = ϕ(m) + ϕ(n) ϕ(am) = aϕ(m)

for all m,n ∈M and a ∈ R.

2. An R-module homomorphism ϕ : M → N of R-modules is called an isomorphism if it is

bijective. In this case, the map ϕ−1 : N →M is a homomorphism of R-modules. We call M

and N isomorphic (written M ∼= N) if there is an isomorphism between them.

Remark 1.0.18 ([7]). (Images and kernels of R-module homomorphisms). Let ϕ : M → N be a

homomorphism of R-modules.

1. The kernel of ϕ is the set

kerϕ = {x ∈M | ϕ(x) = 0}

and is a submodule of M .

2. The image of ϕ is the set

Im(ϕ) = ϕ(M)

and is a submodule of N .

Proposition 1.0.19 ([7]). (Isomorphism theorems).

1. For any homomorphism ϕ : M → N of R-modules, there is an isomorphism ψ : M/ kerϕ →

Im(ϕ) given by

ψ(m+ kerϕ) = ϕ(m).

2. For R-submodules N ′ ⊆ N ⊆M we have

M/N ′

N/N ′
∼=
M

N
.

3. For two submodules N,N ′ of an R-module M we have

(N +N ′)/N ′ ∼= N/(N ∩N ′).
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Definition 1.0.20 ([15]). Let I be an ideal in a ring R and let M be an R-module. We set

IM = 〈{am | a ∈ I,m ∈M}〉 = {a1m1 + · · ·+ anmn | n ∈ N, ai ∈ I,mi ∈M}.

Remark 1.0.21. If M is an R-module and I is an ideal of R, then IM is a submodule of M , and

M/IM is an R/I-module with scalar multiplication (r + I)(m+ IM) = rm+ IM .

Definition 1.0.22 ([7]). (localization of rings). Let R be a ring.

1. A subset S ⊂ R is called multiplicatively closed if 1 ∈ S, 0 /∈ S, and ab ∈ S for all a, b ∈ S.

2. Let S ⊂ R be a multiplicatively closed set. Then

(a, s) ∼ (b, t) if and only if there is an element u ∈ S such that u(at− bs) = 0

is an equivalence relation on R× S. We denote the equivalence class of a pair (a, s) ∈ R× S

by a
s . The set of all equivalence classes

RS = {a
s
| a ∈ R, s ∈ S}

is called the localization of R at the multiplicatively closed set S.

Lemma 1.0.23. Let R be a ring and S ⊂ R a multiplicatively closed set. The the localization RS

of R at S is a ring together with the addition and multiplication

a
s + b

t = at+sb
st and a

s
b
t = ab

st .

for all a, b ∈ R and s, t ∈ S.

Remark 1.0.24. Let S be a multiplicatively closed subset of a ring R. There is a ring homomor-

phism ϕ : R → RS , a 7→ a
1 . However, ϕ is only injective if S does not contain zero divisors, as by

definition a
1 = 0

1 implies the existence of an element u ∈ S with u(a · 1 + 0 · 1) = ua = 0.

Example 1.0.25. (Standard examples of localization). Let R be a ring.

1. Let S = R − Z(R), where Z(R) = {a ∈ R | ab = 0 for some 0 6= b ∈ R} is the set of all zero

divisors of R. The S is a multiplicatively closed. In this case the localization RS of R at S is

called the total quotient ring of R, denoted by T (R). Since S does not contain zero divisors,

the map ϕ : R → T (R), a 7→ a
1 is injective. Of particular importance is the case when R is
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an integral domain. Then S = R − {0}, and every nonzero element a
s is a unit in RS , with

inverse s
a . Hence RS is a field called the quotient field of R, denoted by Quot(R). So if R is

an integral domain, then T (R) = Quot(R).

2. Let P be a prime ideal of R. Then S = R − P is multiplicatively closed since 1 /∈ P , 0 ∈ P ,

and for a, b /∈ P , we have ab /∈ P . The localization RS of R is usually denoted by RP and

called the localization of R at the prime ideal P .

Remark 1.0.26. 1. If R is a ring, then every element in the total quotient ring T (R) of R is

either a zero divisor or a unit.

2. If every element in a ring R is either a zero divisor or a unit, then R is a total quotient ring.

Proof. 1. By the last example, T (R) = {ab | a ∈ R, b ∈ R − Z(R)}. If a
b ∈ T (R) is not a zero

divisor, then a is not a zero divisor of R, that is, a ∈ R− Z(R). So b
a ∈ T (R) and a

b ·
b
a = 1.

This means that a
b is a unit of T (R).

2. Let R be a ring. If every element in R is either a zero divisor or a unit, then R−Z(R) = U(R).

So R = T (R) is a total quotient ring.

Example 1.0.27. (Some localizations of Z). Consider the ring of integers Z. The localization of

Z at Z− {0} is the quotient field Quot(Z) = Q. If p ∈ Z is a prime number, then the localization

of Z at the prime ideal pZ is

ZpZ = {a
b
| a, b ∈ Z, p - b}

Proposition 1.0.28 ([15]). (Ideals in localizations). Let S be a multiplicatively closed subset of

a ring R. Then

1. The proper ideals of the ring RS are of the form IRS = IS = {as | a ∈ I, s ∈ S} with I is an

ideal of R and I ∩ S = ∅.

2. The prime ideals in RS are of the form PRS = PS where P is a prime ideal of R and P∩S = ∅.

Definition 1.0.29 ([7]). (Local rings) A ring R is called local if it has exactly one maximal ideal.

Example 1.0.30 ([7, Example 1, page 38]). Let p be a prime ideal in a ring R. Then RP is local

with maximal ideal m = PRP = {as | a ∈ P, s /∈ P}.
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Definition 1.0.31 ([7]). (Saturations). For a multiplicatively closed subset S of a ring R we call

S = {s ∈ R | as ∈ S for some a ∈ R}

the saturation of S.

Remark 1.0.32. Let S, T be two multiplicatively closed subsets of a ring R.

1. S ⊆ S.

2. If S ⊆ T , then S ⊆ T .

Proof. 1. If s ∈ S, then s · 1 ∈ S. So s ∈ S.

2. If x ∈ S, then xy ∈ S for some y ∈ R. So xy ∈ T for some y ∈ R. This means that x ∈ T .

Definition 1.0.33 ([7]). A multiplicatively closed subset S of a ring R is called saturated if S = S.

Example 1.0.34. Let P be a prime ideal of a ring R, then S = R − P is saturated. Indeed, if

s ∈ S, then sa ∈ S = R− P for some a ∈ R, so s /∈ P , and hence s ∈ R− P = S.

Remark 1.0.35 ([7]). Let S be a multiplicatively closed subset of R. Then S is saturated if and

only if S = R−
⋃

i∈I Pi where {Pi}i∈I is the set of prime ideals of R such that Pi ∩ S = ∅ for each

i ∈ I.

Proof. (⇒). Suppose that S is saturated. Let x /∈ S. Then Rx∩S = ∅. By Zorn’s Lemma, we can

find a prime ideal P with Rx ⊆ P such that P ∩ S = ∅. So x ∈
⋃

i∈I Pi where Pi is a prime ideal

of R with Pi ∩ S = ∅ for each i ∈ I. Hence R− S ⊆
⋃

i∈I Pi, or equivalently, R−
⋃

i∈I Pi ⊆ S. For

the other inclusion, let x ∈
⋃

i∈I Pi. Then x ∈ Pi for some prime ideal Pi of R with Pi ∩ S = ∅. So

x /∈ S, or x ∈ R− S. It follows that
⋃

i∈I Pi ⊆ R− S, or equivalently, S ⊆ R−
⋃

i∈I Pi.

(⇐). Let x ∈ S, then xy ∈ S for some y ∈ R. Since xy ∈ S, then xy /∈ Pi for each i. If x /∈ S, then

x ∈ Pi for some i, but then xy ∈ Pi for some i, a contradiction. So, we have x ∈ S, hence S = S

and S is saturated.

Definition 1.0.36 ([7]). (localization of modules). Let S be a multiplicatively closed subset of a

ring R, and let M be an R-module. Then

(m, s) ∼ (n, t) if and only if there is an element u ∈ S such that u(tm− sn) = 0

9



is an equivalence relation on M × S. We denote the equivalence class of a pair (m, s) ∈M × S

by m
s . The set of all equivalence classes

MS = {m
s
| m ∈M, s ∈ S}

is called the localization of M at S. It is an RS-module together with the addition and scalar

multiplication

m
s + n

t = tm+sn
st and a

s
m
t = am

st

for all a ∈ R, m,n ∈M , and s, t ∈ S.

In the case when S = R− P for a prime ideal P of R, we will write MS as MP .

Definition 1.0.37 ([18]). (Integrally closed). Let R be a subring of a ring T and let a ∈ T . If

there are elements b0, ..., bn−1 ∈ R such that b0 + b1a + · · · + bn−1a
n−1 + an = 0, we say that a is

integral over R. If the elements of R are the only elements of T which are integral over R, we say

that R is integrally closed in T . If R is integrally closed in its total quotient ring, we say simply

that R is integrally closed.

Proposition 1.0.38 ([18]). Let R be a subring of a ring T and let

R′ = {a ∈ T | a is integral over R}.

Then R′ is a subring of T and R ⊆ R′.

Proof. See [18, Proposition 4.3].

In the notations of this proposition, R′ is called the integral closure of R in T .

10



Chapter 2

Properties of trivial ring extension

Let R be a ring and M an R-module. The trivial ring extension of R by M is the ring R nM =

{(r,m) | r ∈ R and m ∈ M} where addition is given by (r,m) + (s, n) = (r + s,m + n) and

multiplication is given by (r,m)(s, n) = (rs, rn+ sm).

Remark 2.0.1 ([6]). Let R be a commutative ring with unity 1 and M an R-module.

1. RnM is a commutative ring with unity (1, 0).

2. R naturally embeds into RnM via r 7→ (r, 0).

3. If N is a submodule of M , then 0nN is an ideal of RnM .

4. 0nM is an ideal of RnM with (0nM)2 = 0.

5. M and 0nM are isomorphic as R-modules.

Proof. 1. Let (a,m), (b, n) ∈ RnM . Then

(a,m)(b, n) = (ab, an+ bm) = (ba, bm+ an) = (b, n)(a,m).

So RnM is commutative. (1, 0) is the unity of RnM because (r,m)(1, 0) = (r1, r0 + 1m) =

(r,m) for all (r,m) ∈ RnM .

2. Since for each a, b ∈ R, we have (a + b, 0) = (a, 0) + (b, 0), (ab, 0) = (a, 0)(b, 0), and (a, 0) =

(0, 0) ⇔ a = 0, then the map R→ RnM (r 7→ (r, 0)) is an injective ring homomorphism.

11



3. Assume that N is a submodule of M . If n1, n2 ∈ N , then n1 + n2 ∈ N . So (0, n1) + (0, n2) =

(0, n1 + n2) ∈ 0 n N . Next, if (r,m) ∈ R nM and (0, n) ∈ 0 n N , we have rn ∈ N . So

(r,m)(0, n) = (0, rn) ∈ 0nN . Hence 0nN is an ideal of R.

4. By (2), 0 nM is an ideal of R nM . Now, if m1,m2 ∈ M , then (0,m1)(0,m2) = (0, 0). So

(0nM)2 = 0.

5. Since by (2), the map R→ RnM (r 7→ (r, 0)) is a ring homomorphism and 0nM is an RnM -

module, then 0nM is an R-module with scalar multiplication r(0,m) = (r, 0)(0,m) = (0, rm).

Now define f : M → 0nM by f(m) = (0,m). Then clearly, f is bijection. Let m1,m2 ∈M .

Since (0,m1+m2) = (0,m1)+(0,m2), then f(m1+m2) = f(m1)+f(m2). Next, let r ∈ R and

m ∈M , then f(rm) = (0, rm) = (r, 0)(0,m) = rf(m). Thus, f is an R-module isomorphism.

2.1 Ideals and distinguished elements of RnM

This section is devoted to study the structure of the elements and the ideals of the trivial ring

extension. Namely, we will see the maximal, prime, radical, and primary ideals of RnM . Regarding

the elements, we will discuss the units, idempotents, zero divisors, and nilpotents of RnM .

The following result describes a special kind of ideals of R n M , those ideals that could be

constructed from an ideal of R and a submodule of M .

Theorem 2.1.1 ([6]). Let R be a ring, I an ideal of R, M an R-module and N a submodule of

M . Then:

1. I nN is an ideal of RnM if and only if IM ⊆ N .

2. If I nN is an ideal of RnM , then M
N is an R

I -module and RnM
InN

∼= R
I n

M
N .

Proof. (1) and (2). Suppose that I nN is an ideal of RnM . Then

I nN = (RnM)(I nN) = RI n (RN + IM) = I n (N + IM).

So N = N + IM and hence IM ⊆ N . Conversely, suppose that IM ⊆ N . We know that M
IM is an

R
I -module with scalar multiplication (r+ I)(m+ IM) = rm+ IM . So M

N
∼= M/IM

N/IM is an R
I -module

12



with scalar multiplication (r + I)(m+N) = rm+N . Next, define

ϕ : RnM → R

I
n
M

N

by ϕ((r,m)) = (r + I,m + N), then we know that ϕ is a surjective group homomorphism with

kerϕ = I nN . Now, let (r1,m1), (r2,m2) ∈ RnM . Then

ϕ((r1,m1)(r2,m2)) = ϕ(r1r2, r1m2 + r2m1)

= (r1r2 + I, r1m2 + r2m1 +N)

= ((r1 + I)(r2 + I), (r1 + I)(m2 +N) + (r2 + I)(m1 +N))

= (r1 + I,m1 +N)(r2 + I,m2 +N)

= ϕ((r1,m1))ϕ((r2,m2)).

So ϕ is a ring homomorphism. Hence I nN = kerϕ is an ideal of RnM . The First Isomorphism

Theorem gives that
RnM
I nN

∼=
R

I
n
M

N
.

The following is an illustrative example for Theorem 2.1.1

Example 2.1.2. Let R = Z, M = Z/12Z, and N = 6Z/12Z. If I = 6Z, then IM = (6Z)(Z/12Z) =

6Z/12Z = N and so by Theorem 2.1.1, I n N is an ideal of R n M . But if I = 4Z, then

IM = (4Z)(Z/12Z) = 4Z/12Z * 6Z/12Z = N (as 4Z * 6Z ). Hence by Theorem 2.1.1, I n N is

not an ideal of RnM .

Remark 2.1.3. Theorem 2.1.1 does not describe all the ideals of RnM in general. In the following

example we provide a ring R, an R-module M , and an ideal of R nM which is not in the form

I nN .

Example 2.1.4 ([6]). Let R = Z4, M = Z2, and J = (RnM)(2̄, 1̄) = {(0̄, 0̄), (2̄, 1̄)}. Then J is an

ideal of RnM such that J does not have the form I nN . For if J = (RnM)(2̄, 1̄) = I nN , then

2̄ ∈ I and 1̄ ∈ N . But since I nN has two elements, then either I = 0 or N = 0, a contradiction.

The following is a straightforward corollary of Theorem 2.1.1. It takes its importance from the

fact that 0nM ∼= M as R-modules.
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Corollary 2.1.5 ([6]). Let R be a ring, I an ideal of R, and M an R-module. Then

1. RnM
InM

∼= R
I .

2. RnM
0nM

∼= R.

3. The ideals of RnM containing 0nM are of the form J nM for some ideal J of R.

Proof. 1. This follows by Theorem 2.1.1 (2) with N = M .

2. This follows by Theorem 2.1.1 (2) with I = 0 and N = M .

3. This follows by part (2) and the Correspondence Theorem.

For a ring R, let Spec(R) denote the set of all prime ideals of R and Max(R) denote the set of

all maximal ideals of R.

The next result characterizes the prime, maximal, and radical ideals of RnM .

Theorem 2.1.6 ([14]). Let R be a ring and M an R-module. Then

1. The prime ideals of R nM have the form P nM where P is a prime ideal of R. That is,

Spec(RnM) = {P nM | P ∈ Spec(R)}.

2. The maximal ideals of RnM have the form mnM where m is a maximal ideal of R. That

is, Max(RnM) = {mnM | m ∈Max(R)}.

3. The radical ideals of RnM have the form I nM where I is a radical ideal of R.

Proof. 1. Let A be a prime ideal of R nM . Then, (0 nM)2 = 0 ⊆ A implies 0 nM ⊆ A. So

by Corollary 2.1.5 (2), A = J nM for some ideal J of R. Since RnM
JnM

∼= R
J , then we have

A = J nM is a prime ideal of RnM if and only if J is a prime ideal of R.

2. The proof of this part is similar to the proof of part (1) using the fact that every maximal is

prime.

3. Let A be a radical ideal of RnM . Then

A =
√
A = ∩{Q | Q ∈ Spec(RnM), A ⊆ Q}.
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By part (1), 0 nM ⊆ A and hence by Corollary 2.1.5 (2), A = J nM for some ideal J of

R. Since RnM
JnM

∼= R
J , then we have A = J nM is a radical ideal of R nM if and only if J is

a radical ideal of R.

All the following facts are consequences of Theorem 2.1.6.

Corollary 2.1.7 ([6]). Let R be a ring and M an R-module. Then

1. RnM is local if and only if R is local.

2. The Jacobson radical of RnM is J(RnM) = J(R)nM .

3. If J is an ideal of RnM , then
√
J =
√
I nM where I = {r ∈ R | (r, b) ∈ J for some b ∈M}

is an ideal of R. In particular, If I is an ideal of R and N is a submodule of M , then
√
I nN =

√
I nM .

Proof. 1. By Theorem 2.1.6 (2), the map Max(R)→Max(RnM) (m 7→ mnM) is bijection.

So, RnM is local if and only if |Max(RnM)| = 1 if and only if |Max(R)| = 1 if and only

if R is local.

2. By Theorem 2.1.6 (2), Max(RnM) = {mnM | m ∈Max(R)}. So

J(RnM) =
⋂

m∈Max(R)

(mnM) = (
⋂

m∈Max(R)

m)nM = J(R)nM.

3. Suppose that J is an ideal of RnM . Then
√
J is a radical ideal of RnM . So by Theorem 2.1.6

(3),
√
J = KnM for some radical ideal K of R. Let I = {r ∈ R | (r, b) ∈ J for some b ∈M}.

Consider the surjective ring homomorphism ϕ : RnM → R, ϕ((r,m)) = r. Then by definition

of I, I = ϕ(J). Since J is an ideal of R nM , I is an ideal of R. We claim that K =
√
I.

Now, let x ∈ K, then (x, 0) ∈ K nM =
√
J , so (xn, 0) = (x, 0)n ∈ J for some n ∈ N, hence

xn ∈ I for some n ∈ N and this means x ∈
√
I. Conversely, let x ∈

√
I, then xn ∈ I for

some n ∈ N, so (xn, b) ∈ J for some b ∈ M . Since J ⊆
√
J , then (xn, b) ∈

√
J = K nM . So

xn ∈ K and hence x ∈
√
K, but since K is radical,

√
K = K. So x ∈ K. Thus, x ∈ K if and

only if x ∈
√
I, this means K =

√
I. Therefore,

√
J =
√
I nM .

In particular, if J = I n N where I is an ideal of R and N is a submodule of M . Then by
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the first paragraph of this part, we have

√
J =

√
ϕ(J)nM =

√
ϕ(I nN)nM =

√
I nM.

Recall that the Krull dimension of a ring R, denoted by dimR is the supremum length n of a

chain P0 ( P1 ( · · · ( Pn of prime ideals of R, and if there is no upper bound on the length of

such a chain, then dimR =∞. Hence by Theorem 2.1.6 (1), dimRnM = dimR.

The following result characterizes the primary ideals of RnM .

Theorem 2.1.8 ([14]). Let R be a ring, I an ideal of R, M an R-module, and N a submodule of

M . Then I nN is primary if and only if either

1. N = M and I is a primary ideal of R or

2. N  M , IM ⊆ N , and I and N are P -primary where P =
√
I.

In either case, I nN is
√
I nM -primary.

Proof. If N = M , then since RnM
InM

∼= R
I , we have I nM is primary if and only if I is primary.

So assume that N  M . For I n N to be an ideal of R nM , we must have IM ⊆ N . Now we

prove that I nN is a primary ideal of RnM if and only if I is a P -primary ideal of R and N is a

P -primary submodule of M where P =
√
I. First, suppose that InN is a primary ideal of RnM .

Let a, b ∈ R and assume that ab ∈ I. Then (a, 0)(b, 0) = (ab, 0) ∈ I nN . So either (a, 0) ∈ I nN

or (b, 0) ∈
√
I nN =

√
I nM . Hence a ∈ I or b ∈

√
I = P . So I is a P -primary ideal of R.

Next, let r ∈ R and m ∈ M and assume that rm ∈ N . Then (r, 0)(0,m) = (0, rm) ∈ I n N . So

either (0,m) ∈ I n N or (r, 0) ∈
√
I nN =

√
I nM . Hence m ∈ N or r ∈

√
I. Since IM ⊆ N ,

I ⊆ (N : M), so r ∈
√
I ⊆

√
(N : M). Hence N is a primary submodule of M . We claim that

√
I =

√
(N : M). First, take m ∈ M − N . Now, let r ∈

√
(N : M), so rnM ⊆ N , but then

rnm ∈ N . So rn ∈
√
I and hence r ∈

√
I. It follows that N is a P -primary submodule of M .

Conversely, suppose that I is a P -primary ideal of R and N is a P -primary submodule of M where

P =
√
I. Let (a,m), (b, n) ∈ R nM and assume that (a,m)(b, n) ∈ I n N . Then ab ∈ I and

an + bm ∈ N . Now since I is a P -primary ideal of R, then either a ∈ I or b ∈
√
I. Case 1: If

a ∈ I. Then an ∈ IM ⊆ N . So bm = (an+ bm)− an ∈ N . Since N is a P -primary submodule of
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M , then either m ∈ N or b ∈ P =
√
I. So (a,m) ∈ I n N or (b, n) ∈

√
I nM =

√
I nN . Case

2: If b ∈
√
I. Then (b, n) ∈

√
I nM =

√
I nN . Hence in either case, I nN is a primary ideal of

RnM . The last statement follows since
√
I nN =

√
I nM .

The following is an illustrative example for Theorem 2.1.8.

Example 2.1.9. Let p be a prime number. Then for all n ∈ N, pnZ is a pZ-primary ideal of Z

and (pZ)[x] is a pZ-primary submodule of Z[x]. So by Theorem 2.1.8, pnZ n (pZ)[x] is a primary

ideal of Z n Z[x] for all n ∈ N.

Let R be a ring and M an R-module. Notice that for a ∈ R and m ∈ M , we have always that

(R nM)(a,m) ⊆ Ra n (Rm + aM), but the reverse inclusion is not always true. For example, if

R = Z4 and M = Z2, then R2̄n (R1̄ + 2̄M) = R2̄nR1̄ = R2̄nM 6= (RnM)(2̄, 1̄) (see Example

2.1.4). In the next theorem we provide some equivalent conditions that makes the reverse inclusion

true.

Theorem 2.1.10 ([6]). Let R be a ring, M an R-module, and (RnM)(a,m) a principal ideal of

RnM . Then the following conditions are equivalent:

1. (RnM)(a,m) = Ran (Rm+ aM).

2. (a, 0) ∈ (RnM)(a,m).

3. There is x ∈ R such that xa = a and xm ∈ aM .

Proof. (1) ⇒ (2). Assume that (R nM)(a,m) = Ra n (Rm + aM). Then since (a, 0) ∈ Ra n

(Rm+ aM), we have (a, 0) ∈ (RnM)(a,m).

(2) ⇒ (3). Assume that (a, 0) ∈ (R nM)(a,m). Then (a, 0) = (x, n)(a,m) for some (x, n) ∈

RnM . Now (a, 0) = (x, n)(a,m) if and only if a = xa and 0 = xm+ an if and only if xa = a and

xm = a(−n) ∈ aM . Hence, there is x ∈ R such that xa = a and xm ∈ aM .

(3) ⇒ (1). Suppose that there is x ∈ R such that xa = a and xm ∈ aM . So xm = am′ for some

m′ ∈M . Let r, s ∈ R and n ∈M . Then
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(ra, sm+ an) = (rxa, sm+ xan)

= (rxa, xan) + (0, sm)

= (r, n)(xa, 0) + (s, 0)(0,m)

= (r, n)(xa, xm− am′) + (s, 0)[(a,m)− (a, 0)]

= (r, n)(x,−m′)(a,m) + (s, 0)(a,m)− (s, 0)(x,−m′)(a,m)

∈ (RnM)(a,m).

Hence Ra n (Rm + aM) ⊆ (R nM)(a,m). Since the other inclusion is always true, we have

(RnM)(a,m) = Ran (Rm+ aM).

The following are illustrative examples for Theorem 2.1.10.

Example 2.1.11. 1. Let R = ZnZ. Consider (2, 2) ∈ R. Then (2, 0) = (1,−1)(2, 2) ∈ R(2, 2).

So by Theorem 2.1.10, R(2, 2) = 2Z n (2Z+ 2Z) = 2Z n 2Z.

2. Let R = Z n 2Z. Consider (2, 2) ∈ R. Then (2, 0) /∈ R(2, 2). For if (2, 0) ∈ R(2, 2), then

(2, 0) = (a, 2b)(2, 2) = (2a, 2a + 4b) for some a, b ∈ Z. But then a = 1 and b = −1/2 and so

b /∈ Z, a contradiction (since b ∈ Z). Hence by Theorem 2.1.10, R(2, 2) 6= 2Z n (2Z+ 4Z) =

2Z n 2Z.

Recall that a module M over a ring R is called divisible if rM = M for all r ∈ R−Z(R), where

Z(R) is the set of all zero divisors of R.

Corollary 2.1.12. Let R be an integral domain and M an R-module. Then (R nM)(a,m) =

Ran (Rm+ aM) for all a ∈ R and m ∈M if and only if M is divisible.

Proof. (⇒). Let 0 6= a ∈ R and m ∈M . Then by hypothesis, (RnM)(a,m) = Ran (Rm+ aM).

So by Theorem 2.1.10, there is an element x ∈ R such that xa = a and xm ∈ aM . But since R is

an integral domain and a 6= 0, then x = 1. So m = 1m = xm ∈ aM . Hence M = aM . Therefore,

M is divisible.

(⇐). Let a ∈ R and m ∈M . If a = 0, then (a, 0) = (0, 0) ∈ (RnM)(a,m). So by Theorem 2.1.10,

(R nM)(a,m) = Ra n (Rm + aM). If a 6= 0, then M is divisible gives that M = aM . So 1 ∈ R

satisfies 1a = a and 1m ∈ aM . Hence by Theorem 2.1.8, (RnM)(a,m) = Ran (Rm+ aM).
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Definition 2.1.13. Let R be a ring, and let I, J be two ideals of R. We say that I and J are

comparable if either I ⊆ J or J ⊆ I.

The following theorem determines all the ideals of RnM when R is an integral domain and M

is a divisible R-module.

Theorem 2.1.14 ([6]). Let R be an integral domain and M an R-module. Then the following

conditions are equivalent:

1. Every ideal of RnM is comparable to 0nM .

2. Every ideal of R nM has the form I nM or 0 nN for some ideal I of R or submodule N

of M .

3. M is divisible.

Proof. (1) ⇒ (2). Let J be an ideal of RnM , then either J ⊇ 0nM or J ⊆ 0nM . If J ⊇ 0nM ,

then by Corollary 2.1.4 (2), J = I nM for some ideal I of R. If J ⊆ 0nM , then the pre-image of

J , say N , under the R-module homomorphism M → 0 nM (m 7→ (0,m)), is a submodule of M

such that J = 0nN .

(2)⇒ (3). Let 0 6= a ∈ R. Then (RnM)(a, 0) is an ideal ofRnM such that (RnM)(a, 0) 6= 0nN

for any submodule N of M (since a 6= 0). By (2), (R nM)(a, 0) = I nM for some ideal I of R.

But (RnM)(a, 0) = Ran (R0 +aM) = RanaM ( by Theorem 2.1.10). Hence M = aM and thus

M is divisible.

(3) ⇒ (1). Assume that M is divisible and let J be an ideal of R nM . We show that either

J ⊇ 0 n M or J ⊆ 0 n M . Suppose that J * 0 n M , then there exists (a, b) ∈ J such that

(a, b) /∈ 0nM . So a 6= 0 in R. Let m ∈M . Since M is divisible, then m = am′ for some m′ ∈M .

So (0,m) = (a, b)(0,m′) ∈ J . Thus J ⊇ 0nM .

The following are illustrative examples for Theorem 2.1.14.

Example 2.1.15. 1. R[x] is a divisible Z-module since if f(x) ∈ R[x], then f(x) = aa−1f(x) ∈

aR[x] for all 0 6= a ∈ Z. So by Theorem 2.1.14, the ideals of Z n R[x] are {nZ n R[x] | n ∈

Z} ∪ {0nN | N is a submodule of R[x]}.

2. Z[x] is not a divisible Z-module since 2Z[x] 6= Z[x]. So Z n Z[x] contains an ideal J such

that J 6= I n Z[x] and J 6= 0 n N for any ideal I of Z and submodule N of Z[x]. In fact,
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J = (ZnZ[x])(2, 0) = 2Zn2Z[x] is an ideal of ZnZ[x] such that J 6= InZ[x] and J 6= 0nN

for any ideal I of Z and submodule N of Z[x] (since 2 6= 0 and 2Z[x] 6= Z[x]).

For an R-module M , let ZR(M) = {r ∈ R | rm = 0 for some 0 6= m ∈ M} denote the set of all

zero divisors of M with respect to R.

Let A be RnM -module. Since the map R→ RnM (r 7→ (r, 0)) is a ring homomorphism, then

A is an R-module with scalar multiplication ra = (r, 0)a.

The following theorem determines the relation between ZR(A) and ZRnM (A) where A is an

RnM -module.

Theorem 2.1.16 ([6]). Let R be a ring, M an R-module, and A an RnM -module. Then

ZRnM (A) = ZR(A)nM.

Proof. Let A be an R n M -module. Then A is an R-module with ra = (r, 0)a. Let (r,m) ∈

ZRnM (A). Since ZRnM (A) is a union of prime ideals of R nM , (r,m) ∈ P nM ⊆ ZRnM (A)

for some prime ideal P of R. So (r, 0) = (r,m) − (0,m) ∈ P n M ⊆ ZRnM (A). Hence there

exists 0 6= a ∈ A such that (r, 0)a = 0. But then ra = (r, 0)a = 0. So r ∈ ZR(A). Thus,

(r,m) ∈ ZR(A) n M . Conversely, let (r,m) ∈ ZR(A) n M , then r ∈ ZR(A). So there exists

0 6= a ∈ A such that 0 = ra = (r, 0)a. This implies (r, 0) ∈ ZRnM (A). Hence, as before,

(r,m) ∈ ZRnM (A). Therefore, ZRnM (A) = ZR(A)nM.

The following corollary determines the zero divisors and the regular elements (non-zero divisors)

of RnM .

Corollary 2.1.17 ([14]). Let R be a ring and M an R-module. Then

1. Z(RnM) = (Z(R) ∪ ZR(M))nM .

2. S nM where S = R− (Z(R) ∪ ZR(M)) is the set of regular elements of RnM .

Proof. 1. From Theorem 2.1.16 with A = RnM , we have

Z(RnM) = ZRnM (RnM) = ZR(RnM)nM = ZR(R⊕M)nM = (Z(R)∪ZR(M))nM.

2. The set of regular elements of RnM is RnM − Z(RnM). Now

RnM − Z(RnM) = RnM − [(Z(R) ∪ ZR(M))nM ] = [R− (Z(R) ∪ ZR(M))]nM.
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So the set of regular elements of RnM is S nM where S = R− (Z(R) ∪ ZR(M)).

The following are illustrative examples for Corollary 2.1.17.

Example 2.1.18. 1. Let R = Z nQ/Z. By Corollary 2.1.17, the set of zero-divisors of R is

Z(R) = (Z(Z) ∪ ZZ(Q/Z))nQ/Z = ({0} ∪ (Z− {1,−1}))nQ/Z = (Z− {1,−1})nQ/Z.

2. Let R be a ring and P a prime ideal of R. Let A = R n R/P . If x ∈ ZR(R/P ), then

x(y + P ) = P for some P 6= y + P ∈ R/P . But then xy + P = P for some y /∈ P , so xy ∈ P

for some y /∈ P . Thus, x ∈ P . Conversely, if x ∈ P , then x(1 +P ) = x+P = P . This implies

that x ∈ ZR(R/P ). It follows that ZR(R/P ) = P . By Corollary 2.1.17 (1),

Z(A) = (Z(R) ∪ ZR(R/P ))nR/P = (Z(R) ∪ P )nR/P.

For a ring R, let nil(R) denote the set of all nilpotents of R, U(R) denote the set of all units of

R, and Id(R) denote the set of all idempotents of R. .

The following theorem determines the nilpotents, units, and idempotents of RnM .

Theorem 2.1.19 ([14]). Let R be a ring and M an R-module. Then

1. nil(RnM) = nil(R)nM .

2. U(RnM) = U(R)nM .

3. Id(RnM) = Id(R)n 0.

Proof. 1. By Corollary 2.1.7 (3),
√

0n 0 =
√

0nM . So

nil(RnM) =
√

0n 0 =
√

0nM = nil(R)nM.

2. Let (u,m) ∈ U(R nM), then there exists (v, n) ∈ R nM such that (u,m)(v, n) = (1, 0). So

uv = 1. This means that u ∈ U(R). Hence (u,m) ∈ U(R) nM . Conversely, let (u,m) ∈

U(R)nM , then u ∈ U(R). So there exists u−1 ∈ R such that uu−1 = 1. But then the element

(u−1,−u−2m) belongs to RnM , and (u,m)(u−1,−u−2m) = (uu−1,−u−1m+u−1m) = (1, 0).

Hence (u,m) ∈ U(RnM).
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3. Let (e,m) ∈ Id(R nM). Then (e,m) is an idempotent. This means that (e,m)2 = (e,m).

So (e,m) = (e,m)2 = (e2, 2em), which implies e2 = e and m = 2em. So e is an idempotent

of R, or e ∈ Id(R). Now, since m = 2em, then em = 2e2m, so em = 2em, hence em = 0, but

then m = 2em = 0. Thus, (e,m) = (e, 0) ∈ Id(R) n 0. Conversely, let e ∈ Id(R), then e is

an idempotent of R. So e2 = e. Hence, (e, 0)2 = (e2, 0) = (e, 0). This shows that (e, 0) is an

idempotent of R. That is, (e, 0) ∈ Id(RnM).

Recall that a ring R is called reduced (respectively Boolean) if nil(R) = 0 (respectively Id(R) =

R).

Corollary 2.1.20. Let R be a ring and M an R-module.

1. RnM is an integral domain if and only if R is an integral domain and M = 0.

2. RnM is a reduced ring if and only if R is a reduced ring and M = 0.

3. RnM is a field if and only if R is a field and M = 0.

4. RnM is a Boolean ring if and only if R is a Boolean ring and M = 0.

Recall that an ideal I of a ring R is called regular if it contains a regular element (non-zero

divisor) of R.

Theorem 2.1.21 ([6]). Let R be a ring, M an R-module, and S = R − (Z(R) ∪ ZR(M)). Then

the following conditions are equivalent:

1. Every regular ideal of RnM has the form I nM where I is an ideal of R with I ∩ S 6= ∅.

2. sM = M for all s ∈ S or equivalently, M = MS.

Proof. (1) ⇒ (2). Let s ∈ S. Then (R n M)(s, 0) is a regular ideal of R n M . So by (1),

(RnM)(s, 0) = InM where I is an ideal of R with I∩S 6= ∅. By Theorem 2.1.10, (RnM)(s, 0) =

Rsn sM . Hence sM = M .

(2)⇒ (1). Let J be a regular ideal of RnM . Then J∩(SnM) 6= ∅. So (s,m) ∈ J for some s ∈ S

and m ∈ M . Since sM = M , then m ∈ sM . So if we take x = 1 ∈ R, then xs = s and xm ∈ sM .

Hence by Theorem 2.1.10, (R nM)(s,m) = Rs n (Rm + sM) = Rs n (Rm + M) = Rs nM . So

0nM ⊆ (R nM)(s,m) ⊆ J . Thus, J = I nM for some ideal I of R. Since (s,m) ∈ J = I nM ,

we have s ∈ I and this means I ∩ S 6= ∅.
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The following example determines the regular ideals of the ring Z n R[x].

Example 2.1.22. Let R = Z and M = R[x]. Then S = R− (Z(R)∪ZR(M)) = R−{0} = Z−{0}.

Since M is a divisible R-module, then sM = M for all s ∈ S. So by Theorem 2.1.21, every regular

ideal of R nM has the form I nM where I is an ideal of R with I ∩ S 6= ∅. Hence, the regular

ideals of Z n R[x] are Z n R[x] where 0 6= n ∈ Z.
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2.2 Some ring constructions of RnM

In this section we determine the saturated multiplicatively closed subsets of RnM , the localizations

of RnM , the integral closure of RnM in T (RnM), and the ring of polynomials of one variable

over RnM .

The following theorem determines the saturated multiplicatively closed subsets of RnM .

Theorem 2.2.1 ([6]). Let R be a ring and M an R-module.

1. There is a one-to-one correspondence between the saturated multiplicatively closed subsets of

R and those of RnM given by S ↔ S nM .

2. If S is a multiplicatively closed subset of R and N is a submodule of M , then S n N is a

multiplicatively closed subset of RnM with saturation S nN = S nM.

Proof. 1. Let A be a saturated multiplicatively closed subset of RnM . Then

A = RnM −
⋃
i∈I

(Pi nM) = (R−
⋃
i∈I

Pi)nM

where {Pi nM}i∈I is the set of prime ideals of R nM such that (Pi nM) ∩ A = ∅ for each

i ∈ I. Let S = R −
⋃

i∈I Pi. Then Pi ∩ S = ∅ for each i ∈ I. So S is saturated . Thus,

A = S nM where S is saturated. Conversely, let S be a saturated multiplicatively closed

subset of R, then S nM is a multiplicatively closed subset of R nM and S = R −
⋃

i∈I Pi

where {Pi}i∈I is the set of prime ideals of R such that Pi ∩ S = ∅ for each i ∈ I. But then

S nM = (R−
⋃
i∈I

Pi)nM = RnM −
⋃
i∈I

(Pi nM)

and (Pi nM) ∩ (S nM) = (Pi ∩ S)nM = ∅ for each i ∈ I. So S nM is saturated.

2. Let S be a multiplicatively closed subset of R, and let N be a submodule of M . Then 0 /∈ S,

1 ∈ S, and S is closed under multiplication. But then (0, 0) /∈ S n N , (1, 0) ∈ S n N , and

for (a,m), (b, n) ∈ S n N , we have (a,m)(b, n) = (ab, an + bm) ∈ S n N . So S n N is a

multiplicatively closed subset of R nM . Next, S nN is a saturated multiplicatively closed

subset of RnM , so by (1), S nN = T nM for some saturated multiplicatively closed subset

T of R. Since T is saturated, T = T . Now S n N ⊆ S nN = T nM . So S ⊆ T and

this implies S ⊆ T = T . Hence S n M ⊆ T n M = S nN . Since S n M is saturated
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multiplicatively closed subset of RnM , then S nM = SnM . So S nN ⊆ S nM = SnM .

Thus S nN = S nM.

The following theorem determines the localizations of RnM .

Theorem 2.2.2 ([14]). Let R be a ring and M an R-module.

1. Let S be a multiplicatively closed subset of R and N a submodule of M . Then (R nM)SnN

is naturally isomorphic to RS nMS. In the case where N = 0, the isomorphism is simply

(r,m)/(s, 0) 7→ (r/s,m/s).

2. Let P be a prime ideal of R. Then (RnM)PnM ∼= RP nMP .

3. The total quotient ring T (R n M) of R n M is naturally isomorphic to RS n MS where

S = R− (Z(R) ∪ ZR(M)).

Proof. 1. Let S be a multiplicatively closed subset of R and N a submodule of M . Then SnN

is a multiplicatively closed subset of RnM . For N , either N = 0 or N 6= 0.

Case 1: N = 0. Define f : (R nM)Sn0 → RS nMS by f((r,m)/(s, 0)) = (r/s,m/s). If

x = (r1,m1)/(s1, 0), y = (r2,m2)/(s2, 0) ∈ (R nM)Sn0. Then x + y = (r1s2 + s1r2, s2m1 +

s1m2)/(s1s2, 0) and xy = (r1r2, r1m2 + r2m1)/(s1s2, 0). Now

f(x+ y) = (
r1s2 + s1r2

s1s2
,
s2m1 + s1m2

s1s2
)

= (
r1
s1

+
r2
s2
,
m1

s1
+
m2

s2
)

= (
r1
s1
,
m1

s1
) + (

r2
s2
,
m2

s2
)

= f(x) + f(y).

Also

f(xy) = (
r1r2
s1s2

,
r1m2 + r2m1

s1s2
)

= (
r1
s1

r2
s2
,
r1
s1

m2

s2
+
r2
s2

m1

s1
)

= (
r1
s1
,
m1

s1
)(
r2
s2
,
m2

s2
)

= f(x)f(y).
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So f is a ring homomorphism. Next, let x = (r,m)/(s, 0) ∈ ker f . Then (0/1, 0/1) =

f(x) = (r/s,m/s). So there is u, v ∈ S such that ur = 0 and vm = 0. But then uv ∈

S and (uv, 0)(r,m) = (vur, uvm) = (0, 0). So x = 0. Hence f is injective. Finally, if

y = (r/s,m/t) ∈ RS n MS , then y = (rt/st, sm/st) = f((st, sm)/(st, 0)) = f(x) where

x = (st, sm)/(st, 0) ∈ (RnM)Sn0. So f is surjective. It follows that f is an isomorphism.

Case 2: N 6= 0. Since for (r,m)/(s, n) ∈ (RnM)SnN , we have

(r,m)

(s, n)
=

(s,−n)(r,m)

(s,−n)(s, n)
=

(sr, sm− rn)

(s2, 0)
.

Then f : (R nM)SnN → RS nMS given by f((r,m)/(s, n)) = (r/s, (sm − rn)/s2) is an

isomorphism.

2. This follows immediately from (1) with S = R− P and N = M .

3. Let S = R − (Z(R) ∪ ZR(M)). Then by Corollary 2.1.17 (2), S nM is the set of regular

elements of R nM . So the total quotient ring of R nM is T (R nM) = (R nM)SnM . By

(1), T (RnM) ∼= RS nMS .

For an integral domain R, let Quot(R) denote the quotient field of R.

Example 2.2.3. Let R = Z n Z, and let p be a prime number. Then

1. By Theorem 2.2.2 (2), the localization of R at P = pZ n Z is RP
∼= ZpZ n ZpZ.

2. By Theorem 2.2.2 (3), the total quotient ring of R is T (R) ∼= ZSnZS where S = Z− (Z(Z)∪

Z(Z)) = Z− {0}. So ZS = Quot(Z) = Q. Hence T (R) ∼= QnQ.

Next, we determine the integral closure of RnM , but first we need the following lemma.

Lemma 2.2.4. Let R be a ring, M an R-module, and r ∈ T (R). Then r is integral over R if and

only if (r, 0) is integral over RnM .

Proof. Suppose that r is integral over R. Then there is a0, ..., an−1 ∈ R such that rn+an−1r
n−1+ · ·

·+a0 = 0. But then (r, 0)n+(an−1, 0)(r, 0)n−1+···+(a0, 0) = (0, 0). So (r, 0) is integral over RnM .

Conversely, suppose that (r, 0) is integral over R nM , then there is (a0,m0), ..., (an−1,mn−1) ∈

R nM such that (r, 0)n + (an−1,mn−1)(r, 0)n−1 + · · · + (a0,m0) = (0, 0). So (rn + an−1r
n−1 + · ·
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·+ a0, 0 + rn−1mn−1 + · · ·+m0) = (0, 0). Hence rn + an−1r
n−1 + · · ·+ a0 = 0. It follows that r is

integral over R.

The following theorem determines the integral closure of RnM in T (RnM).

Theorem 2.2.5 ([14]). Let R be a ring, M an R-module, and S = R− (Z(R) ∪ ZR(M)). If R′ is

the integral closure of R in T (R), then (R′∩RS)nMS is the integral closure of RnM in T (RnM).

Proof. First, note that RnM ⊆ (R′ ∩RS)nMS ⊆ RS nMS = T (RnM) (since R ⊆ R′, R ⊆ RS ,

and M ⊆ MS). Now, let (r, b) ∈ (R′ ∩ RS) nMS , then r ∈ R′ ∩ RS and b ∈ MS . So r is integral

over R. By the last lemma, (r, 0) is integral over R nM . Since (0, b)2 = (0, 0), (0, b) is integral

over R n M . So (r, b) = (r, 0) + (0, b) is integral over R n M . This means (r, b) ∈ (R n M)′.

Thus, (R′ ∩ RS) nMS ⊆ (R nM)′. Conversely, let (r, b) ∈ (R nM)′. Since (0, b) ∈ (R nM)′,

then (r, 0) = (r, b) − (0, b) ∈ (R n M)′. So r ∈ R′. Hence (r, b) ∈ (R′ ∩ RS) n MS . Thus

(RnM)′ ⊆ (R′ ∩RS)nMS .

Corollary 2.2.6 ([14]). Let R be a ring, M an R-module, and S = R− (Z(R) ∪ ZR(M)).

1. If R is integrally closed, then RnMS is the integral closure of RnM in T (RnM).

2. If ZR(M) ⊆ Z(R), then RnMS is integrally closed if and only if R is integrally closed.

Proof. 1. Suppose that R is integrally closed, then R = R′ and so R′∩RS = R∩RS = R. Hence

by Theorem 2.2.5, the integral closure of RnM in T (RnM) is (R′ ∩RS)nMS = RnMS .

2. Suppose that RnMS is integrally closed. Now since ZR(M) ⊆ Z(R), then S = R−Z(R), so

RS = T (R), hence T (RnMS) = T (R)nMS . To show that R is integrally closed, let r ∈ T (R)

be integral over R. Then (r, 0) ∈ T (R) nMS = T (R nMS) is integral over R nMS . But

RnMS is integrally closed gives that (r, 0) ∈ RnMS . So r ∈ R. Hence R is integrally closed.

Conversely, suppose that R is integrally closed, then by (1), we have (R nMS)′ = R nMS .

So RnMS is integrally closed.

Example 2.2.7. Let R = Z and M = Z2. Then R is integrally closed in T (R) = Q. So by

Corollary 2.2.6 (1), the integral closure of RnM is RnMS = ZnQ2. Also by Corollary 2.2.6 (2),

RnMS = Z nQ2 is integrally closed since ZR(M) = 0 ⊆ Z(R).

Proposition 2.2.8 ([6]). Let R be a ring, M an R-module, and S = R − (Z(R) ∪ ZR(M)). If

RnM is integrally closed, then M = MS .
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Proof. Suppose that R n M is integrally closed. Let m ∈ M and s ∈ S. Then (0,m/s) =

(0,m)/(s, 0) ∈ T (R nM). Now, (0,m/s)2 = (0,m)2/(s, 0)2 = (0, 0). This implies that (0,m/s) is

a root of f(x) = x2 ∈ (R nM)[x]. But since R nM is integrally closed, then (0,m/s) ∈ R nM .

So m/s ∈M and hence M = MS .

In general, R nMS integrally closed does not imply that R is integrally closed. The following

example provides an arbitrary non-integrally closed R and an R-module M such that R nMS is

integrally closed.

Example 2.2.9 ([14], page 166). Let R be a non-integrally closed and M =
⊕
{R/P | P ∈

Spec(R)}. By Example 2.1.18 (2), we have ZR(R/P ) = P for all P ∈ Spec(R). So

ZR(M) =
⋃

P∈Spec(R)

ZR(R/P ) =
⋃

P∈Spec(R)

P.

Since

R− U(R) =
⋃

m∈Max(R)

m.

Then R − U(R) ⊆ ZR(M). We claim that R n M is a total quotient ring. To do this, let

(u,m) /∈ Z(RnM) = (Z(R) ∪ ZR(M))nM . Then u /∈ Z(R) ∪ ZR(M). So u /∈ R− U(R). Hence

u ∈ U(R) and (u,m) ∈ U(R nM). So every non-zero divisor of R nM is a unit or equivalently,

every element of R nM is either a zero divisor or a unit. So R nM is a total quotient ring and

hence RnM is integrally closed. By the last proposition, M = MS where S = R−(Z(R))∪ZR(M).

Therefore, RnMS is integrally closed.

Next, we determine the inverse of I nM where I is an ideal of a ring R, and M is an R-module

with M = MS where S = R− (Z(R) ∪ ZR(M)). We first recall the following definition.

Definition 2.2.10 ([8]). Let R be a commutative ring with total quotient ring T (R). An ideal I

of R is invertible if II−1 = R, where I−1 = {x ∈ T (R) | xI ⊂ R}.

Proposition 2.2.11. Let R be a ring, M an R-module, and S = R− (Z(R) ∪ ZR(M)). If I is an

ideal of R and M = MS , then the inverse of I nM is (I nM)−1 = (I−1 ∩RS)nM.

Proof. First, note that (InM)−1 ⊆ T (RnM) = RSnMS = RSnM . Now, let (a, b) ∈ (InM)−1,

then a ∈ RS and b ∈M . Let x ∈ I be an arbitrary, then (x, 0) ∈ InM . But (a, b) ∈ (InM)−1, so

(ax, xb) = (a, b)(x, 0) ∈ R nM . Hence, ax ∈ R. Since x is arbitrary, then aI ⊆ R and this means
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a ∈ I−1. Thus, (a, b) ∈ (I−1 ∩ RS) nM . For the other inclusion, let (a, b) ∈ (I−1 ∩ RS) nM .

Then a ∈ I−1, a ∈ RS , and b ∈ M . So, aI ⊆ R. Let (x,m) ∈ I nM be an arbitrary. Then

x ∈ I. Since aI ⊆ R, ax ∈ R. But then (a, b)(x,m) = (ax, am+ xb) ∈ R nMS = R nM . Hence,

(a, b)(InM) ⊆ RnM and this means (a, b) ∈ (InM)−1. Thus, (InM)−1 = (I−1∩RS)nM .

Corollary 2.2.12. Let R be a ring, M an R-module, and S = R − (Z(R) ∪ ZR(M)). If I is an

ideal of R with I ∩ S 6= ∅ and M = MS, then (I nM)−1 = I−1 nM ; Hence I nM is invertible if

and only if I is invertible.

Proof. Suppose that I is an ideal of R such that I ∩ S 6= ∅, and assume that M = MS . Choose

s ∈ I ∩ S. We claim that I−1 ⊆ RS . Now, let x ∈ I−1. Then xI ⊆ R. So, xs = r for some

r ∈ R. Hence, x = rs−1 ∈ RS . Thus, I−1 ⊆ RS and so I−1 ∩ RS = I−1. By Proposition

2.2.11, (I nM)−1 = (I−1 ∩ RS) nM = I−1 nM . Next, assume that I nM is invertible, then

(I nM)(I−1 nM) = (I nM)(I nM)−1 = RnM . But then II−1 n (IM + I−1M) = RnM . So

II−1 = R and hence I is invertible. Conversely, suppose that I is invertible, so II−1 = R. Now,

since M = MS , then M = sM for all s ∈ S and hence M = sM for all s ∈ I ∩ S. Let m ∈ M

be an arbitrary, and let t ∈ I ∩ S. Then m = tm′ for some m′ ∈ M . So m ∈ IM and hence

M = IM . Also, since I−1 ⊆ RS and M = MS , then I−1M ⊆ RSM ⊆ MS = M . It follows that

IM + I−1M = M . So (I nM)(I nM)−1 = (I nM)(I−1 nM) = II−1 n (IM + I−1M) = RnM .

Thus, I nM is invertible.

Suppose that R1 and R2 are rings and Mi is an Ri-module, i = 1, 2. Then M1 ×M2 is an

R1 × R2-module with action (r1, r2)(m1,m2) = (r1m1, r2m2). Conversely, let R = R1 × R2 and

suppose that M is an R-module. Put M1 = (R1 × 0)M and M2 = (0 × R2)M . So Mi is an

Ri-module and M is the internal direct sum of M1 and M2 and hence M ∼= M1 ×M2.

The following Theorem shows that (R1 × R2) n (M1 ×M2) and (R1 nM1) × (R2 nM2) are

isomorphic.

Theorem 2.2.13 ([6]). let R1 and R2 be rings, and let Mi be an Ri-module, i = 1, 2. Then

(R1 ×R2)n (M1 ×M2) ∼= (R1 nM1)× (R2 nM2).

Proof. Define ϕ : (R1 ×R2)n (M1 ×M2)→ (R1 nM1)× (R2 nM2) by

ϕ((r1, r2), (m1,m2)) = ((r1,m1), (r2,m2)).
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Let a = ((r1, r2), (m1,m2)), b = ((s1, s2), (n1, n2)) ∈ (R1 × R2) n (M1 × M2). Then a + b =

((r1 + s1, r2 + s2), (m1 + n1,m2 + n2)) and ab = ((r1s1, r2s2), (r1n1 + s1m1, r2n2 + s2m2)). So

ϕ(a+ b) = ((r1 + s1,m1 + n1), (r2 + s2, ,m2 + n2))

= ((r1,m1) + (s1, n1), (r2,m2) + (s2, n2))

= ((r1,m1), (r2,m2)) + ((s1, n1), (s2, n2))

= ϕ(a) + ϕ(b).

Also

ϕ(ab) = ((r1s1, r1n1 + s1m1), (r2s2, r2n2 + s2m2))

= ((r1,m1)(s1, n1), (r2,m2)(s2, n2))

= ((r1,m1), (r2,m2))((s1, n1), (s2, n2))

= ϕ(a)ϕ(b).

So ϕ is a ring homomorphism. Clearly, ϕ is onto. Finally, let a = ((r1, r2), (m1,m2)) ∈ kerϕ, then

((0, 0), (0, 0)) = ϕ(a) = ((r1,m1), (r2,m2)) ⇔ (r1,m1) = (0, 0) and (r2,m2) = (0, 0) ⇔ r1 = 0,

r2 = 0, m1 = 0, and m2 = 0 ⇔ a = ((0, 0), (0, 0)). So kerϕ = 0. Equivalently, ϕ is one-to-one.

Therefore, ϕ is an isomorphism.

Remark 2.2.14. If Ri is a ring and Mi is an Ri-module for each i = 1, ..., n, then
∏n

i=1Ri n∏n
i=1Mi

∼=
∏n

i=1(Ri nMi).

The following is an illustrative example for Theorem 2.2.13.

Example 2.2.15. Let p, q be two distinct prime numbers. Then (Z×Z)n (Zp×Zq) ∼= (ZnZp)×

(Z n Zq).

The following theorem shows that the ring of polynomials (R nM)[x] over R nM is naturally

isomorphic to R[x]nM [x].

Theorem 2.2.16 ([6]). Let R be a ring and M an R-module. Then

(RnM)[x] ∼= R[x]nM [x].
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Proof. Define ϕ : (RnM)[x]→ R[x]nM [x] by

ϕ(
k∑

i=0

(ri,mi)x
i) = (

k∑
i=0

rix
i,

k∑
i=0

mix
i).

Let f(x) =
∑s

i=0(ai,mi)x
i and g(x) =

∑t
j=0(bj , nj)x

j be two elements in (RnM)[x]. Then

f(x) + g(x) =

u∑
k=0

[(ak,mk) + (bk, nk)]xk =

u∑
k=0

(ak + bk,mk + nk)xk

where u = max{s, t}, (ai,mi) = (0, 0) for i > s, and (bi, ni) = (0, 0) for i > t. Now

ϕ(f(x) + g(x)) = (
u∑

k=0

(ak + bk)xk,

u∑
k=0

(mk + nk)xk)

= (

u∑
k=0

akx
k,

u∑
k=0

mkx
k) + (

u∑
k=0

bkx
k,

u∑
k=0

nkx
k)

= (
s∑

k=0

akx
k,

s∑
k=0

mkx
k) + (

t∑
k=0

bkx
k,

t∑
k=0

nkx
k)

= ϕ(f(x)) + ϕ(g(x)).

Next,

f(x)g(x) =
s+t∑
k=0

(ck, lk)xk

where (ck, lk) =
∑k

i=0(ak−i,mk−i)(bi, ni) for k = 0, ..., s+ t. So

(ck, lk) =
k∑

i=0

(ak−ibi, ak−ini + bimk−i) = (
k∑

i=0

ak−ibi,
k∑

i=0

ak−ini +
k∑

i=0

bimk−i).

Let l′k =
∑k

i=0 ak−ini and l′′k =
∑k

i=0 bimk−i. Then lk = l′k + l′′k, k = 0, ..., s+ t. So
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ϕ(f(x)g(x)) = (
s+t∑
k=0

ckx
k,

s+t∑
k=0

lkx
k)

= (

s+t∑
k=0

ckx
k,

s+t∑
k=0

l′kx
k) +

s+t∑
k=0

l′′kx
k)

= (
s∑

i=0

aix
i,

s∑
i=0

mix
i)(

t∑
j=0

bjx
j ,

t∑
j=0

njx
j)

= ϕ(f(x))ϕ(g(x)).

It follows that ϕ is a ring homomorphism. Next, let f(x) =
∑s

i=0(ai,mi)x
i ∈ kerϕ. Then

(0, 0) = ϕ(f(x)) = (
∑s

i=0 aix
i,
∑s

i=0mix
i), so ai = 0 and mi = 0 for each i = 0, ..., s. Hence

f(x) = 0 and ϕ is one-to-one. Finally, let β = (
∑s

i=0 rix
i,
∑t

j=0mjx
j) ∈ R[x] nM [x]. If s = t,

then β = ϕ(α) where α =
∑s

i=0(ri,mi)x
i. If s > t, then β = ϕ(α) where α =

∑t
i=0(ri,mi)x

i +∑s
i=t+1(ri, 0)xi. Similarly, to prove that β is an image of some α ∈ (R nM)[x] in the case that

s < t. So ϕ is onto and therefore, ϕ is an isomorphism.
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Chapter 3

Transfer results and examples

In this chapter we will study several notions via trivial ring extension, namely, Noetherian, Artinian,

Manis valuation, Prüfer, chained, and arithmetical rings. Also, we will study the atomic rings and

the ACCP via trivial ring extension. We construct a number of examples about these notions using

the trivial ring extension.

3.1 Noetherian and Artinian rings via trivial ring extension

We start this section by recalling some basic definitions and facts about Noetherian and Artinian

rings.

Definition 3.1.1. Let R be a ring.

1. We say that R satisfies the ascending chain condition (ACC), or that R is Noetherian if any

ascending chain of ideals of R terminates. That is, if we have ideals I1 ⊂ I2 ⊂ · · ·, then there

is some n ∈ N such that In = Im for all m ≥ n.

2. We say that R satisfies the descending chain condition (DCC), or that R is Artinian if any

descending chain of ideals of R terminates. That is, if we have ideals I1 ⊃ I2 ⊃ · · ·, then

there is some n ∈ N such that In = Im for all m ≥ n.

Theorem 3.1.2. [[15]] ( Cohen’s Theorem). A ring R is Noetherian if and only if every prime

ideal of R is finitely generated.

Theorem 3.1.3 ([7]). A ring R is Artinian if and only if R is Noetherian and dimR = 0.
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The following theorem establishes the transfer of the Noetherian (Artinian) notions in trivial

ring extension.

Theorem 3.1.4 ([6]). Let R be a ring, M an R-module, and E = RnM .

1. E is Noetherian if and only if R is Noetherian and M is finitely generated.

2. E is Artinian if and only if R is Artinian and M is finitely generated.

Proof. 1. Suppose that E is Noetherian. Then R ∼= E
0nM is Noetherian. Now, the ideal 0 nM

of E is finitely generated. So there are m1, ...,mn ∈ M such that 0 nM =
∑n

i=1E(0,mi).

Now

0nM =
n∑

i=1

E(0,mi)

=
n∑

i=1

(0nRmi) (By Theorem 2.1.10)

= 0n
n∑

i=1

Rmi.

So M =
∑n

i=1Rmi is a finitely generated R-module. Conversely, suppose that R is Noetherian

and M is finitely generated. We will use Cohen’s theorem to prove that E is Noetherian.

Let P nM be a prime ideal of R nM , then P is a prime ideal of R and hence P is finitely

generated. But M is finitely generated R-module. So P nM is a finitely generated ideal of

E. Thus by Cohen’s theorem, we have E is Noetherian.

2. Suppose that E is Artinian. Then R ∼= E
0nM is Artinian. Since an Artinian ring is Noetherian,

then E is Noetherian and so by (1), M is finitely generated. Conversely, suppose that R is

Artinian and M is finitely generated. By Theorem 3.1.3, R is Noetherian with dimR = 0.

Since M is finitely generated, then by (1), E is Noetherian. But dimE = dimR = 0. So, we

have E is Noetherian with dimE = 0. Hence by Theorem 3.1.3, E is Artinian.

Theorem 3.1.4 can be used to construct a new examples of Noetherian (non-Noetherian) rings

and a new examples of Artinian (non-Artinian) rings

The following example gives a class of Noetherian rings using trivial ring extension.
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Example 3.1.5. 1. Since every ideal of Z is principal, then Z is Noetherian. Now Zp is a finitely

generated Z-module for any prime number p, so by Theorem 3.1.4, Z n Zp is Noetherian for

any prime p. Hence by Example 2.2.15, the ring Rp,q = (Z×Z)n (Zp×Zq) is Noetherian for

all distinct primes p and q.

2. Let F be any field, then F is Noetherian. Since F[x1, ..., xn] is a finitely generated F-module,

then by Theorem 3.1.4, F n F[x1, ..., xn] is Noetherian.

The following example gives a new examples of non-Noetherian rings using trivial ring extension.

Example 3.1.6. 1. Since the set of rational numbers Q is not finitely generated Z-module, then

by Theorem 3.1.4, Z nQ is not Noetherian.

2. Let F be any field, and let R = F[x1, x2, ...]. Since

Rx1 ⊂ Rx1 +Rx2 ⊂ Rx1 +Rx2 +Rx3 ⊂ · · ·

is an infinite strictly increasing chain of ideals of R, then R is not Noetherian. So by Theorem

3.1.4, RnM is not Noetherian for any R-module M .

Next, we give examples of Artinian rings and examples of non-Artinian rings.

Example 3.1.7. 1. Let F be any field. Then Rn = F[x]
xnF[x] is an Artinian ring for every positive

integer n (This is because Rn is a finite dimensional vector space of dimension n). So if M is

a finitely generated Rn-module, then by Theorem 3.1.4, Rn nM is an Artinian ring.

2. Since the ring of integers Z is not Artinian, then the ring Rp,q given in example 3.1.5 (1), is

not Artinian for all distinct primes p and q.

3.2 Characterization of Manis valuation rings, Prüfer rings, chained

rings, and arithmetical rings of the form RnM .

We start this section by recalling some basic definitions and facts.

Definition 3.2.1. Let R be an integral domain.

1. R is called a valuation domain if for each x ∈ Quot(R), either x ∈ R or x−1 ∈ R [7].

2. R is called a Prüfer domain if every nonzero finitely generated ideal of R is invertible [23].
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Definition 3.2.2 ([20]). Let T be a ring and R a subring of T . R is called a valuation ring on T

if there exists a prime ideal P of R such that for each x ∈ T − R, there exists x′ ∈ P such that

xx′ ∈ R− P . The pair (R,P ) is called a valuation pair of T .

Definition 3.2.3. Let R be a ring. Then:

1. R is called a Manis valuation ring if its a valuation ring on T (R). [20].

2. R is called a Prüfer ring if every finitely generated regular ideal of R is invertible [9].

3. R is called a chained ring if the set of ideals of R is totally ordered by inclusion [12].

4. R is called an arithmetical ring if Rm is a chained ring for each maximal ideal m of R [16].

Notice that if R is a local domain, then all the notions in the last definition are coincide.

Remark 3.2.4. Let R be a ring.

1. If R is a chained ring, then R is an arithmetical ring.

2. If R is a chained ring, then R is a Manis valuation ring.

3. If R is an arithmetical ring, then R is a Prüfer ring.

Proof. 1. Let R be a chained ring. Then any two ideals of R are comparable, so R has exactly

one maximal ideal, say m. Hence Rm = R is a chained ring. That is, R is an arithmetical

ring.

2. Let R be a chained ring. Then R is a local ring. Let P be the unique maximal ideal of R,

and let x = a
b ∈ T (R)− R. Since R is chained, then either Ra ⊆ Rb or Rb ⊆ Ra. But since

a
b /∈ R, we have Rb ⊆ Ra, so b = ac for some c ∈ R. Again since a

b /∈ R, then c /∈ U(R), so

c ∈ P (as P = R− U(R)). Now, xc = a
b c = ac

b = b
b = 1. So xc ∈ R− P . Hence R is a Manis

valuation ring.

3. See [8, Theorem 2.2] and [8, Theorem 2.5].

Example 3.2.5. 1. Let R be a principal ideal domain and I a nonzero ideal of R. Write I = aR

where a ∈ R. Then I−1 = 1
aR. Now, II−1 = (aR)( 1aR) = R, so I is invertible. Hence R is

Prüfer. Since R is a domain, then R is arithmetical. So RpR is a chained ring for any prime

element p of R.
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2. Let F be a field, then F has only two ideals, namely 0 and F , and these ideals are comparable,

so F is a chained ring. By the remark above, F is a Manis valuation ring. Since a field is a

local ring, then F an arithmetical ring. Also, since a field is a PID, then by (1), F is Prüfer.

3. Let R be a total quotient ring, then every element of R is either a zero divisor or a unit. So

if I is a regular ideal of R, it contains a regular element, hence I contains a unit of R. This

implies I = R is invertible. So R is a Prüfer ring.

4. Let R be a Boolean ring, and let m be a maximal ideal of R. Then Rm is a local ring with

maximal ideal mRm = {ab | a ∈ R, b /∈ m}. Let x be a nonzero element of Rm. Then x2 = x,

so x(x−1) = 0. If x ∈ mRm, x−1 /∈ mRm, but then x−1 is a unit of Rm, which implies x = 0,

a contradiction. So, we have x /∈ mRm, which implies x is a unit of Rm. From x(x− 1) = 0,

we have x = 1. It follows that Rm = {0, 1} ∼= Z2 is a field, and so by (1), its a chained ring.

Thus, R is an arithmetical ring.

The following theorem characterizes when RnM is a valuation ring or Prüfer ring.

Theorem 3.2.6 ([14]). Let R be a ring, M an R-module, and S = R− (Z(R) ∪ ZR(M)).

1. RnM is a Manis valuation ring if and only if R is a valuation ring on RS and M = MS.

2. RnM is a Prüfer ring if and only if for each finitely generated ideal I of R with I ∩ S 6= ∅,

I is invertible, and M = MS.

Proof. 1. If R n M is a Manis valuation ring, then (R n M,P n M) is a valuation pair of

T (R nM) = RS nMS for some prime ideal P of R. Since R nM is integrally closed, then

M = MS . So T (RnM) = RSnM . Now, let x ∈ RS−R, then (x, 0) ∈ T (RnM)−RnM . So

there exists (x′,m′) ∈ PnM such that (x, 0)(x′,m′) ∈ (RnM)−(PnM) = (R−P )nM . But

then x′ ∈ P and xx′ ∈ R−P . Thus, (R,P ) is a valuation pair of RS . That is, R is a valuation

ring on RS . Conversely, suppose that R is a valuation ring on RS and M = MS . Then (R,P )

is a valuation pair of RS for some prime ideal P of R. Let (x,m) ∈ T (R nM) − R nM =

(RS − R)nM . Then x ∈ RS − R. So there exists x′ ∈ P such that xx′ ∈ R − P . But then

(x′, 0) ∈ P nM and (x,m)(x′, 0) = (xx′, x′m) ∈ (R− P )nM = (RnM)− (P nM). Thus,

RnM is a Manis valuation ring.

2. Assume that RnM is a Prüfer ring. Then RnM is integrally closed, so M = MS . Let I be

a finitely generated ideal of R with I ∩ S 6= ∅. Then by Theorem 2.1.21, I nM is a regular
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ideal of RnM . We claim that if I =
∑n

i=1Rai, then I nM =
∑n

i=1(RnM)(ai, 0). Suppose

I =
∑n

i=1Rai, then ai ∈ I for all i = 1, ..., n. So
∑n

i=1(R nM)(ai, 0) ⊆ I nM . For the

reverse inclusion, let (x,m) ∈ I nM . Then x ∈ I gives that x =
∑n

i=1 riai for some ri ∈ R,

i = 1, ..., n. Now since I ∩S 6= ∅, there exists s ∈ I ∩S. So s−1m ∈M since M = MS . Hence

(x,m) = (x, 0) + (0,m) =

n∑
i=1

(ri, 0)(ai, 0) + (s, 0)(0, s−1m) ∈
n∑

i=1

(RnM)(ai, 0).

Thus, I nM =
∑n

i=1(R nM)(ai, 0) is a finitely generated regular ideal of R nM . Since

RnM is a Prüfer ring, I nM is invertible and therefore, by Corollary 2.2.12, I is invertible.

Conversely, let J be a finitely generated regular ideal of R nM . Since M = MS , then by

Theorem 2.1.21, J = I nM where I is an ideal of R with I ∩ S 6= ∅. By hypothesis, I is

invertible. Hence by Corollary 2.2.12, J = I nM is invertible. Thus, RnM is a Prüfer ring.

Corollary 3.2.7. Let R be a ring, M an R-module, and S = R− (Z(R) ∪ ZR(M)).

1. If ZR(M) ⊆ Z(R), then RnM is a Manis valuation ring if and only if R is a Manis valuation

ring and M is divisible.

2. If ZR(M) ⊆ Z(R), then R nM is a Prüfer ring if and only if R is a Prüfer ring and M is

divisible.

Proof. 1. If ZR(M) ⊆ Z(R), then S = R − Z(R). So RS = T (R). Hence by Theorem 3.2.6

(1), R nM is a Manis valuation ring if and only if R is a valuation ring on RS = T (R) and

M = MS if and only if R is a Manis valuation ring and M is divisible.

2. As in (1), since ZR(M) ⊆ Z(R), S = R − Z(R). So for any ideal I of R, I is regular if and

only if I ∩ S 6= ∅. Hence by Theorem 3.2.6 (2), RnM is a Prüfer ring if and only if for each

finitely generated ideal I of R with I ∩ S 6= ∅, I is invertible, and M = MS if and only if for

each finitely generated regular ideal I of R, I is invertible and M is divisible if and only if R

is a Prüfer ring and M is divisible.

We next give examples concerning valuation rings and Prüfer rings involving trivial ring exten-

sion.
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Example 3.2.8. 1. Let R = Z2Z and M = Q = T (R). Then ZR(M) = 0 = Z(R), so S =

R − {0}. Since Z2Z is a valuation ring on Q and QS = Q. Then by Corollary 3.2.7 (1),

RnM = Z2Z nQ is a Manis valuation ring.

2. Let R = Z and M = R[x]. Then from Example 2.1.15 (1), M is divisible R-module. Now

since Z is a PID, it is Prüfer. As ZR(M) = 0 = Z(R), hence by Corollary 3.2.7 (2), ZnR[x]

is a Prüfer ring.

The following example gives a Prüfer ring which is not a Manis valuation ring.

Example 3.2.9. Let R = Z and M = Q. Then ZR(M) = 0 = Z(R). Since Z is a Prüfer ring and

Q is divisible Z-module. So by Corollary 3.2.7 (2), R nM = Z n Q is a Prüfer ring. Next, since

Z is not a valuation domain ( since x = 2
3 ∈ Quot(Z) = Q, but x /∈ Z and x−1 = 3

2 /∈ Z ). So by

Corollary 3.2.7 (1), Z nQ is not a Manis valuation ring.

Notice that in general, R nM Prüfer does not imply that R is Prüfer. The following example

provides a ring R and an R-module M for which RnM is a Prüfer ring but R is not Prüfer.

Example 3.2.10. Let R = Q[x, y] and M =
⊕
{R/P | P ∈ Spec(R)}. Then as in Example 2.2.9,

R nM is a total quotient ring and hence is a Prüfer ring. We show that R is not a Prüfer ring.

Consider the ideal I = Rx + Ry of R. Claim: I is not invertible. On the contrary, suppose I is

invertible, then II−1 = R. We know that Quot(R) = Q(x, y). Now,

I−1 = {f ∈ Quot(R) | fI ⊆ R} = {f ∈ Q(x, y) | xf ∈ Q[x, y] and yf ∈ Q[x, y]}.

Let f ∈ I−1, then xf ∈ Q[x, y] and yf ∈ Q[x, y], so there are p, q ∈ Q[x, y] such that xf = p and

yf = q, but then p
x = f = q

y , which implies yp = xq, so x | yp, but since x and y are distinct

primes, then x - y, hence x | p, and so f = p
x ∈ R. This shows that I−1 ⊆ R. Clearly, R ⊆ I−1. It

follows that I−1 = R. We have II−1 = IR = I 6= R, a contradiction. Therefore, R is not a Prüfer

ring.

Lemma 3.2.11. Let R ba a ring and I an ideal of R. If R is a chained ring, then R/I is a chained

ring.

Proof. If J/I and K/I are two ideals in R/I, then either J ⊆ K or K ⊆ J since R is a chained

ring. So either J/I ⊆ K/I or K/I ⊆ J/I. Hence the set of ideals of R/I is totally ordered by

inclusion. Thus, R/I is a chained ring.
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The following theorem characterizes the chained rings of the form RnM .

Theorem 3.2.12 ([24]). Let R be a ring and M a non-zero R-module. Then RnM is a chained

ring if and only if R is a valuation domain and M is divisible R-module whose (cyclic) submodules

are totally ordered by inclusion.

Proof. (⇒). Suppose thatRnM is a chained ring. Then by the lemma above, R ∼= RnM
0nM is a chained

ring and since M is isomorphic to an ideal of RnM , the submodules of M are totally ordered by

inclusion. Let 0 6= a ∈ R and m ∈ M . Then 0 nM ⊆ (R nM)(a, 0). So (0,m) = (a, 0)(r, n) for

some r ∈ R and n ∈M . But then m = an ∈ aM . Hence M = aM . Now, let a, b ∈ R− {0}. Then

M = aM = abM . Since M 6= 0, then ab 6= 0. Hence R is an integral domain and M is divisible.

(⇐). Suppose that R is a valuation domain and M is a divisible R-module whose (cyclic)

submodules are totally ordered by inclusion. Since M is divisible, then by Theorem 2.1.14, every

ideal of R nM has the form I nM or 0 n N for some ideal I of R or submodule N of M . By

hypothesis, it is clearly that the ideals of RnM are totally ordered by inclusion. Hence RnM is

a chained ring.

Definition 3.2.13. Let R be a ring and M an R-module. M is arithmetical if the Rm-submodules

of Mm are totally ordered by inclusion for each maximal ideal m of R.

The following corollary characterizes the arithmetical rings of the form RnM .

Corollary 3.2.14 ([6]). Let R be a ring and M a non-zero R-module. Then RnM is arithmetical

ring if and only if R is an arithmetical ring, M is an arithmetical R-module, and for each maximal

ideal m of R with Mm 6= 0m, Rm is a valuation domain and Mm is a divisible Rm-module.

Proof. (⇒). Suppose that RnM is an arithmetical ring. So RmnMm
∼= (RnM)mnM is a chained

ring for each maximal ideal m of R. By the proof of Theorem 3.2.12, Rm is a chained ring and the

Rm-submodules of Mm are totally ordered by inclusion for each maximal ideal m of R. It follows

that R is an arithmetical ring and M is an arithmetical R-module. Next, let m be a maximal ideal

of R with Mm 6= 0m. Then Rm nMm is a chained ring gives that Rm is a valuation domain and

Mm is a divisible Rm-module.

(⇐). Let mnM be a maximal ideal of RnM where m is a maximal ideal of R. Then (RnM)mnM ∼=

Rm nMm. Now since R is arithmetical, then Rm is a chained ring, and since M is arithmetical,

then the Rm-submodules of Mm are totally ordered by inclusion. If Mm = 0m, then Rm nMm is a
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chained ring. So assume that Mm 6= 0m. Then by hypothesis, Rm is a valuation domain and Mm

is a divisible Rm-module. By Theorem 3.2.12, RmnMm is a chained ring. Therefore, RnM is an

arithmetical ring.

Next, we consider a particular construction using trivial ring extension, R = F n V where F is

a field and V is a vector space over F . The following corollary shows that F n V is both a Manis

valuation ring and a Prüfer ring, and it is arithmetical if and only if dimF V = 1.

Corollary 3.2.15. Let F be a field, V a non-zero F -vector space, and R = F n V . Then

1. R is a Manis valuation ring.

2. R is a Prüfer ring.

3. R is arithmetical if and only if dimF V = 1.

Proof. 1. (1) and (2). Since F is a field, it is both a Manis valuation ring and a Prüfer ring.

Now, if v ∈ V and 0 6= a ∈ F , then v = aa−1v ∈ aV . So V = aV and V is divisible. Because

ZF (V ) = 0 = Z(F ), then by Corollary 3.2.7, R is both a Manis valuation ring and a Prüfer

ring.

2. (⇒). Suppose that R = F nV is an arithmetical ring. Since F is a field, it is a local valuation

ring. So by Corollary 2.1.7 (1), R is local. So R is a local arithmetical ring, hence it is a

chained ring. Let v1, v2 be two non-zero vectors of V . Then Fv1 and Fv2 are two cyclic

subspaces of V . Since R is a chained ring, then by Theorem 3.2.12, either Fv1 ⊆ Fv2 or

Fv2 ⊆ Fv1. So v1 = av2 or v2 = bv1 for some a, b ∈ F . So {v1, v2} is linearly dependent.

Hence dimF V < 2. But V 6= 0, so dimF V = 1.

(⇐). Suppose that dimF V = 1, so there is a vector 0 6= v0 ∈ V such that B = {v0} is a

basis for V . If 0 6= v ∈ V , dimF Fv = 1. So Fv = V . Hence F0 = 0 and Fv0 = V are the

only cyclic subspaces of V . Hence the cyclic subspaces of V are totally ordered by inclusion.

It follows by Theorem 3.2.12, that R = F n V is a chained ring and hence is an arithmetical

ring.

Next, we provide examples of a Manis valuation ring that is not a chained ring.
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Example 3.2.16. 1. Let F = Q, V = Q(
√

2) = {a + b
√

2 | a, b ∈ Q}, and R = F n V . Then

by Corollary 3.2.15, R is a Manis valuation ring. But since dimQQ(
√

2) = 2 6= 1, then again

by Corollary 3.2.15, R is not an arithmetical ring and hence R is not a chained ring because

a chained ring is a local arithmetical ring.

2. Let F = Z3 and V = Z3(i) = {a + bi | a, b ∈ Z3}. Then dimF V = 2 > 1. So by Corollary

3.2.15, R = F n V is a finite Manis valuation ring which is not a chained ring.

Next, we give examples of non-arithmetical Prüfer rings.

Example 3.2.17. 1. Since dimRR2 = 2 6= 1, so by Corollary 3.2.15, RnR2 is a non-arithmetical

Prüfer ring.

2. Let R = RnR[x]. Because dimRR[x] =∞, then by Corollary 3.2.15, R is a non-arithmetical

Prüfer ring.
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3.3 Atomic rings and the ACCP via trivial ring extension

In this section we determine some irreducible elements in RnM and also we determine when RnM

has the ascending chain condition for principal ideals, and we determine a sufficient condition for

RnM to be atomic. We start by recalling some definitions concerning factorization in commutative

rings with zero divisors and in modules.

Definition 3.3.1 ([6]). Let R be a ring and M an R-module.

1. Two elements m,n ∈M are associates (m ∼ n) if Rm = Rn. Taking M = R gives the notion

of ”associates” in R.

2. A nonunit a ∈ R is irreducible if a = bc implies a ∼ b or a ∼ c. And a is m-irreducible if Ra

is a maximal element of the set of proper principal ideals of R. Also a is prime if a | bc ⇒

a | b or a | c.

3. An element m ∈M is R-primitive if for a ∈ R and n ∈M , m = an ⇒ m ∼ n.

4. R is called atomic if every (nonzero) nonunit of R is a product of irreducibles.

5. We say that R satisfies the ascending chain condition on principal ideals (ACCP) if every

ascending chain of principal ideals of R terminates.

Remark 3.3.2 ([6]). Let R be a ring, M an R-module, and a ∈ R.

1. If a is m-irreducible, then a is irreducible.

2. If a is prime, then a is irreducible.

3. An element m ∈M is R-primitive if and only if Rm is a maximal cyclic R-submodule of M .

Proof. 1. Suppose that a is m-irreducible. If a = bc with Ra 6= Rb and Ra 6= Rc, then Ra (

Rb and Ra ( Rc, so Ra is not maximal in the set of all principal ideals of R which is a

contradiction since a is m-irreducible. So either Ra = Rb or Ra = Rc, that is, either a ∼ b

or a ∼ c. Hence a is irreducible. Thus, a is m-irreducible implies a is irreducible.

2. Suppose that a is prime. If a = bc, then a | bc. Since a is prime, so either a | b or a | c. If

a | b, then Rb ⊆ Ra, but Ra ⊆ Rb since a = bc ∈ Rb. So Ra = Rb, that is, a ∼ b. Similarly,

if a | c, then a ∼ c. So a is irreducible. Thus, a is prime implies a is irreducible.
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3. Assume that m ∈ M is R-primitive. Let Rn be a proper cyclic submodule of M such that

Rm ⊆ Rn. Then m = rn for some r ∈ R. But m is R-primitive, so m ∼ n and hence

Rm = Rn. Thus, Rm is a maximal cyclic R-submodule of M . Conversely, assume that Rm

is a maximal cyclic R-submodule of M . Let a ∈ R and n ∈ M . If m = an, then Rm ⊆ Rn.

By hypothesis, Rm = Rn. So m ∼ n. Thus, m is R-primitive

Theorem 3.3.3. Let R be a ring. If R satisfies the ACCP, then R is atomic.

Proof. See [4, Theorem 3.2].

The following theorem gives some irreducible elements of RnM where R is an integral domain.

Theorem 3.3.4 ([4, 5]). Let R be a ring, M an R-module, and E = RnM .

1. Let m,n ∈M . Then m ∼ n if and only if (0,m) ∼ (0, n).

2. If R is an integral domain and 0 6= m ∈M , then m is primitive in M if and only if (0,m) is

irreducible in E.

3. If R is an integral domain and 0 6= a ∈ R, then a is irreducible in R if and only if (a, 0) is

irreducible in E.

4. If R is an integral domain and 0 6= a ∈ R, then a is irreducible in R implies (a,m) is

irreducible in E for all m ∈M .

5. Suppose that R has a nontrivial idempotent and M 6= 0. Then no element (0,m) of 0nM is

irreducible in E.

Proof. 1. Let m,n ∈M . Now m ∼ n if and only if Rm = Rn if and only if 0nRm = 0nRn if

and only if E(0,m) = E(0, n) if and only if (0,m) ∼ (0, n).

2. Let R be an integral domain and 0 6= m ∈ M . Assume that m is primitive in M . Suppose

(0,m) = (a, n)(b, l) where a, b ∈ R and n, l ∈M . Then ab = 0 and m = al+ bn. Since R is an

integral domain, either a = 0 or b = 0. If a = 0, then m = bn. So m ∼ n since m is primitive.

Hence by (1), (0,m) ∼ (0, n) = (a, n). Similarly if b = 0, then (0,m) ∼ (0, l) = (b, l).

So (0,m) is irreducible. Conversely, assume that (0,m) is irreducible in E. Let a ∈ R and

n ∈M . If m = an, then (0,m) = (a, 0)(0, n). Since (0,m) is irreducible, either (0,m) ∼ (a, 0)
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or (0,m) ∼ (0, n). Now E(0,m) = 0 n Rm 6= Ra n aM = E(a, 0) since a 6= 0 ( for if a = 0,

then m = 0, a contradiction ). So (0,m) � (a, 0). Hence (0,m) ∼ (0, n). By (1), m ∼ n.

Thus m is primitive.

3. Let R be an integral domain and 0 6= a ∈ R. Suppose that (a, 0) is irreducible and a = bc.

Then (a, 0) = (b, 0)(c, 0). So E(a, 0) = E(b, 0) or E(a, 0) = E(c, 0). Hence Ra = Rb or

Ra = Rc. That is, a ∼ b or a ∼ c. So a is irreducible. Conversely, suppose that a is irreducible

and (a, 0) = (b,m)(c, n). Then a = bc. Since a is irreducible and R is an integral domain, b

or c is a unit of R. If b is a unit of R, then (b,m) is a unit of E and so E(a, 0) = E(c, n), that

is, (a, 0) ∼ (c, n). Similarly if c is a unit of R, then (a, 0) ∼ (b,m). Hence (a, 0) is irreducible.

4. Let R be an integral domain, and let 0 6= a ∈ R. Assume that a is irreducible. Let m ∈M be

an arbitrary, and suppose (a,m) = (b, n)(c, l). So a = bc. Since a is irreducible, either b or c is

a unit of R. If b is a unit of R, (b, n) is a unit of E, so (c, l) = (b, n)−1(a,m) ∈ E(a,m), hence

E(a,m) = E(c, l), that is, (a,m) ∼ (c, l). Similarly, if c is a unit of R, then (a,m) ∼ (b, n).

Thus, (a,m) is irreducible in E.

5. Let e be an idempotent of R such that e 6= 0, 1. So e = e2. Let m ∈M be an arbitrary. Then

(0,m) = (e−e2, em+(m−em)) = (e(1−e), em+(1−e)m) = (e,m)(1−e,m). If (0,m) ∼ (e,m)

or (0,m) ∼ (1 − e,m), then (e,m) ∈ E(0,m) = 0 n Rm or (1 − e,m) ∈ E(0,m) = 0 n Rm.

But then e = 0 or e = 1 which is a contradiction since e 6= 0, 1. Hence (0,m) � (e,m) and

(0,m) � (1 − e,m). So (0,m) is not irreducible. Therefore, there is no m ∈ M such that

(0,m) is irreducible in RnM .

Next, we use Theorem 3.3.4 to give an example of an irreducible element that is neither prime

nor m-irreducible.

Example 3.3.5 ([4, Example 5.7]). Let R = Z n (Z2 ⊕ Z2), and let a = (0, (0, 1)) ∈ R. Since

Z(0, 1) = 0 ⊕ Z2 is a maximal cyclic Z-submodule of Z2 ⊕ Z2, then (0, 1) is primitive in Z2 ⊕ Z2.

So by Theorem 3.3.4 (2), a is irreducible. Note that (0, (1, 0))(2, (1, 0)) = (0, (0, 0)) ∈ Ra, but

(0, (1, 0)), (2, (1, 0)) /∈ Ra. This means that Ra is not a prime ideal of R. So a is not prime. Next,

we show that a is not m-irreducible. Let b = (3, (0, 0)) ∈ R. Then a = ab ∈ Rb but b /∈ Ra. So

Ra  Rb. Hence Ra is not a maximal element of the set of proper principal ideals of R. Thus a is

not m-irreducible.
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Definition 3.3.6. Let R be a ring. An R-module M is said to satisfy the ascending chain condition

on cyclic submodules (ACCC) if every ascending chain of cyclic submodules of M terminates.

The following theorem determines when R n M satisfies the ACCP where R is an integral

domain.

Theorem 3.3.7 ([4]). Let R be an integral domain, M an R-module, and E = RnM .

1. If R satisfies the ACCP, then every ascending chain of principal ideals of E containing a

principal ideal of the form E(a,m) where 0 6= a ∈ R terminates.

2. E satisfies the ACCP if and only if R satisfies the ACCP and M satisfies the ACCC.

Proof. 1. Suppose 0 6= a ∈ R and E(a,m)  E(b, n). Then (a,m) = (b, n)(c, l) for some

(c, l) ∈ RnM . So a = bc. If c is a unit of R, then (c, l) is a unit of E and so (b, n) ∈ E(a,m),

a contradiction. So c is not a unit of R and hence Ra  Rb. Thus, if R satisfies the ACCP,

then every ascending chain of principal ideals of E containing a principal ideal of the form

E(a,m) where 0 6= a ∈ R terminates.

2. (⇒). Suppose that E satisfies the ACCP. We know by Theorem 2.1.10, that E(a, 0) =

Ra n aM and E(0,m) = 0 n Rm for all a ∈ R and all m ∈ M . Now since E satisfies

the ACCP, then E satisfies the ACCP on ideals of the form E(a1, 0) ⊆ E(a2, 0) ⊆ · · · and

E(0, n1) ⊆ E(0, n2) ⊆ · · ·. Hence, R satisfies the ACCP and M satisfies the ACCC.

(⇐). Suppose that R satisfies the ACCP and M satisfies the ACCC. Let E(a1, n1) ⊆

E(a2, n2) ⊆ · · · be an ascending chain of principal ideals of E. If ai = 0 for each i, then

E(0, n1) ⊆ E(0, n2) ⊆ ···. So Rn1 ⊆ Rn2 ⊆ ··· which stops since M satisfies the ACCC. Hence

the original chain in E terminates. If ai 6= 0 for some i, then by (1), the chain terminates. It

follows that E satisfies the ACCP.

Definition 3.3.8 ([6]). Let R be a ring. An R-module M is said to satisfy the MCC if every cyclic

submodule of M is contained in a maximal (not necessarily proper) cyclic submodule.

The following theorem gives a sufficient condition for RnM to be atomic.

Theorem 3.3.9 ([4]). Let R be an integral domain and M an R-module. If R satisfies the ACCP

and M satisfies the MCC, then RnM is atomic.
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Proof. Assume that R satisfies the ACCP and M satisfies the MCC. Let (0, 0) 6= (a, n) ∈ R nM

be a nonunit. Either a 6= 0 or a = 0. If a 6= 0, then by Theorem 3.3.7 (1), (a, n) is a product

of irreducibles. If a = 0, then n 6= 0. Since M satisfies the MCC, then Rn ⊆ Rm where Rm is

a maximal cyclic submodule of M . So m is primitive and hence by Theorem 3.3.4 (2), (0,m) is

irreducible. Now n = cm for some 0 6= c ∈ R. Since R satisfies the ACCP, R is atomic. So (c, 0)

is either a unit or a product of irreducible. Hence (0, n) = (c, 0)(0,m) is a product of irreducibles.

Therefore, RnM is atomic.

Theorem 3.3.10. Let R be an integral domain and M an R-module. If RnM is atomic, then M

satisfies the MCC.

Proof. Suppose that R n M is atomic. Let Rn be a cyclic submodule of M . Then (0, n) =

(a1, n1) · · · (as, ns) where each (ai, ni) is an irreducible of RnM . Now a1 · · · as = 0, so say as = 0.

Then n = a1 · · · as−1ns. So Rn ⊂ Rns. Since (0, ns) = (as, ns) is an irreducible, then by Theorem

3.3.4 (2), ns is primitive. Hence Rns is a maximal cyclic submodule of M .

Next, we consider a particular construction using trivial ring extension, R = D n D/m where

D is a local integral domain and m is a maximal ideal of D. The next result shows that R is an

atomic ring and that R satisfies the ACCP if and only if D satisfies the ACCP.

Theorem 3.3.11 ([3]). Let (D,m) be a local integral domain with maximal ideal m and let R =

D nD/m. Then

1. R is always atomic.

2. R satisfies the ACCP if and only if D satisfies the ACCP.

Proof. 1. Let (r, n̄) be a nonzero nonunit of R. Then r /∈ U(D). So r ∈ m since D−U(D) = m.

Either r = 0 or r 6= 0. First, assume r = 0, then n̄ 6= 0̄ since (r, n̄) is nonzero. We claim that

(r, n̄) = (0, n̄) is irreducible. Suppose (0, n̄) = (a, x̄)(b, ȳ). Then 0 = ab. Since D is an integral

domain, either a = 0 or b = 0. If a = b = 0, then (0, n̄) = (0, 0̄), a contradiction. So only one

of a and b is 0, say a is 0. Then (0, n̄) = (0, x̄)(b, ȳ) = (0, bx̄), so n̄ = bx̄, hence n − bx ∈ m.

Since n̄ 6= 0̄, then n /∈ m, so b /∈ m for if b ∈ m, then bx ∈ m, but then n = bx+ (n− bx) ∈ m,

a contradiction. Hence b ∈ U(D), thus (b, ȳ) is a unit of R. Similarly, if b = 0, then (a, x̄) is

a unit of R. So (r, n̄) = (0, n̄) is an irreducible. Next, assume r 6= 0. If (r, n̄) = (a, x̄)(b, ȳ),

then r = ab. But r ∈ m, so either a ∈ m or b ∈ m. If a ∈ m but b /∈ m, then b ∈ U(D), so
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(b, ȳ) is a unit of R . Similarly, if a /∈ m but b ∈ m, then (a, x̄) is a unit of R. It follows that

(r, n̄) is an irreducible. If both a, b ∈ m, then aȳ = bx̄ = 0̄. So

(r, n̄) = (a, x̄)(b, ȳ) = (ab, 0̄) = (ab, a1̄ + b1̄) = (a, 1̄)(b, 1̄).

But (s, 1̄) is an irreducible for all 0 6= s ∈ m. Indeed, if (s, 1̄) = (c, k̄)(d, l̄), then (s, 1̄) =

(cd, cl̄ + dk̄). If both c, d ∈ m, then (s, 1̄) = (cd, 0̄), a contradiction. So either c /∈ m =

D − U(D) or d /∈ m = D − U(D), hence either (c, k̄) or (d, l̄) is a unit of R. Therefore,

R = D nD/m is an atomic ring.

2. Since the only cyclic submodules of D/m are D0̄ and Dn̄ = D/m where 0̄ 6= n̄ ∈ D/m. So

D/m satisfies the ACCC. It follows by Theorem 3.3.7, that R satisfies the ACCP if and only

if D satisfies the ACCP.

The last theorem shows that an atomic ring need not satisfy the ACCP.

Definition 3.3.12 ([6]). Let R be a ring. We say that R is r-atomic if every regular nonunit of

R is a product of irreducibles and that R satisfies the r-ACCP if every ascending chain of regular

principal ideals terminates.

Remark 3.3.13. Let R be a ring.

1. If R is atomic, then R is r-atomic. Where the converse is not true in general.

2. If a and b are two regular elements of R, then a ∼ b if and only if a = ub for some unit u of

R.

The following theorem shows how a trivial ring extension can be used to give examples of rings

satisfying the factorization properties for the regular elements.

Theorem 3.3.14 ([6]). Let R be an integral domain and M an R-module.

1. If R satisfies the ACCP, then RnM satisfies the r-ACCP.

Suppose further that M = MS where S = R− (Z(R) ∪ ZR(M)) = R− ZR(M).

2. If R is atomic, then RnM is r-atomic.
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Proof. 1. Assume R satisfies the ACCP. Let (RnM)(a,m) be a regular principal ideal of RnM .

Then there is (b, n) ∈ R nM such that (b, n)(a,m) is regular. So ba 6= 0 and hence a 6= 0.

By Theorem 3.3.7 (1), RnM satisfies the r-ACCP.

2. Suppose that M = MS where S = R − Z(M). Let (r,m) be a regular nonunit of R nM .

Then r ∈ S and r is a nonunit of R. Since M = MS , m = rm′ for some m′ ∈ M . So

(r,m) = (r, 0)(1,m′). Hence (r, 0) ∼ (r,m). By the remark above, (r,m) = u(r, 0) for some

unit u of RnM . Now, R is atomic implies that r = r1 · · · rn where each ri is an irreducible of

R. So each (ri, 0) is a regular irreducible of RnM . Hence, (r,m) = u(r, 0) = u(r1, 0) · · ·(rn, 0)

is a product of irreducibles. Therefore, RnM is r-atomic.

The following example gives a ring R that is r-atomic but not atomic.

Example 3.3.15 ([4, Example 5.5]). Let R = Zn(Z2⊕Q). Now since Z is atomic, then by Theorem

3.3.14(2), R is r-atomic. Next, note that Z(1, 0) is a maximal cyclic submodule of Z2 ⊕Q, but no

other nonzero cyclic submodule is contained in a maximal cyclic submodule since Z(1, a) ⊂ Z(1, a/3)

and Z(0, a) ⊂ Z(0, a/3) for any a ∈ Q−{0}. So Z2⊕Q does not satisfy the MCC. Hence by Theorem

3.3.10, R is not atomic.
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Chapter 4

Applications

In this chapter, we determine the structure of Boolean-like rings using the trivial ring extension,

also we determine clean and nil-clean rings of the form RnM .

4.1 Structure of Boolean-like rings

This section is devoted to study the structure of Boolean-like rings using trivial ring extension. We

start by recalling the following definition.

Definition 4.1.1 ([2]). Let R be a ring.

1. R is called a Boolean-like ring if char R = 2 and xy(1 + x)(1 + y) = 0 for all x, y ∈ R.

2. R is called an n-Boolean ring if char R = 2 and x1 · · · xn(1 + x1) · · · (1 + xn) = 0 for all

x1, ..., xn ∈ R.

Remark 4.1.2. Boolean rings are 1-Boolean rings, and Boolean-like rings are 2-Boolean rings.

The following proposition gives an equivalent condition for a ring R to be n-Boolean.

Proposition 4.1.3 ([6]). Let R be a ring. Then R is n-Boolean if and only if char R = 2, R/nil(R)

is Boolean, and nil(R)n = 0

Proof. Suppose that R is n-Boolean. Then by Definition 4.1.1, char R = 2. Now, let x ∈ R.

Then xn(1 + x)n = 0 since R is n-Boolean. So (x(1 + x))n = 0. But then x(1 + x) ∈ nil(R). So

x(1 + x) = 0̄ or x̄(1̄ + x̄) = 0̄. Hence R/nil(R) is 1-Boolean or equivalently, R/nil(R) is Boolean.

Next, let x1, ..., xn ∈ nil(R). We have x1 · · · xn(1 + x1) · · · (1 + xn) = 0 since R is n-Boolean. As
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xi ∈ nil(R) for all i = 1, ..., n, 1+xi ∈ U(R) for all i = 1, ..., n. So x1 ···xn(1+x1)···(1+xn) = 0 gives

that x1 · · · xn = 0. Hence nil(R)n = 0. Conversely, let x1, ..., xn ∈ R. Then x̄1, ..., x̄n ∈ R/nil(R).

But R/nil(R) is Boolean, so x̄i(1̄ + x̄i) = 0̄ for all i = 1, ..., n. But then xi(1 + xi) ∈ nil(R) for all

i = 1, ..., n. So x1 · · · xn(1 + x1) · · · (1 + xn) = x1(1 + x1) · · · xn(1 + xn) ∈ nil(R)n = 0. Thus, R is

n-Boolean.

Next, we determine a sufficient condition for R nM to be n-Boolean ring. We start by the

following lemma.

Lemma 4.1.4. Let R be a ring and M an R-module. Then for each k ∈ N, nil(R n M)k =

nil(R)k n nil(R)k−1M .

Proof. To prove this lemma, we will use induction. By Theorem 2.1.19 (1), we have nil(RnM) =

nil(R)nM . For k = 2,

(nil(R)nM)2 = nil(R)2 n 2nil(R)M = nil(R)2 n nil(R)1M.

So its true for k = 2. If (nil(R)nM)k = nil(R)k n nil(R)k−1M , then

(nil(R)nM)k+1 = (nil(R)k n nil(R)k−1M)(nil(R)nM)

= nil(R)k+1 n 2nil(R)kM

= nil(R)k+1 n nil(R)kM

= nil(R)k+1 n nil(R)kM.

Hence for each k ∈ N, nil(RnM)k = (nil(R)nM)k = nil(R)k n nil(R)k−1M .

Theorem 4.1.5 ([2]). Let R be a ring and M an R-module. If R is n-Boolean, then R nM is

(n+1)-Boolean. Moreover, RnM is n-Boolean if and only if nil(R)n−1M = 0

Proof. Suppose that R is n-Boolean. Then char R = 2. So for any x ∈M , 2x = 2(1.x) = (2.1)x =

0x = 0. Hence char (RnM) = 2. Now (RnM)/nil(RnM) = (RnM)/nil(R)nM ∼= R/nil(R) is

a Boolean ring. Next, since R is n-Boolean, nil(R)n = 0. Hence by Lemma 4.1.4, nil(RnM)n+1 =

nil(R)n+1 n nil(R)nM = 0. So R is n-Boolean implies that R nM is an (n+1)-Boolean ring and

RnM is n-Boolean ⇔ nil(RnM)n = 0 ⇔ nil(R)n−1M = 0.
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The following theorem gives a structure theory for Boolean-like rings using trivial ring extension.

Theorem 4.1.6 ([2]). (Structure theory for Boolean-like rings) If B is a Boolean ring and M is

a B-module, then B n M is a Boolean-like ring. Conversely, suppose that R is a Boolean-like

ring. Then R = R/nil(R) is a Boolean ring and R ∼= Rn nil(R) where nil(R) is considered as an

R-module ( since nil(R)2 = 0 ). Equivalently, if B = {b ∈ R | b = b2}, then B is a Boolean subring

of R ( with B ∼= R ) and R ∼= B n nil(R) where nil(R) is considered as a B-module.

Proof. If B is a Boolean ring, then B is a 1-Boolean ring and by Theorem 4.1.5, B is a 2-Boolean

ring or equivalently, B is a Boolean-like ring.

Conversely, suppose that R is a Boolean-like ring. Then char R = 2, R = R/nil(R) is a

Boolean ring, and nil(R)2 = 0. Since char R = 2, then B = {b ∈ R | b = b2} is a Boolean

subring of R. Let r ∈ R. Then r̄ = r̄2 in R. So n = r − r2 ∈ nil(R) and r = r2 + n where

n ∈ nil(R). We claim that r2 ∈ B. Since R is a Boolean-like ring and r ∈ R, then r2(1 + r)2 = 0.

But char R = 2, so (x + y)2 = x2 + y2 and x = −x for all x, y ∈ R. Now, r2(1 + r)2 = 0

⇒ r2(1 + r2) = 0 ⇒ r2 + r4 = 0 ⇒ r2 = −r4 = r4. So r2 ∈ B. Hence r = b + n where

b = r2 ∈ B and n ∈ nil(R). This shows that R = B + nil(R). Moreover, B ∩ nil(R) = 0.

So R = B ⊕ nil(R). Now B/(B ∩ nil(R)) ∼= (B + nil(R))/nil(R) gives B ∼= R/nil(R) = R.

Because nil(R) is an R-module, nil(R)/nil(R)2 is an R/nil(R)-module. But nil(R)2 = 0, so

nil(R) is an R-module and hence nil(R) is a B-module. Finally, define ϕ : R → B n nil(R) by

r = b + n 7→ (b, n). Then clearly ϕ is well-defined ( as R = B ⊕ nil(R) ), bijection, and group

homomorphism. We show that ϕ preserve multiplication. Let r1 = b1 +n1, r2 = b2 +n2 ∈ R where

b1, b2 ∈ B and n1, n2 ∈ nil(R). Since nil(R)2 = 0, n1n2 = 0. Also, since nil(R) is an ideal of R,

b1n2 + b2n1 ∈ nil(R). Now ϕ(r1r2) = ϕ(b1b2 + b1n2 + b2n1 + n1n2) = ϕ(b1b2 + b1n2 + b2n1) =

(b1b2, b1n2 + b2n1) = (b1, n1)(b2, n2) = ϕ(r1)ϕ(r2).

The following is an illustrative example for Theorem 4.1.6.

Example 4.1.7. Let A = Z2[x], I = Ax2, and R = A/I. Then R = {0 + I, 1 + I, x+ I, 1 + x+ I}.

Since char A = 2, then char R = 2. Now, nil(R) = {0 + I, x+ I}. So nil(R)2 = 0 and R/nil(R) =

{0 + I + nil(R), 1 + I + nil(R)} ∼= Z2 is Boolean. It follows by Proposition 4.1.3, that R is a

Boolean-like ring. So by Theorem 4.1.6, R ∼= R/nil(R)n nil(R). In fact, R ∼= Z2 n Z2.

A natural question is whether Theorem 4.1.6 can be extended to n-Boolean rings for n > 2.

The answer of this question is No. The next example shows that a 3-Boolean ring need not be the

trivial ring extension of a 2-Boolean ring.
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Example 4.1.8 ([2], pages 74-75). Let R = Z2[x]
x3Z2[x]

×Z2. Then R satisfies the following statements:

1. R is a 3-Boolean ring.

2. R is not a 2-Boolean ring.

3. R is not the trivial ring extension of a 2-Boolean ring.

Proof. 1. Since char Z2[x] = 2 and char Z2 = 2, then char R = 2. Now

nil(R) = nil(
Z2[x]

x3Z2[x]
)× nil(Z2) =

xZ2[x]

x3Z2[x]
× 0.

So nil(R)3 = 0 and R/nil(R) ∼= Z2 × Z2 is a Boolean ring. Thus, by Proposition 4.1.3, R is

a 3-Boolean ring.

2. Let β = (x+ x3Z2[x], 0). Then β ∈ nil(R), so β2 ∈ nil(R)2. But

β2 = (x2 + x3Z2[x], 0) 6= (0 + x3Z2[x], 0).

So nil(R)2 6= 0 and hence R is not a 2-Boolean ring.

3. By contradiction, suppose that R ∼= A nM where A is a 2-Boolean ring and M is an A-

module. Note that |R| = 8 · 2 = 16. So |A| = 1, 2, 4, 8, or16. If |A| ≤ 2 or |A| = 16, then A

is Boolean or R ∼= A. If A is Boolean, then by Theorem 4.1.5, R ∼= A nM is a 2-Boolean

ring, a contradiction. If R ∼= A, R is a 2-Boolean ring, a contradiction. So either |A| > 2

or |A| 6= 16. Hence |A| = 4 or 8. Now if |A| = 4, then |M | = 4. By part (1), |nil(R)| = 4.

So |nil(A) nM | = 4 and then |nil(A)| = 1, that is nil(A) = 0. So A/nil(A) ∼= A. As A is

2-Boolean, then A ∼= A/nil(A) is Boolean and hence again by Theorem 4.1.5, R ∼= AnM is

2-Boolean, a contradiction. Next, if |A| = 8, then |M | = 2. Since A is 2-Boolean, nil(A)2 = 0.

Now

|nil(R)2| = |nil(AnM)2| = |nil(A)2 n nil(A)M | = |nil(A)M |.

By part (1), nil(R)2 6= 0, so |nil(A)M | = |nil(R)2| 6= 1. Since nil(A)M ⊆ M and |M | = 2,

then nil(A)M = M . So M = nil(A)M = nil(A)nil(A)M = nil(A)2M = 0, a contradiction

(as |M | = 2). Therefore, R is not the trivial ring extension of a 2-Boolean ring.
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4.2 Clean and nil-clean rings.

In this section we will study the Clean, Weakly clean, Nil-Clean, and Weakly Nil-Clean rings via

trivial ring extension. We start with the following definition.

Definition 4.2.1 ([22]). A ring R is called clean if each r ∈ R can be expressed as r = u + e,

where u ∈ U(R) and e ∈ Id(R).

Example 4.2.2. (Boolean rings are clean rings). Let B be a Boolean ring. Then U(B) = {1} and

Id(B) = B. Since each b ∈ B can be written as b = 1 + (b− 1), then B is a clean ring.

Definition 4.2.3 ([22]). A ring R is said to be weakly clean if for all x ∈ R, either x = u + e or

x = u− e for some unit u and some idempotent e.

The following theorem characterizes when RnM is a clean ring or weakly clean ring.

Theorem 4.2.4 ([1]). Let R be a ring and M an R-module. RnM is clean (weakly clean) if and

only if R is clean (weakly clean).

Proof. We know by Theorem 2.1.19, that U(R nM) = U(R) nM and Id(R nM) = Id(R) n 0.

If R nM is clean and r ∈ R. Then (r, 0) = (u,m) + (e, 0) for some (u,m) ∈ U(R nM) and some

(e, 0) ∈ Id(R nM). So r = u + e for some u ∈ U(R) and some e ∈ Id(R). Hence R is clean.

A similar argument shows that if R is weakly clean, then R nM is weakly clean. Conversely, if

R is clean and (r,m) ∈ R nM . Then r = u + e for some u ∈ U(R) and some e ∈ Id(R). So

(r,m) = (u + e,m) = (u,m) + (e, 0) for some (u,m) ∈ U(R nM) and some (e, 0) ∈ Id(R nM).

Hence RnM is clean. A similar argument shows that if RnM is weakly clean, then R is weakly

clean.

Theorem 4.2.4 can be used to give a class of a non-Boolean clean rings.

Example 4.2.5. Let R be a Boolean ring and M a nonzero R-module. Since M 6= 0, then RnM

is not a Boolean ring. By Example 4.2.2, R is Boolean gives that R is clean. So by Theorem 4.2.4,

RnM is a clean ring.

Definition 4.2.6 ([11]). A ring R is called nil-clean if each r ∈ R can be written as r = q + e,

where q ∈ nil(R) and e ∈ Id(R).

Definition 4.2.7 ([10]). A ring R is called weakly nil-clean ring if every r ∈ R can be presented

as either r = q + e or r = q − e, where q ∈ nil(R) and e ∈ Id(R).
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The following theorem characterizes when RnM is a nil-clean ring or weakly nil-clean ring.

Theorem 4.2.8. Let R be a ring and M an R-module. R nM is nil-clean (weakly nil-clean) if

and only if R is nil-clean (weakly nil-clean).

Proof. We know by Theorem 2.1.19, that nil(RnM) = nil(R)nM and Id(RnM) = Id(R)n 0.

Now, suppose that R nM is a nil-clean ring and let r ∈ R. Then (r, 0) = (q,m) + (e, 0) for some

(q,m) ∈ nil(R nM) and some (e, 0) ∈ Id(R nM). So r = q + e for some q ∈ nil(R) and some

e ∈ Id(R). Hence R is a nil-clean ring. A similar argument shows that if R is weakly nil-clean, then

R nM is weakly nil-clean. Conversely, suppose that R is a nil-clean ring and let (r,m) ∈ R nM .

Then r = q + e for some q ∈ nil(R) and some e ∈ Id(R). So (r,m) = (q + e,m) = (q,m) + (e, 0)

for some (q,m) ∈ nil(R nM) and some (e, 0) ∈ Id(R nM). Hence R nM is a nil-clean ring. A

similar argument shows that if RnM is nil-weakly clean, then R is nil-weakly clean.

Example 4.2.9. Let R = Z3, and let M be a nonzero R-module. Then R is a weakly nil-clean

ring but not nil-clean. So by Theorem 4.2.8, RnM is a weakly nil-clean ring but not nil-clean.
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