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Metabolic syndrome is a cluster of three or more metabolic disorders including insulin

resistance, obesity, and hyperlipidemia. Obesity has become the epidemic of the

twenty-first century with more than 1.6 billion overweight adults. Due to the strong

connection between obesity and type 2 diabetes, obesity has received wide attention

with subsequent coining of the term “diabesity.” Recent studies have identified unique

contributions of the immensely diverse gut microbiota in the pathogenesis of obesity

and diabetes. Several mechanisms have been proposed including altered glucose and

fatty acid metabolism, hepatic fatty acid storage, and modulation of glucagon-like

peptide (GLP)-1. Importantly, the relationship between unhealthy diet and a modified gut

microbiota composition observed in diabetic or obese subjects has been recognized.

Similarly, the role of diet rich in polyphenols and plant polysaccharides in modulating gut

bacteria and its impact on diabetes and obesity have been the subject of investigation

by several research groups. Gut microbiota are also responsible for the extensive

metabolism of polyphenols thus modulating their biological activities. The aim of this

review is to shed light on the composition of gut microbes, their health importance and

how they can contribute to diseases as well as their modulation by polyphenols and

polysaccharides to control obesity and diabetes. In addition, the role of microbiota in

improving the oral bioavailability of polyphenols and hence in shaping their antidiabetic

and antiobesity activities will be discussed.
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DEFINITION OF HUMAN MICROBIOTA

The human microbiota (microflora) refers to an aggregation of
a mixture of microorganisms (e.g., bacteria, fungi, archaea, and
viruses) that live in human tissues such as skin, uterus, lungs,
and in the gastrointestinal tract without causing pathological
responses in the host (Hugon et al., 2016). Instead these
organisms form a symbiotic relationship with their host. In this
relationship, the host provides a shelter and nutrition for the
microbes, while the microbes provide the host with essential
metabolites such as vitamin K, thiamine, biotin, folic acid, and
vitamin B12, digesting polysaccharides into simpler molecules,
boosting the immunity to combat pathogens, and competing
with the latter for survival (Santacruz et al., 2010; D’Aimmo
et al., 2012; LeBlanc et al., 2013). Beyond their traditional benefits,
recent studies have implicated microbes residing human gut
in modulating brain development (Wang and Wang, 2016),
altering metabolic functions (Martinez et al., 2016), hormones
and neurochemical production (Baothman et al., 2016). Some
30 years ago, human gut microbiota was largely ignored as a
causative factor for illnesses and as a target for pharmacological
intervention. Scientists were focused mainly on finding a novel
pathogenic bacteria residing in the gut as an underlying cause
of illnesses and as a target for drug development (Eggerth and
Gagnon, 1933; Dalton, 1951; Walther and Millwood, 1951). In
recent years, there has been an increasing trend in this area
of research, and the focus has been shifted toward identifying
microbial composition of the human gut microbiota (Figure 1),
the factors altering this composition, and relating it to the
pathogenesis of some diseases such as diabetes (Yamaguchi et al.,
2016), autism (Berding and Donovan, 2016), obesity (Valsecchi
et al., 2016), and other disorders (Gondalia et al., 2012; Baothman
et al., 2016). In this review, we discuss the current advances in
human gut microbiota, specifically their identity and diversity
within the gastrointestinal tract of healthy adults as well as
their contribution to metabolic diseases. We also review current
knowledge about the effects of polyphenols and polysaccharides
on gut microbiota and their role in controlling obesity and
diabetes.

IDENTITY OF MICROBES COLONIZING
HUMAN GUT

Microbes (bacteria, archaea, fungi, virus) colonizing human gut
establish a complex ecosystem with current evidences confirming
large diversity in their number and identity throughout the whole
gastrointestinal tract (Hugon et al., 2016). It is now accepted
that each individual hold a unique set of microbes (Callaway,
2015) whose composition is highly affected by many factors
such as ethnicity, age, environment, and diet (Ursell et al.,
2012; Yatsunenko et al., 2012). The exact composition of gut
microbiota seems far from being fully identified in view of fast
advances in “OMICS” techniques as well as improved culture
conditions allowing for identification of new sets of bacteria,
archaea, fungi, and viruses, their reclassification or renaming of
already taxonomically known microbes (Hugon et al., 2016).

Major Bacteria Colonizing Healthy Human
Gut
Earlier studies aiming to reveal the identity of microbiota in the
gut of healthy humans have relied on culturing the microbes
from fecal samples. Bacteria constitute most of the microbes
colonizing human gut with species belonging to Firmicutes and
Proteobacteria phyla being predominant (Eggerth and Gagnon,
1933; Zubrzycki and Spaulding, 1962). To a lesser extent, species
belonging to other phyla such as Actinobacteria, Bacteroidetes,
and Fusobacteria are also present (Eggerth and Gagnon, 1933;
Zubrzycki and Spaulding, 1962). In later studies, several bacterial
species, mostly anaerobic, have been identified in fecal samples
obtained from 20 healthy individuals using improved cultural
techniques (Moore and Holdeman, 1974; Holdeman et al., 1976).
At least 400 bacterial species were suggested to colonize human
gut and a total of 113 species have been fully recognized in
the tested samples (Moore and Holdeman, 1974; Holdeman
et al., 1976); major microbes identified being summarized in
Tables 1– 5.

Until recently, culture-based studies aimed to identify
bacterial species in human gut were considered to be limited in
their ability to fully evaluate bacterial diversity in human gut.
This was based on the fact that such techniques cannot recover all
species residing in the human gut (Gerritsen et al., 2011). Lau and
colleagues showed that culture-enriched techniques associated
with molecular profiling are alternative effective techniques to
study microbial diversity in human gut (Lau et al., 2016).
Fecal samples from two healthy donors have been cultured
aerobically and anaerobically in 33 different culture media
creating 66 different culture conditions. Cultured samples were
then analyzed using 16S rRNA gene sequencing. In the previous
study (Lau et al., 2016), 95% of the bacteria residing human
gut has been recovered with 79 new Lachnospiraceae isolates
being identified. Using a similar approach involving culturing
fecal samples obtained from two healthy African donors under
212 different culture conditions, 340 species belonging to seven
phyla, and 117 genera have been identified in addition to 24
“novel” microbes (Lagier et al., 2012). Advances in culture
conditions have proven to be effective techniques, with currently
over than 1,000 microbes reported to be effectively cultured
(Rajilic-Stojanovic and de Vos, 2014). These microbes cluster
in four main phyla with 450 species in Firmicutes, 214 in
Proteobacteria, 164 in Actinobacteria, and 99 in Bacteroidetes
(Rajilic-Stojanovic and de Vos, 2014). Collectively, these culture-
based studies indicated that human gut is a complex ecological
system colonized by thousands of microbes which are quite
variable and diverse in-term of their quantity and identity.

Recent studies involving state-of-the-art techniques such
as 16S rDNA gene, metagenomic sequencing, and molecular
fingerprinting have rapidly increased our knowledge about the
identity of the microbes residing in our gut (Hayashi et al.,
2002; Knapp et al., 2010; Qin et al., 2010). These studies
not only confirmed the identity of the microbes established
by cultural techniques, but have also confirmed the incidence
on “novel” microbes never detected by culture techniques.
Authors characterized several “novel” microbes belonging to
Clostridium genus in fecal samples obtained from three healthy
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FIGURE 1 | Number of publications related to the human gut microbiota in the last decade, per year. Data were obtained by searching Pubmed

(http://www.ncbi.nlm.nih.gov/pubmed/) database using the term “human gut microbiota” on 4th November 2016.

Japanese individuals by using 16S rDNA libraries and culture-
based techniques (Hayashi et al., 2002). In 2004, Akkermansia
muciniphila a novel mucin-degrading bacterium was also
identified from a healthy human volunteer using 16S rRNA-
dependent approaches (Derrien et al., 2004). A. muciniphila
is a Gram-negative bacterium that resides in the mucus layer
and constitutes 3–5% of gut microbiota and is thus considered
to be the most abundant mucus-degrading bacteria in healthy
humans (Schneeberger et al., 2015). Interestingly, the abundance
of A. muciniphila was found to decrease in obese and diabetic
animals following high-fat diet feeding as well as in obese and
diabetic human subjects (Schneeberger et al., 2015). In larger
scale studies (Qin et al., 2010; Human Microbiome Project
Consortium, 2012), the diversity of the microbes in human gut
was examined using metagenomic analysis. Species belonging to
Firmicutes, Actinobacteria, Bacteroides, and Proteobacteriaphyla
were reported (Tables 1–4). However, other species belonging to
Tenercutes, Spirochaetes, Cyanobacteria, and Verrucomicrobia
phyla were reported to be present but at lesser densities (Human
Microbiome Project Consortium, 2012).

Firmicutes Phylum
Firmicutes phylum (Table 1) represents the most diverse
and the largest group of microbes making up 60–80%
of the total microbes colonizing the GIT of healthy
adults. Firmicutes include Gram-positive species with few
exceptions such as Faecalibacterium prausnitzii (Duncan
et al., 2002) previously known as Fusobacterium prausnitzii
in the phylum Fusobacteria, and Christensenella minuta
(Morotomi et al., 2012), C. massiliensis (Ndongo et al.,
2016b), and C. timonensis (Ndongo et al., 2016a). Firmicutes
phylum is classified into two main classes, Clostridia
which includes the genera belonging to Christensenellaceae,
Clostridiaceae, Eubacteriaceae, Lachnospiraceae, Peptococcaceae,
Peptostreptococcaceae, Ruminococcaceae, and Veillonellaceae
families and Bacilli which are divided into two main
orders; Bacillales which includes the genera belonging

to Paenibacillaceae, Planococcaceae, Bacillaceae, and
Staphylococcaceae, and Lactobacillales which includes genera
belonging to Aerococcaceae, Carnobacteriaceae, Lactobacillaceae,
Leuconstocaceae, Lactococccaceae, and Streptococcaceae. A
third class called Erysipelotrichales (e.g., Dielma fastidiosa)
has been reported to present in human gut (Ramasamy et al.,
2013).

Proteobacteria Phylum
Proteobacteria phylum (Table 2) comprises highly diverse Gram-
negative microbes colonizing the GIT of healthy adults. It
contains five major classes, α, β, γ, δ, and ε Proteobacteria
with γ-class dominating other classes (Shin et al., 2015).
Members of the phylum Proteobacteria, mostly belonging
to γ-proteobacteria, have a low abundance in the gut of
healthy humans (Shin et al., 2015). The γ-proteobacteria
constitute the most diverse group of bacteria in the phylum
Proteobacteria with six orders and nine families included.
Several members in Aeromonadaceae and Vibreonaceae have
been considered as pathogens detected in human intestine (Janda
and Abbott, 1998, 2010; Hou et al., 2011). The γ-proteobacteria
contain several genera which belong to Enterobacteriaceae,
Pasteurellaceae Succinivibrionaceae, Pseudomonadaceae, and
Moraxellaceae families. Many species of Enterobacteriaceae are
a normal part of the gut flora found in the intestines of
humans with their intensity increasing with age (Hopkins
et al., 2001). Escherichia coli is one of the most important
species colonizing the healthy human gut. The healthy human
gut contains non-harmful strains of E. coli. Several other
strains of E. coli have been associated with the outbreaks of
diarrhea in children (Fagundes Neto et al., 1979; Bratoeva et al.,
1994).

The class δ-proteobacteria includes a branch of
predominantly aerobic sulfate-reducing bacteria that belongs to
Desulfovibrionaceae family (Beaumont et al., 2016). The interest
in this class was due to the ability of its species to generate
the highly toxic hydrogen sulfide (H2S) molecules as part of
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TABLE 1 | Firmicutes phylum (class, order, family) and major species constituting the microbiota in healthy human gut.

Class Order Family Species References

Clostridia Clostrdiales Peptostreptococcaceae Peptostreptococcus productus I Holdeman et al., 1976

Peptostreptococcus productus II Moore and Holdeman, 1974; Holdeman et al., 1976

Anaerococcus senegalensis Lagier et al., 2012

Ruminococcaceae Ruminococcus AJ Moore and Holdeman, 1974; Holdeman et al., 1976

Ruminococcus albus Moore and Holdeman, 1974; Holdeman et al., 1976

Ruminococcus obeum Holdeman et al., 1976

(Blautia obeum) Lawson and Finegold, 2015

Ruminococcus torques Moore and Holdeman, 1974; Holdeman et al., 1976

Ruminococcus bromii Moore and Holdeman, 1974; Holdeman et al., 1976

Ruminococcus massiliensis Lagier et al., 2012

Eubacteriaceae Eeubaterium limosum Moore and Holdeman, 1974; Holdeman et al., 1976

Eubacterium aerofaciens Moore and Holdeman, 1974; Holdeman et al., 1976

(Collinsella aerofaciens) Kageyama et al., 1999

Eubacterium aerofaciens II Moore and Holdeman, 1974; Holdeman et al., 1976

Eubacterium aerofaciens III Moore and Holdeman, 1974; Holdeman et al., 1976

Eubacterium siraeum Moore and Holdeman, 1974; Holdeman et al., 1976

Eubacterium rectile I Moore and Holdeman, 1974

Eubacterium rectale II Moore and Holdeman, 1974; Holdeman et al., 1976

Eubacterium rectale III-H Moore and Holdeman, 1974; Holdeman et al., 1976

Eubacterium rectale IV Moore and Holdeman, 1974; Holdeman et al., 1976

Eubacterium rectale III-F Moore and Holdeman, 1974; Holdeman et al., 1976

Eubacterium eligens Holdeman et al., 1976

Eubacterium biforme Moore and Holdeman, 1974; Holdeman et al., 1976

Eubacterium formicigenerans Holdeman et al., 1976

Eubacterium ballii Holdeman et al., 1976

Eubacterium ventriosum I Moore and Holdeman, 1974; Holdeman et al., 1976

Eubacterium formicigenerans Moore and Holdeman, 1974

(Dorea formicigenerans) Taras et al., 2002

Clostridiaceae Clostridium leptum Holdeman et al., 1976

Clostridium ramosum I Holdeman et al., 1976

Clostridium orbisindens Hayashi et al., 2002

Clostridium senegalense Lagier et al., 2012

Faecalibacterium prausnitzii Duncan et al., 2002

Dorea longicatena Qin et al., 2010

Lachnospiraceae Coprococcus eutactus Moore and Holdeman, 1974; Holdeman et al., 1976

Coprococcus comes Moore and Holdeman, 1974

Coprococcus catus Moore and Holdeman, 1974

Christensenellaceae Christensenella minuta Morotomi et al., 2012

Christensenella timonensis Ndongo et al., 2016a

Christensenella massiliensis Ndongo et al., 2016b

Bacilli Lactobacillales Lactobacillaceae Lactobacillus acidophilus Rajilic-Stojanovic and de Vos, 2014

Lactobacillus leichmannii Holdeman et al., 1976

Lactobacillus salivarius Rajilic-Stojanovic and de Vos, 2014

Lactobacillus bulgaricus Rajilic-Stojanovic and de Vos, 2014

Lactobacillus casei Moore and Holdeman, 1974

Lactobacillus rhamnosus Rajilic-Stojanovic and de Vos, 2014

Lactobacillus plantarum Rajilic-Stojanovic and de Vos, 2014

Lactobacillus fermentum Moore and Holdeman, 1974

Streptococcacaea Streptococcus dysgalactiae Lagier et al., 2012

(Continued)
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TABLE 1 | Continued

Class Order Family Species References

Streptococcus agalactiae Lagier et al., 2012

Streptococcus gordonii Lagier et al., 2012

Bacillales Bacillaceae Bacillus massiliosenegalensis Lagier et al., 2012

Bacillus timonensis Lagier et al., 2012

Oceanobacillus massiliensis Lagier et al., 2012

Palanococcaceae Kurthia massiliensis Lagier et al., 2012

Kurthia senegalensis Lagier et al., 2012

Kurthia timonensis Lagier et al., 2012

Paenibacillaceae Paenibacillus senegalensis Lagier et al., 2012

Erysipelotrichai Erysipelotrichales Erysipelotrichaceae Dielma fastidiosa Lagier et al., 2012; Ramasamy et al., 2013

their metabolic pathways. Overproduction of H2S has been
associated with pathogenesis of ulcerative colitis and colon
cancer (Beaumont et al., 2016).

The class β-Proteobacteria contains species belonging to
Neisseria genera (Table 2). Neisseria meningitis and Neisseria
gonorrhea are amongst the most studied species classified
within this group (Corless et al., 2001; Unemo et al.,
2014). Both species are Gram-negative coccoid bacteria, once
thought to be restricted to humans and are part of the
microflora of the upper respiratory and genito-urinary tracts
but have not yet been recognized in the intestine. Despite
being considered as part of the normal intestinal flora,
Neisseria subflave has been linked to meningitis (Baraldes
et al., 2000). Sutterellaceae species are frequently detected in
human gut. They have received much attention in recent year
because their density is reported to increase in inflammatory
bowel diseases and in children suffering from autism and
down-syndrome (De Angelis et al., 2013; Hiippala et al.,
2016).

Actinobacteria Phylum
Actinobacteria phylum (Table 3) constituting healthy human gut
microbiota includes diverse Gram-positive species that comprise
three orders and 19 families. The Bifidobacterium species are
one of the major genera of bacteria that are frequently detected
exclusively in human gut and have been isolated from infant feces
since 1900 (Rajilic-Stojanovic et al., 2007). Some Bifidobacterium
species are critical to the health of the gut and are now considered
as essential constituents of the probiotics used in the treatment
of inflammatory bowel disease with no obvious side effects
(Ghouri et al., 2014). In contrast to Bifidobacteriales species,
the Actinomycetales species, despite being a highly diverse
group of bacteria, have a relatively low abundance in healthy
human gut: (102–103) cells/g of fecal sample (Hoyles et al.,
2012). Amongst most detected genera are Corynebacterium and
Propionibacterium (Eggerth, 1935; Moore and Holdeman, 1974;
Holdeman et al., 1976). Species in Propionibacterium are capable
of producing propionic acid from lactic acid and also vitamin
B12 (Kiatpapan and Murooka, 2002), making them an ideal
species to be included in probiotics (Kiatpapan and Murooka,
2002).

Bacteroidetes Phylum
Bacteroidetes phylum (Table 4) includes several large classes
of Gram-negative, non-spore forming, anaerobic or aerobic,
and rod-shaped bacteria that are widely distributed in the
environment and in the human guts (Belizário and Napolitano,
2015). By far, species in the class Bacteroidia have been most
extensively studied due to their relevance to human metabolic
processes. These species play a vital role in metabolizing complex
molecules such as proteins and polysaccharides such as cellulose,
pectin and xylans into simpler molecules used as source of energy
(Wexler, 2007; Xu et al., 2007; Sakamoto and Ohkuma, 2012).
Bacteroidia colonizing human gut include species clustered
in Bacteroidaceae, Porphyromonadaceae, Prevotellaceae, and
Rikenellaceae families. They are symbiotic and diverse bacteria
making up a substantial portion of the normal flora residing
in lower GIT (1010–1011 cells per gram of human feces;
Holdeman et al., 1976). Other bacterial species belonging to
classes sphingobacteria and flavobacteria have occasionally been
detected in healthy human gut (Lagier et al., 2012), however their
significance in the gut has yet to be demonstrated.

Fusobacteria Phylum
Fusobactera phylum (Table 5) includes Gram-negative, non-
sporeforming, anaerobic bacilli frequently detected in human gut
(Walter et al., 2002). This phylum includes species belonging
to Fusobacteriaceae and Leptotrichiaceae families. Species within
Fusobacteriaceae were considered to be limited to the oral cavity
until 1966 when it was shown that they could be detected in
fecal samples (Van Houte and Gibbons, 1966). Fusobacteriaceae
species appear to be directly related to the health of the
gut. Their density increases in inflammatory diseases such as
appendicitis (Swidsinski et al., 2012), ulcerative colitis (Rajilic-
Stojanovic et al., 2013) and colon cancer (Kostic et al., 2012).
Leptotrichiaceae species appears to be detected mainly in human
elderly gut (Hayashi et al., 2005) and female reproductive system
(Thilesen et al., 2007).

Archaea, Viruses, and Fungi Colonizing
Healthy Human Gut
Healthy human gut microbiota includes archaea, fungi, and
viruses as consistent residents (Parfrey et al., 2011; Lloyd-Price
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TABLE 2 | Proteobacteria phylum (class, order, family) and major species constituting the microbiota in healthy human gut.

Class Order Family Species References

α-Proteobacteria Rhizobiales Hyphomicrobiaceae Gemmiger formicilis Holdeman et al., 1976

Methylobacteriaceae Microvirga massiliensis Caputo et al., 2016

Methylobacterium adhaesivum Kaakoush et al., 2012

Methylobacterium hispanicum Kaakoush et al., 2012

Methylobacterium radiotolerans Lagier et al., 2012

β-Proteobacteria Burkholderiales Alcaligenaceae Alcaligenes faecalis

Oxalobacteriaceae Herbaspirillum massiliensis Lagier et al., 2012

Sutterellaceae Parasutterella excrementihominis Nagai et al., 2009

Sutterella wadsworthensis Wexler et al., 1996

Parasutterella secunda Morotomi et al., 2011

Neisseriaceae Neisseria flavascens Lagier et al., 2012

Neisseria subflava Wang et al., 2005

Neisseria preflava Lagier et al., 2012

Neisseria mucosa Lagier et al., 2012

Neisseria cinera Lagier et al., 2012

γ-Proteobacteria Aeromondales Succinivibrionaceae Succinatimonas hippie Morotomi et al., 2010

Anaerobiospirillum succiniciproducens Morotomi et al., 2010

Enterobacteriales Enterobacteriaceae Escherichia coli Moore and Holdeman, 1974

Escherichia fergusonii Lagier et al., 2012

Enterobacter massiliensis Lagier et al., 2012

Enterobacter cloaceae Lagier et al., 2012

Shigella sonnei Hooda et al., 2012

Pasteurellales Pasteurellaceae Haemophilus parainfluenzae Lagier et al., 2012

Pseudomonadales Moraxellaceae Morexella osloensis Lagier et al., 2012

Actinobacter radioresistens Lagier et al., 2012

Actinobacter calcoaceticus Lagier et al., 2012

Actinobacter septicus Lagier et al., 2012

Pseudomonadaceae Pseudomonas aeruginosa Lagier et al., 2012

Pseudomonas oleovorans Lagier et al., 2012

Pseudomonas stutzeri Lagier et al., 2012

δ-Proteobacteria Desulfovibrionales Desulfovibrionaceae Desulfovibrio desulfuricans Newton et al., 1998

Desulfovibrio fairfieldensis Loubinoux et al., 2002

Desulfovibrio piger Loubinoux et al., 2002

Bilophla wadsworthia Baron et al., 1989

ε-Proteobacteria Campylobacterales Campylobacteraceae

Halicobacteraceae

et al., 2016; Rehman et al., 2016), even though in some cases
at low densities. A small number of archaeal genera have been
identified in the healthy human microbiota, primarily in the gut.
Historically, archaea were classified as bacteria with the name
(archaebacteria) before being reclassified in a specific domain
(Woese et al., 1990; Pace, 2006), since they have characteristic
features unique enough to separate them from bacteria and
Eukaryota domains (Cavicchioli, 2011). In total, eight archaeal
species have been associated with the human GIT (Rajilic-
Stojanovic and de Vos, 2014). Species of the Methanobrevibacter
genus, namely; Methanobervibacter smithii, M. ruminantium,

M. stadtmaniae, and M. luminyensis, are the most prevalent
(Rajilic-Stojanovic and de Vos, 2014; Horz, 2015) in the healthy
gut. M. smithii in particular, has been found to be well-adapted
to inhabit the human gut. These species are implicated in
optimizing the digestion process of dietary polysaccharides in
association with other microbes (Samuel et al., 2007) and they
are capable of producing methane (methanogenes) from CO2

and H2. Their abundance in infants is relatively low (102–
106 cell/g of fecal sample) and increases during adulthood
reaching up to 1010 cells/g fecal samples. Such changes in
densities explain the absence of methane gas, as detected by a
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TABLE 3 | Actinobacteria phylum (class, order, family) and major species constituting the microbiota in healthy human gut.

Class Order Family Species References

Actinobacteria Bifidobacteriales Bifidobacteriaceae Bifidobacterium adolescentis Holdeman et al., 1976; Ramirez-Farias et al., 2009;

Duranti et al., 2016

Bifidobacterium infantis Moore and Holdeman, 1974; Holdeman et al., 1976;

Hayashi et al., 2002

Bifidobacterium longum Moore and Holdeman, 1974; Holdeman et al., 1976

Bifidobacterium breve Moore and Holdeman, 1974

Bifidobacterium bifidum Hayashi et al., 2002

Actinomycetales Actinomycettaceae Arcanobacterium haemolyticum Lagier et al., 2012

Actinomyces odontolyticus Lagier et al., 2012

Dermabacteraceae Dermabacter hominis Lagier et al., 2012

Corynebacteriacaea Senegalemassilia anaerobia Lagier et al., 2012

Corynebacterium appendicis Lagier et al., 2012

Corynebacterium glaucum Lagier et al., 2012

Corynebacterium aurimucosum Lagier et al., 2012

Corynebacterium freneyi Lagier et al., 2012

Corynebacterium glucuronolyticum Lagier et al., 2012

Corynebacterium minutissimum Lagier et al., 2012

Corynebacterium propinquum

Corynebacterium mucifaciens Lagier et al., 2012

Corynebacterium tuberculostearicum Lagier et al., 2012

Corynebacterium coyleae Lagier et al., 2012

Micrococcacaea Rothia aeria Lagier et al., 2012

Rothia dentocariosa Lagier et al., 2012

Rothia mucilaginosa Lagier et al., 2012

Micrococcus luteus Lagier et al., 2012

Kocuria halotolerans Lagier et al., 2012

Kocuria kristinae Lagier et al., 2012

Kocuria marina Lagier et al., 2012

Kocuria palustris Lagier et al., 2012

Kocuria rhizophila Lagier et al., 2012

Dermacoccus nishinomiyanensis Lagier et al., 2012

Arthrobacter castelli Lagier et al., 2012

Arthrobacter oxydans Lagier et al., 2012

Microbacteriaceae Microbacterium oleivorans Lagier et al., 2012

Microbacterium paraoxydans Lagier et al., 2012

Microbacterium phylosphaerae Lagier et al., 2012

Microbacterium schleigeri Lagier et al., 2012

Microbacterium folliorum Lagier et al., 2012

Microbacterium gubbeenense Lagier et al., 2012

Agrococcus jenensis Lagier et al., 2012

Propionibacteriaceae Propionibacterium acnes Moore and Holdeman, 1974; Holdeman et al., 1976

Propionibacterium avidum Eggerth, 1935

Nocardioidaceae Aeromicrobium massiliense Lagier et al., 2012

Rhodococcus equi Lagier et al., 2012

Rhodococcus rhodocrous Lagier et al., 2012

Gordoniaceae Gordonia rubripertincta Lagier et al., 2012

Dietziaceae Dietzia natrolonimnaea Lagier et al., 2012

Dietzia cinnamea Lagier et al., 2012

Dietzia maris Lagier et al., 2012

Brevibacteriaceae Brevibacterium senegalense Lagier et al., 2012

Brevibacterium linens Lagier et al., 2012

(Continued)
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TABLE 3 | Continued

Class Order Family Species References

Brevibacterium epidermidis Lagier et al., 2012

Brevibacterium halotolerans Lagier et al., 2012

Brevibacterium iodinosis Lagier et al., 2012

Brevibacterium casei Lagier et al., 2012

Brevibacterium ravenspurgense Lagier et al., 2012

Cellulomonadaceae Cellulomonas massiliensis Lagier et al., 2012

Cellulomonas composti Lagier et al., 2012

Cellulomonas denverensis Lagier et al., 2012

Cellulomonas parahominis Lagier et al., 2012

Cellulosimicrobium cellulans Lagier et al., 2012

Sanguibacteraceae Timonella senegalensis Lagier et al., 2012

Streptomycetaceae Streptomyces missionensis Lagier et al., 2012

Promicromonosporaceae Promicromonospora flava Lagier et al., 2012

Micromonosporaceae Micromonospora aurantiaca Lagier et al., 2012

Intrasporangiaceae Kytococcus schroeteri Lagier et al., 2012

Coriobacteriales Coriobacteriacaea Colinsella aerofaciens Lagier et al., 2012

Propionibacterium acnes Moore and Holdeman, 1974; Lagier et al., 2012

Propionibacterium avidum Eggerth, 1935

Propionibacterium granulosum Finegold et al., 1974; Lagier et al., 2012

Mycobacteriaceae Mycobacterium abcsessus Lagier et al., 2012

Mycobacterium fortuitum Lagier et al., 2012

breath test, during infancy in contrast to adulthood (Gaci et al.,
2014).

Archaeal science appears to be in its early stages. Unlike
bacteria, archaeal species are largely ignored as a topic in
microbiology, possibly due to the lack of appropriate genomic
tools to reveal their existence and their diversity (Horz, 2015).
Accordingly, it is quite likely that the archaeal domain represents
a diverse community with several yet unknown taxa, waiting to
be identified. Although, some archaeal species (methanogens)
appears to be associated with gut inflammatory diseases,
including constipation, the question arises as to whether it is
necessary to identify all taxa. Even if they are rare and/or
present only in very low abundance, their precise role in
disease development remains unknown (Gaci et al., 2014; Horz,
2015).

Many viral species have been reported to colonize the
healthy human gut system forming a symbiotic relationship
with their bacterial (bacteriophages) and human hosts. These
viruses constitute the so called “human gut virome” (Zou
et al., 2016). Each individual holds a unique viral profile,
highlighting the high interpersonal variability of the healthy
human gut virome (Minot et al., 2011; Scarpellini et al., 2015).
The human virome includes viruses from seven families, namely
Herpesviridae, Polyomaviridae, Papillomaviridae, Adenoviridae,
Anelloviridae, Parvoviridae, and Circoviridae. Not all families
have been detected in healthy human gut (Wylie et al., 2014).
In a large scale metagenomic study involving 102 healthy
individuals, roseolovirus (Herpesviridae), alphapapillomavirus
and gammapapillomavirus (Papillomaviridae), mastadenovirus

(Adenoviridae), polyomavirus (Polyomaviridae), gyrovirus
(Circoviridae), and some other unclassified viruses
were generally detected in fecal samples (Wylie et al.,
2014).

A better understanding of human virome composition
and dynamics should confirm that it is an important
factor contributing to human health (Scarpellini et al.,
2015). Indeed, several recent studies have implicated gut
virome in regulating/stabilizing their host bacterial species
and subsequently maintaining microbial diversity in the
gastrointestinal tract (Minot et al., 2011; Abeles and Pride, 2014;
Scarpellini et al., 2015).

In addition, several fungal species have been reported to
colonize healthy human gut, even if at low amounts (Ott et al.,
2008; Sokol et al., 2016). The most prevalent fungal species
detected in the healthy human gut are clustered into three phyla;
Ascomycota, Basidiomycota, and Zygomycota. Candida albicans
and Candida rugosa have routinely been detected in human gut
(Ott et al., 2008; Sokol et al., 2016). Most Candida species under
normal conditions form symbiotic/commensal relationships with
the host. However, when host environmental conditions favor
the outgrowth of C. albicans, excessive colonization can lead to
infection and invasion of host tissues (Ott et al., 2008; Sokol et al.,
2016).

DIVERSITY ALONG HUMAN GUT

The human gut is colonized by higher numbers of bacteria
and more diverse species compared to other parts of the body
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TABLE 4 | Bacteroidetes phylum (class, order, family) and major species constituting the microbiota in healthy human gut.

Class Order Family Species References

Bacteroidia Bacteroidales Bacteroidaceaae Bacteroides thetiotaomicron Moore and Holdeman, 1974; Holdeman et al., 1976; Xu et al.,

2003

Bacteroides fragilis Moore and Holdeman, 1974; Holdeman et al., 1976

Bacteroides clostridiiformis Moore and Holdeman, 1974; Hayashi et al., 2002

Bacteroides vulgatus Moore and Holdeman, 1974; Holdeman et al., 1976

Bacteroides distasonis Moore and Holdeman, 1974; Holdeman et al., 1976

(parabacteroides distasonis) Sakamoto and Benno, 2006

Bacteroides capillosus Holdeman et al., 1976

Bacteroides eggertbin Holdeman et al., 1976

Bacteroides uniformis Hayashi et al., 2002

Bacteroides stercoris Hayashi et al., 2002

Bacteroides eggerthii Hayashi et al., 2002

Bacteroides goldsteinii Moore and Holdeman, 1974

(Parabacteroides goldsteinii) Sakamoto and Benno, 2006

Bacteroides merdae Moore and Holdeman, 1974

(parabacteroides merdae) Sakamoto and Benno, 2006

Bacteroides intestinalis Qin et al., 2010

Parabacteroides distastonis Sakamoto and Benno, 2006

Parabacteroides johnsonii Lagier et al., 2012

Parabacteroides merdae Sakamoto and Benno, 2006

Parabacteroides goldsteinii Sakamoto and Benno, 2006

Porphyromonadacaea Gabonibacter massiliensis Mourembou et al., 2016

Porphyromonas somerae Lagier et al., 2012

Prevotellaceae Prevotella copri Hayashi et al., 2007

Prevotella stercorea Hayashi et al., 2007

Prevotella oris Hasegawa et al., 1997

Prevotella bivia Lagier et al., 2012

Prevotella melalingenica Lagier et al., 2012

Prevotella nigrescens Lagier et al., 2012

Prevotella veroralis Lagier et al., 2012

Prevotella amnii Knapp et al., 2010

Rikenellaceae Alistipes senegalensis Lagier et al., 2012

Alistipes timonensis Lagier et al., 2012

Alistipes shahii Song et al., 2006; Lagier et al., 2012

Alistipes obesiensis Lagier et al., 2012

Alistipes onderdonkii Song et al., 2006

Alistipes pytredinis Hayashi et al., 2002

Sphingobacteria Sphingobacteriales Sphingobactereaceae Sphingobacterium multivorum Lagier et al., 2012

Flavobacteria Flavobacterialis Flavobacteriaceae Flavobacterium lindanitolerans Lagier et al., 2012

(Quigley, 2013). Themicrobial composition of the gut flora varies
along the gut (Table 6), with stomach and small intestine having
relatively lower microbial diversity (Guarner and Malagelada,
2003; O’Hara and Shanahan, 2006). In contrast, the colon
is densely colonized by microbes reaching up to 1012 cells
per gram of intestinal content (O’Hara and Shanahan, 2006).
There are between 300 and 1,000 different bacterial species,
but the vast majority of bacteria (99%) come from 50 to 60
species (Guarner and Malagelada, 2003; Rajilic-Stojanovic et al.,
2007). Because of their abundance in the intestine, bacteria

represents ∼60% of fecal dry mass (Stephen and Cummings,
1980). Fungi, archaea, and viruses are also present in the gut
flora, but less is known about their activities (Lozupone et al.,
2012).

Stomach Flora
Healthy human stomach has no longer been considered as a
“sterile organ” since the discovery of H. pylori (Marshall and
Warren, 1984). It is rather now considered as a harbor for many
bacterial species, dominated by five major phyla: Firmicutes,
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TABLE 5 | Fusobacteria phylum (class, order, family) and major species constituting the microbiota in healthy human gut.

Class Order Family Species References

Fusobacteria Fusobacteriales Fusobacteriaceae Fusobacterium prausnitzii Moore and Holdeman, 1974; Holdeman et al., 1976; Miquel et al., 2013

Fusobacterium russii Moore and Holdeman, 1974; Holdeman et al., 1976

Fusobacterium varium Holdeman et al., 1976; Walter et al., 2002

Fusobacterium gonidiaformans Walter et al., 2002

Fusobacterium naviforme Walter et al., 2002

Fusobacterium mortiferum Holdeman et al., 1976

Fusobaccterium nucleatum Holdeman et al., 1976

Fusobaccterium peridonticum Roberfroid et al., 2010

Leptotrichiaceae Leptotrichia buccalis Vaahtovuo et al., 2005

Leptotrichia amnionii Rajilic-Stojanovic and de Vos, 2014

TABLE 6 | Diversity of microbes along the human gut.

Stomach Duodenum Jejunum Proximal

ilium

Distal ilium Colon References

pH 1.4–5 4.5–6.1 4.7–6.5 6.3–7.4 6.8–7.9 5.3–6.7 Evans et al., 1988

Food passage time (h) 2–6 3–5 10–20

Microbial density /g

sample

−102 102 102 103 108 1012 O’Hara and Shanahan,

2006

Major genera Helicobacter pylori Streptococcus

Lactobacillus

Streptococcus

Lactobacillus

Streptococcus

Lactobacillus

Streptococci Bacteroides Davis, 1996; Gaci

et al., 2014; Scarpellini

et al., 2015

Lactobacilli Bifidobacterium

Bacteroides

bifidobacteria

Eubacterium,

Peptostreptococcus

Streptococcus

Clostridium

Staphylococcus Virus

Lactobacillus

Peptostreptococcu

Fungi

Archaea

Number of phylotypes NA NA 22 NA 33 37 Wang et al., 2005

Bacteroidites, Actinobacteria, Fusobacteria, and Proteobacteria.
Generally, the healthy human stomach is dominated by
Prevotella, Streptococcus, Veillonella, Rothia, and Haemophilus
(Bik et al., 2006; Zilberstein et al., 2007). Characterizing healthy
stomach microbiota has come from studies involving gastric
biopsies and stomach juices collected from individuals routinely
performing upper gastrointestinal endoscopy for dyspepsia (Li
et al., 2009; Engstrand and Lindberg, 2013). Using a small
subunit 16S rDNA clone library approach (Bik et al., 2006),
128 phylotypes have been shown to colonize the stomach,
coming from the five major phyla mentioned above. Essentially
similar findings have been reported by other researchers
despite differences in techniques (Delgado et al., 2013) and the
ethnic background of biopsy donors (Li et al., 2009; Delgado
et al., 2013; Engstrand and Lindberg, 2013), suggesting that
some homogeneity may exist in the composition of stomach
microbiota.

The contribution of stomach microbiota to disease
pathogenesis has not yet been fully explored, although an
alteration in the density of Firmicutes phylum, particularly
the Streptococcus and Prevotella genera, has been reported
in patients with H. pylori infection and stomach cancer
(Wroblewski and Peek, 2016). It remains pivotal to know to

what extent H. pylori infection or stomach cancer affects the
composition of stomach microbiota and whether restoring
stomach biota, either naturally or pharmacologically, can
modulate the outcome of an H. pylori infection or cancer
progression (Wroblewski and Peek, 2016).

Intestinal Flora
Most of the studies describing gut microbial composition in
health adults have usually involved fecal samples, representing
the diversity of the microbes present in the large intestine
(Finegold et al., 1974; Moore and Holdeman, 1974; Holdeman
et al., 1976). The small intestine, however, is more acidic, has
higher levels of oxygen, less transit time, and has effective
immune-cell-mediated antimicrobial factors compared with the
colon (Keshav, 2006). Such physiological variations promote
less microbial diversity in small intestine compared with colon.
Accordingly, only fast growing facultative anaerobes, which
tolerate the bactericidal effects of bile acid and effectively compete
for carbohydrate, will dominate this part of the gut (Zoetendal
et al., 2012). There are limited studies aimed to assess small
intestinal microbial diversity (Hartman et al., 2009; Zoetendal
et al., 2012). This is partly due to the technical difficulties in
collecting samples for analysis.
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Small intestine microbiota has been examined in three
different anatomical locations, namely jejunum, ileum, and distal
ileum. Despite the fact that each part is characterized by its own
microbial composition, it appears that the profile of the jejunum
is closely related to that of the stomach; with Bacilli, mainly of
the Streptococcaceae species, dominating this section (50–70%)
(Wang et al., 2005; Zoetendal et al., 2012). Even in elderly,
moving along the small intestine toward the colon, the intensity
of Bacilli species in the ileum and distal ileum drop remarkably
to reach 20 and 5%, respectively (Hayashi et al., 2005; Zoetendal
et al., 2012). Instead Clostridia species such as IX, XIVb XIVa,
and IV form up to 30% of the microbiome, while Bacteroidetes
species occupy a proportion of 49% at these locations (Wang
et al., 2005; Zoetendal et al., 2012).

HUMAN GUT MICROBIOTA IN HUMAN
HEALTH AND DISEASE

There is increasing evidence that differences in the structure,
function, and diversity of the human gut microbiota are
associated with states of human health and disease.

Establishment of Gut Microbes
The first 2 years of life mark a dynamic period in which the gut
microbiome builds from the initial microbial repository at birth
and adjusts until the composition and function are more like that
of an adult (Koenig et al., 2011). The type of birthing delivery
strongly influences which microbes are present upon the initial
establishment of an individual’s gut microbiota. Infants born
vaginally develop gut microbiota that are more similar to their
mothers than those born via cesarean section; this also conferring
some functional differences. For example, gut microbiota in
infants born vaginally tend to express a lower proportion of
antibiotic resistance genes (Bäckhed et al., 2015). The developing
gut microbiota is strongly influenced by the infant’s diet and life
events. Over time, the infant begins harboring microbes capable
of digesting complex sugars and starch (Koenig et al., 2011;
Bäckhed et al., 2015). As more types of foods are introduced into
the infant’s diet, the bacterial diversity in the gut increases. For
infants who are breastfed, the discontinuation of breastfeeding
appears to be the strongest factor driving the change in gut
microbiota structure from the less diverse infant microbiome to
the more diverse adult phenotype (Koenig et al., 2011; Bäckhed
et al., 2015).

Host genetic signature has also been reported to contribute,
to a certain extent, to the types of microbes present within an
individual’s gut. Although, studies generally suggest that genetic
effects do not exert a strong global influence on which microbes
colonize the gut, monozygotic twin pairs display more similar
microbiota than their dizygotic counterparts (Turnbaugh et al.,
2009; Smith et al., 2013; Goodrich et al., 2014). Moreover, even
if few bacterial taxa exhibit strong heritability, the strongest
are associated with clinically meaningful phenotypic differences
(Goodrich et al., 2014). Recent evidence suggests that there is
cross talk between the gut microbiome and host genetic signature
that results from altered gene expression (Richards et al., 2016).

In other words, differential gene expression in host cells allow for
specific types of bacteria to colonize one individual over another,
and the way a cell responds to bacteria (or the community of
microbes present) may vary depending on the host’s genetic
make-up. However, environment and diet appear to be the
strongest drivers of microbiota composition, with some of the
observed variance attributable to host genetics (Richards et al.,
2016).

Gut Microbiota and Human Health
Despite inter-individual differences in the structure and diversity
of the human gut microbiome, the microbial metabolic and
functional pathways remain stable among healthy individuals
(HumanMicrobiome Project Consortium, 2012). The human gut
microbiome encodes at least 10-fold more genes than the human
genome and functional redundancy among some of these genes
allow different microbes to create individualized communities
that will carry out the same functions to maintain homeostasis
and a symbiotic relationship with the human host (Ley et al.,
2006; Qin et al., 2010). The functional redundancy is important
for maintaining a favorable environment within the gut to
ensure survival of the bacteria, while also contributing to human
metabolism and health (Parekh et al., 2014). This is significant
because the bacteria present in gut microbiome communities
help liberate carbohydrates and other nutrients from the diet that
could otherwise not be utilized by the human host (Larsbrink
et al., 2014). For example, certain species of Bacteriodetes can
metabolize xyloglucans, a complex carbohydrate found in dietary
fiber that contributes to human’s carbohydrate intake. At least
one of the taxa capable of this type of metabolism is consistently
reported in studies evaluating gut microbiota (Larsbrink et al.,
2014). Since products of gut microbe metabolism, like that of
xyloglucans, contribute to the symbiotic relationship between
host and microbe, there has been increasing interest in how
the microbes and their metabolic products contribute to human
health and disease.

As mentioned, Firmicutes and Bacteroidetes are the most
predominant phyla in the human gut and affect the production
of short-chain fatty acids (Rosenbaum et al., 2015). Short-chain
fatty acids (SCFA) produced from indigestible carbohydrates
by gut microbes are used as energy by various human tissues
(Rosenbaum et al., 2015). Some studies have observed that the
proportions of bacteria present in these phyla may contribute
to metabolic outcomes in the host, in part by altering the
amount of short-chain fatty acids produced (Turnbaugh et al.,
2006, 2009). Greater density of Bacteroidetes has been associated
with increased butyrate and propionate levels that contribute
to a healthy body weight by suppressing hunger and helping
to maintain glucose homeostasis (Lin et al., 2012). Butyrate
produced by the gut microbes also contributes to health by
providing energy for colonic epithelial cells and inhibiting
inflammation, particularly that induced by lipopolysaccharide
(Cani et al., 2007; Belkaid and Hand, 2014).

A. muciniphila, is a Gram-negative bacterium of the order
Verrucomicrobiales. Despite containing lipopolysaccharides
(LPS), a well-known endotoxin, a study by Everard et al. (2013)
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has demonstrated the lack of direct association between Gram-
negative bacteria and gut or metabolic endotoxemia (Everard
et al., 2013). On the contrary, oligofructose administration which
has been reported to restore A. muciniphila levels mitigated
endotoxemia caused by HFD (Everard et al., 2013). Other
studies also reported the seemingly counterintuitive results
that A. muciniphila preserves the integrity of the intestinal
mucous and intestinal barrier function and counteracts the
deleterious effect of HFD on gut permeability despite having
week mucin-degrading activities (Cani et al., 2009; Belzer and
de Vos, 2012; Everard et al., 2013). One explanation is that
this bacterium protects against inflammation through increasing
the levels of the anti-inflammatory intestinal endocannabinoids
which control gut barrier and gut peptide secretion (Everard
et al., 2013). In addition, higher levels of A. muciniphila were
associated with greater enteroendocrine L-cell activity, hence
more secretion of glucagon-like peptides GLP-1 and GLP-2
(Cani et al., 2009). Gut peptides including GLPs were reported
to control epithelial barrier proliferation and integrity (Belzer
and de Vos, 2012). It was demonstrated that A. muciniphila
controls GLP-2 secretion through increasing levels of 2-
oleoylglycerol (2-OG) and reduces metabolic endotoxemia
via increasing 2-arachidonoylglycerol (2-AG) levels (Everard
et al., 2013). However, the link between the enhanced
production of endocannabinoids and the beneficial effects of A.
muciniphila needs further investigation. Other studies reported
that A. muciniphila levels were reduced in diseases involving
dysfunctional intestinal barrier such as irritable bowel syndrome
(IBS) and chronic granulomatous colitis (Falcone et al., 2016).
However, some authors reported contradictory results; for
example a Chinese MGWAS study stated that A. muciniphila
did not improve mucous layer thickness (Tilg and Moschen,
2014), while Ganesh et al. attributed exacerbated inflammation in
Salmonella typhimurium-infected mice to the mucin-degrading
effect of A. muciniphila (Ganesh et al., 2013). Such conflicting
studies need further clarification.

In general, imbalances in the types of bacteria present in the
gut microbiota are thought to contribute to disease in part by
altering different metabolic processes and/or pathways in the
host.

Gut Microbiota and Disease
Differences in the composition of the gut microbiota in
humans that relate to disease have been reported for several
conditions including, but not limited to, cardiovascular disease
(Holmes et al., 2008; Wang et al., 2011), type 2 diabetes
(Larsen et al., 2010), and obesity (Turnbaugh et al., 2009).
Interest in studying the human gut microbiota related to
disease has increased, in part due to the fact that it appears
to be highly influenced by interventions that ameliorate
symptoms or disease such as medications and diet. For example,
individuals that eat red meat exhibit greater levels of the gut
metabolite trimethylamine-N-oxide (TMAO) than non-meat
eaters. Importantly, TMAO is associated with increased plaque
formation in arteries (Koeth et al., 2013; Tang et al., 2013).
The fact that products from microbial metabolism play an
integral role in many metabolic pathways of the host, suggests

that complex disorders with metabolic components may benefit
from targeted alterations in the microbiota through dietary
or supplement interventions. For this review, we will focus
specifically on reviewing the microbiome literature as it relates to
metabolic syndrome.

Overview of Metabolic Syndrome
Metabolic syndrome is a group of factors that collectively raise
the risk for other chronic and acute disease processes. The greater
the number of the risk factors an individual has, the higher the
risk for other poor health outcomes and disease such as heart
attacks, stroke, and type 2 diabetes. Metabolic syndrome risk
factors are closely linked with obesity and sedentary lifestyles
(Alberti et al., 2009; Kaur, 2014). There are several different
reports that include diagnostic criteria for metabolic syndrome
that are utilized in different areas of the world (Alberti et al.,
2009; Kaur, 2014). Despite some minor difference in criteria,
individuals presenting with metabolic syndrome exhibit 2–
3 of the following characteristics: central obesity, abnormal
serum lipid levels (high triglycerides and/or low high-density
lipoprotein), high blood pressure, and elevated blood glucose
levels. Some groups contain diagnostic metrics for insulin
resistance, whereas others do not since it is difficult to uncouple
from obesity (Alberti et al., 2009; Kaur, 2014).

The mechanistic pathways for obesity are complex due to
a multiplicity of genetic and lifestyle factors that contribute to
weight gain, although insulin is a critical regulator of adipocyte
biology (Grundy et al., 2004). Insulin inhibits lipolysis and
stimulates glucose transport as well as triglyceride synthesis
(Grundy et al., 2004). When lipolysis is stimulated in insulin
resistant individuals, large amounts of circulating fatty acids
and inflammatory markers are released from expanded adipose
tissue mass (Grundy et al., 2004; Afsar and Elsurer, 2014).
When these processes occur consistently over time, elevations
in weight and blood sugar become apparent and begin to
influence other metabolic processes (Grundy et al., 2004;
Afsar and Elsurer, 2014). The increase in circulating free
fatty acid levels contributes to the development of triglyceride
reservoirs in muscle and liver, resulting in decreased glucose
uptake in muscle, increased hepatic gluconeogenesis, and
increased blood cholesterol and triglyceride levels which may
also contribute to rising blood pressure (Afsar and Elsurer,
2014). The resultant pro-inflammatory and pro-thrombotic
states increase the risk for cardiovascular disease and type 2
diabetes (Afsar and Elsurer, 2014). Since the aforementioned
components of metabolic syndrome overlap to some degree
mechanistically, similar overlap in differences in microbiota have
been reported based on metabolic syndrome diagnostic criteria
(Rial et al., 2016).

Gut Microbiota and Obesity
Diagnostic criteria for obesity, particularly central or abdominal
obesity, vary by guidelines and populations being assessed.
Despite differences in diagnostic cutoffs determining obesity,
several research groups have reported differences in gut
microbiota related to body weight (Turnbaugh et al., 2009).
Some of the first ground breaking studies investigating the gut
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microbiota in humans sought to evaluate the relationship with
obesity. The first of which identified a decrease in diversity of
gut microbiota in obese individuals, whereas this diversity was
increased with dietary weight loss (Turnbaugh et al., 2009).
A meta-analysis found that studies tend to report shifts in
different microbes associated with obesity (Walters et al., 2014).
This may be related to the functional redundancy in the gut
microbiota, since multiple different taxa can contribute to the
same metabolic pathway. Walters and colleagues also noted
that some of the variability of results reported between studies
was due to differences in laboratory protocols and analytic
pipelines. For example, in the Turnbaugh and colleagues twin
study (Turnbaugh et al., 2009), a de novo approach was used
which assigns operational taxonomic units (OTUs) without an
external reference. In the meta-analysis assessing results of
obesity associated microbiome changes using a closed-reference
OTU assignment process, where sequences that do not match
a reference data set are excluded; there were no significant
differences in the microbiota between obese and lean individuals
(Turnbaugh et al., 2009). In addition to some of equivocal results
observed when different laboratory and data processing pipelines
are used, there is the question of the reproducibility of murine
studies in humans because there are significant differences in
how the different speciesmaintain energy homeostasis as diet and
metabolic demands are different (Turnbaugh et al., 2009). There
are few studies evaluating processes identified as contributing
to obesity in murine models and in human populations, the
same applies to most of the components of metabolic syndrome
(Rosenbaum et al., 2015). Studies are increasingly evaluating
host genetic signatures as well as the microbiota to address
these issues. Studies designed in this manner have identified
features in the gut microbiome that suggest a strong relationship
between certain microbes and host genomic loci that are linked
to obesity in human populations (Le Chatelier et al., 2013).
Despite this ambiguity, continuing studies of the human gut
microbiota aim to refine result of the work that has been done
thus far.

Gut Microbiota and Dyslipidemia
All diagnostic guidelines for metabolic syndrome include metrics
of dyslipidemia, particularly high levels of triglycerides and
low levels of high-density lipoprotein (HDL) (Kaur, 2014). All
consistently categorize triglycerides as elevated when serum
levels are above 150 mg/dL, and there is some variability
between guidelines about what constitutes lowHDL levels among
men and women (Kaur, 2014). Some bacterial taxa from the
human gut are present in artherosclerotic plaques, although
the community of microbes within the plaque most closely
resembles bacterial taxa that predominate in the oral cavity
(Koren et al., 2011). Two uncharacterized taxa in the human
gut, from the Erysipelotrichaceae and Lachnospiraceae families,
were correlated with total cholesterol and LDL levels, but no
association was observed related to serum HDL levels (Koren
et al., 2011). A recent study evaluating the relationship between
the human gut microbiota and blood lipid levels found that the
gut microbiota has significant differences in the samemetrics that
are characteristics of metabolic syndrome, namely obesity, serum

triglyceride, and HDL levels (Fu et al., 2015). Unlike Koren’s
team, Fu and colleagues did not find any variability in the gut
microbiota composition to be associated with elevated levels of
low-density lipoproteins (LDL) or total cholesterol levels, which
are not included as diagnostic criteria for metabolic syndrome
(Fu et al., 2015). Fu’s team identified 34 bacterial taxa that were
associated with obesity, triglyceride and HDL levels in their
study group. Further, they determined that the gut microbiota
composition accounted for nearly 26% of the variance observed
in HDL levels. These data suggest that treatments aimed at
altering the gut microbiota to increase levels of HDL cholesterol
may have potential to be highly effective (Fu et al., 2015).

Gut Microbiota and Blood Sugar
Obesity and adiposity are directly related to increased risk
for elevated blood glucose levels and type 2 diabetes (Alberti
et al., 2009). All diagnostic guidelines contain metrics for
impaired fasting glucose or impaired glucose tolerance, with or
without diabetes (Kaur, 2014). Some guidelines for metabolic
syndrome use glucose metrics interchangeably with insulin
resistance metrics (Kaur, 2014). Differences in gut microbiota
have been reported in individuals with type 2 diabetes, with
elevated levels of Bacteroidetes and Proteobacteria and lower
levels of Firmicutes than healthy individuals (Larsen et al.,
2010). Interestingly, in Larsen’s study, they did not observe
the commonly reported decreased level of Bacteroidetes in
individuals that were diabetics and also obese. However, others
have observed that the composition of the gut microbiota in
obese individuals with insulin resistance or elevated glucose
levels agree with previous studies reporting lower levels of
Bacteroidetes and butyrate producing species (Qin et al., 2012;
Vrieze et al., 2012). As discussed previously, obesity can
contribute to the development of this phenotype by increasing
insulin resistance, resulting in higher levels of glucose remaining
in the serum. A small intervention study (N = 18, n =

9/group) reported an increase in bacterial diversity in the gut
when microbiota from lean donors was transplanted into obese
recipients; with an associated increase in butyrate producing
bacteria and subsequent increase in insulin sensitivity (Vrieze
et al., 2012).

A. muciniphila levels were found to be inversely associated to
obesity and diabetes in several animal and human studies (Tilg
and Moschen, 2014). The role of A. muciniphila in reducing
inflammation could provide protection against the development
of type 2 diabetes (Schneeberger et al., 2015). In addition,
administration of A. muciniphila reduced body weight, adipose
tissue inflammation, lipidemia, and hyperglycemia in diabetic
and obese animals and increased adipose tissue browning and
fatty acid oxidation (Tilg and Moschen, 2014). However, two
recent studies reported increased levels of A. muciniphila in
animals fed with high fat and high carbohydrate diet (Carmody
et al., 2015; Hamilton et al., 2015). In human studies, it was
found that under certain levels of A. muciniphila, human subjects
responded less efficiently to caloric restriction diet in terms of
reduction of hypergycemia, insulin resistance and inflammatory
markers (Hamilton et al., 2015). However, there is no simple
relationship between levels of A. municiphila and inflammation,
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and the threshold beyond which a shift occurs between healthy to
pathological conditions is still unknown (Hamilton et al., 2015).

Together, these studies suggest that the composition/diversity
of gut microbiota may contribute to elevated glucose levels and
insulin resistance in individuals with metabolic syndrome.

Gut Microbiota and Metabolic Syndrome
Many of the studies evaluating the gut microbiota related to
the risk factors associated with metabolic syndrome report
associations among multiple features of metabolic syndrome
(Rial et al., 2016). Given that multiple risks occur concurrently,
even in the absence of metabolic syndrome (i.e., having only
2 of the associated risk factors), it is difficult to disentangle
the individual contribution to disease state without considering
confounding factors. Some of the associations with multiple risk
factors suggest that the gut microbiome is intimately involved
with observed variations over and above those related to age, sex,
and host genetics (Rial et al., 2016). Notably 12 bacterial OTUs
have been associated with variability across three traits (BMI,
triglycerides, andHDL levels) (Fu et al., 2015). Others have found
that lower diversity associated with obesity is also associated with
insulin resistance and dyslipidemia (Le Chatelier et al., 2013).

Because of confounding of characteristics associated with
obesity, dyslipidemia, and elevated blood glucose levels, some
scientists have evaluated the human gut microbiota composition
specifically related to metabolic syndrome. Similar to what is
observed in obese individuals by Turnbaugh’s group (Turnbaugh
et al., 2009), a lower level of diversity of gut microbes was
present in individuals with metabolic syndrome; and some
of the taxa associated with metabolic syndrome are linked
to a genetic variant in the apolipoprotein A5 gene (APOA5)
(Lim et al., 2016). Specifically, Lim and colleagues noted that
specific taxa associated with metabolic syndrome were not all
correlated with each characteristic of metabolic syndrome in
the same way. For example, they found Lactobacillus to be
correlated with central obesity and fasting blood sugar, but
negatively correlated with HDL levels (Lim et al., 2016). This
suggests that metabolites from gut metabolism contribute to
multiple mechanistic pathways involved in metabolic syndrome
and that there may be different combinations of contributing
microbes depending on which characteristics of metabolic
syndrome are present in an individual (Lim et al., 2016). This
suggests that multiple interventions may be effective for treating
and preventing metabolic syndrome by targeting mechanistic
pathways associated with different characteristics of metabolic
syndrome.

THERAPEUTIC MODULATION OF GUT
MICROBIOTA TO RESTORE LIPID AND
GLUCOSE HOMEOSTASIS

Polyphenols
Polyphenols constitute a large group of heterogeneous secondary
metabolites found almost ubiquitously in the plant kingdom.
The daily intake of dietary phenols is estimated to be larger
than 1 g, which is 10 times higher than vitamin C intake

from diet (Scalbert et al., 2005). Their chemical structures are
characterized by the presence of polyhydroxyphenyl units and
range from simple monomers and oligomers to highly polymeric
compounds with molecular weight reaching up to 30,000 Da,
such as condensed tannins (Tsao, 2010). Polyphenols can be
further classified according to their chemical structures into two
subgroups: flavonoids and non-flavonoid polyphenols, including
phenolic acids. They predominantly exist in combination with
sugars or acylated sugars (glycosides), but may also occur in other
conjugated structures (amides, esters, and methyl ethers) or in
their free forms (Tsao, 2010).

Flavonoids form the largest group of polyphenolic compounds
with more than 6000 compounds identified and/or isolated from
plant sources (Kumar and Pandey, 2013). For a polyphenol to
be classified as a flavonoid, its structure has to contain a benzo-
pyrane (chromane) moiety included in a C6-C3-C6 structural
backbone (Figure 2), in which the two C6 units are benzyl rings
(ring A and ring B) and C3 unit is the chromane ring (ring C).
Depending on the hydroxylation and substitution patterns, as
well as the degree of saturation of the chromane ring, flavonoids
can be further divided into several classes such as: flavones,
flavonols, flavanones, flavanonol, flavan-3-ols, anthocyanins,
and isoflavones (Figure 3). Condensed tannins, also known as
proanthocyanidins or polyflavonoid tannins, are polymers of
flavan-3-ols or flavan-3,4-diols (Figure 3). In all flavonoid classes,
the ring B is attached to the carbon-2 of ring C; with the exception
of isoflavonoids in which the attachment between the two rings
takes places at carbon-3 of ring C. Interestingly, this particular
arrangement has conferred isoflavones the ability to interact with
estrogen receptor and to act as weak phytoestrogens (Ozdal et al.,
2016).

The nonflavonoid-polyphenols have more heterogeneous
structures and broadly comprises hydrolysable tannins
(gallotannins and elagitannins), lignans stilbenes, and phenolic
acids). Phenolic acids in food are mainly benzoic acid or
cinnamic acid derivatives (Lafay and Gil-Izquierdo, 2008).
Some phenolic acids such as p-coumaric and hydroxyl-cinnamic

FIGURE 2 | The basic structure of flavonoids.
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FIGURE 3 | Chemical structures of main classes of flavonoids showing positions of potential C-ring cleavage (——) or A-ring cleavage (——).

acids are considered “functional polyphenols” despite their
monophenolic structures because they share many properties
with polyphenols (Pereira et al., 2009).

Polyphenols are produced in plants to serve important roles
such as protection against different environmental stressors
and pathological aggressions, thus acting as primary defense
mechanisms (phytoalexins). For this reason, polyphenols are
endowedwith excellent antioxidant, antifungal, antibacterial, and
photo-protective properties (Li et al., 2014).

Over the last few decades, research on polyphenols has
expanded exponentially and many other biological activities
and health benefits have been attributed to polyphenols. These
include, but are not limited to, anti-inflammatory, anticancer,
and protective activities against inflammatory and oxidative
stress-induced disorders such as aging, rheumatoid arthritis,
diabetes mellitus, cardiovascular and neurodegenerative diseases
(Li et al., 2014). As data accumulated from research studying the
mode of actions of polyphenols, it soon became clear that their
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health benefits go beyond antioxidant potential (Scalbert et al.,
2005).

Scientific interest in polyphenols has rapidly grown in the
late twentieth century following many epidemiological studies
linking the consumption of polyphenol-rich food such as
fruits and vegetables to lower risk of developing cancer and
cardiovascular diseases (Pandey and Rizvi, 2009). Of note, the
hypothesis that polyphenols constitute the active ingredients in
food was supported by a wealth of in vitro and animal studies
using isolated pure phenolic compounds (Gao and Hu, 2010).
However, bioavailability studies in animal and human subjects
have shown poor absorption and extensive hepatic metabolism of
phenolic compounds, thus raising concerns on the applicability
of in vitro studies in which parent phenolic compounds were used
(Gao and Hu, 2010). In addition, these compounds were tested
at concentrations (in µM) much higher than those achieved
in vivo (in nM) (Gao and Hu, 2010). Thus, the following
question arises: why are polyphenols bioactive despite low plasma
concentrations? In order to answer this question, it should
be taken into account that the dietary intake of polyphenols
is estimated to reach values up to g quantities/day which is
equivalent to mM levels of polyphenols and their metabolites in
the gut (Grosso et al., 2017). It has thus been proposed that gut
microbiota play a crucial rule in polyphenols’ metabolism and
activities (Williamson, 2013).

This section focuses on polyphenols-microbiota reciprocal
interactions and their pivotal role in attenuating metabolic
syndrome and type 2 diabetes mellitus.

Polyphenols as Antidiabetic and Anti-Obesity Agents
The antidibetic potential of polyphenols has been extensively
studied and documented. In vitro studies show that polyphenols
can inhibit the enzymes of dietary carbohydrate and lipid
digestion such as α-glucosidase, α-amylase, and pancreatic lipase
therefore reducing glucose and fatty acid intestinal absorption
(Hanhineva et al., 2010). Several polyphenols such as quercetin,
tea catechins, chlorogenic caffeic, and gallic acids were also
reported to inhibit glucose absorption in intestinal Caco2 cell line
as well as brush-border-membrane vesicles of porcine jejunum
via the inhibition of sodium-dependent SGLT1 transporters
(Hanhineva et al., 2010). GLUT2 was similarly inhibited by
several flavonoids including quercetin, myricetin, neohesperidin,
and catechin (Johnston et al., 2005; Kwon et al., 2007).

The insulin-responsive GLUT4, another glucose transporter
responsible for glucose uptake in insulin-sensitive tissues,
seems to be the target of many polyphenols. Some polyphenols
stimulated GLUT4 translocation in adipocytes or skeletal
muscle cells by activating either the insulin-mediated
phosphatidylinositide 3-kinase (PI3-K)/Akt or the AMP-
activated protein kinase (AMPK) pathways (Eid et al., 2015;
Hajiaghaalipour et al., 2015). Regulation of AMPK activity can
also leads to the activation of a class of protein deacetylases
known as sirtuins. Activation of sirtuin 1 (Sirt1) is involved in
the antiaging and anti-inflammatory effects of polyphenols such
as resveratrol, querectin, catechins, and piceatannol (Chung
et al., 2010). Polyphenols may also enhance glucose homeostasis
by modulating hepatic glucose metabolism. Flavonoids such as

tea catechins, quercetin and citrus flavonoids attenuated hepatic
gluconeogensis in diabetic mice and rats through the inhibition
of the key gluconeogenic enzymes glucose-6-phosphatase and
phosphoenolpyruvate carboxykinase (Bahadoran et al., 2013;
Eid and Haddad, 2017). Hepatic glucose kinase and glycogen
synthase can also be modulated by polyphenols such as ferulic
and hydroxylcinnamic acid derivatives (Bahadoran et al., 2013).

The molecular mechanisms of polyphenols’ antidiabetic
actions also include stimulation of insulin production and
protection of pancreatic β cell against hyperglycemia-induced
oxidative stress and promotion of β cell proliferation and survival
in both in vitro and in vivo studies (Vinayagam and Xu, 2015).

Because of their unique chemical structures, polyphenols are
powerful antioxidants. Green tea had the ability to scavenge
100% of superoxide anion and 86% of other reactive oxygen
species (ROS) (Umeno et al., 2016). The radical scavenging
properties of polyphenols were studied in vitro and were
attributed to either modulation of enzymes responsible for
the production of ROS including cyclooxygenase, lipoxygenase,
xanthine oxidase, microsomal monooxygenase, and NADH
oxidase (Bahadoran et al., 2013) or to the enhancement
of the endogenous antioxidative defense system through the
modulation of antioxidant enzymes like superoxide dismutase,
catalase, and glutathione reducatse (Bahadoran et al., 2013).
However, it is not clear if these in vitro results could be
reproduced in vivo (Halliwell et al., 2005). In addition, when
biomarkers of the antioxidant activities of polyphenols in
animal and human subjects, including decreased LDL and DNA
oxidation and increased plasma total antioxidant potential, were
evaluated using fruit juices, soy or vegetables, it was found
that the observed beneficial effect might not be attributed to
polyphenols (Halliwell et al., 2005). The same authors proposed
that the antioxidant activities of polyphenols could actually occur
in the GI tract before absorption. They argued that, at best,
polyphenol plasma concentrations do not exceed 1 µM, which
are much lower than the concentrations they can reach in the
gut, whereby themicrobial fermentation products of polyphenols
could be responsible for a greater proportion of antioxidant
activities (Halliwell et al., 2005).

In addition to their antidiabetic properties, the antiobesity
potential of some polyphenols is well documented in cell
culture, animal and clinical studies (Wang et al., 2014).
Resveratrol as well as green tea extract and its catechins,
particularly epigallocatechin gallate (EGCG), were reported to
suppress adipocyte differentiation in 3T3-L1 cell line through
the activation of AMPK and the down regulation of adipogenic
factors including peroxisome proliferator activator receptor γ

(PPARγ) and CCAAT/enhancer binding protein α (C/EBPα)
(Wang et al., 2014). Animal studies supported the effects of
the aforementioned flavonoids on obesity-related inflammation
and other obesity parameters such as body weight, total lipids,
cholesterol and triglyceride (Khurana et al., 2013). In addition,
enhanced fat oxidation in adipose tissue and skeletal muscle was
reported in two obesity models: diet-induced obesity and ob/ob
mice models treated with flavonoids (Khurana et al., 2013).

Clinical and epidemiological studies further confirmed the
beneficial effects of certain polyphenols. A meta-analysis of
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24 randomized clinical trials (RCTs) has documented the
improvement of insulin resistance after daily consumption of
flavonoid-rich cocoa beverages (Shrime et al., 2011; Ellinger
and Stehle, 2016). Similarly, ingestion of chocolate, cacao
or flavan-3-ol has significantly reduced insulin resistance
and major cardiovascular diseases risk (CVD) factors in
another meta-analysis of 42 RCTs (Hooper et al., 2008).
Nevertheless, some other RCTs reported inconsistent results. For
example, consumption of green tea containing 456mg catechins
(Fukino et al., 2005) or isoflavonoids in a 6-month RCT in
postmenopausal Chinese women (Liu et al., 2010) did not
prove beneficial regarding glucose levels or insulin resistance
markers. Epidemiological studies also yielded conflicting results.
A meta-analysis of 6 prospective cohort studies involving
284.806 participants has reported a significant inverse association
between total polyphenols consumption and risk for type 2
diabetes in the US population (Liu et al., 2014). However,
some inconsistent effects were found in other subgroups (Liu
et al., 2014). Similar negative results were reported from other
cross-sectional studies attempting to relate protection against
diabetes to the intake of total flavonols and flavones (Song
et al., 2005) or anthocyanins in the Iowa women (Nettleton
et al., 2006). Inconsistent findings were also reported from RCTs
investigating the antiobesity effects of flavonoids such as EGCG,
resveratrol, and curcumin (Wang et al., 2014). Several factors
might account for such inconclusive antidiabetic and anti-obesity
clinical outcomes. Those include the duration of the study,
age, gender, and ethnicity of participants or the varieties of
polyphenols present in the diet.

Metabolism of Polyphenols by Gut Microbiota
Initial bioavailability studies have reported poor absorption of
flavonoids from food sources (Thilakarathna and Rupasinghe,
2013). Polyphenols are rarely found in nature in the free form.
The majority of flavonoids monomer, except catechins, exist as
β-glycosides (Marin et al., 2015). Catechins, being in the free
form, are rapidly absorbed from the small intestine. On the other
hand, the sugar moiety of the flavonoid glycosides determines
their site of absorption. Hollman et al. (1995) detected the
presence of quercetin glucoside in the circulation after ingestion
of onion powder. Transport through SGLT1 was suggested as
the mechanism of absorption (Hollman et al., 1995). Other
studies suggested that glucosides could also be hydrolyzed by
lactase phlorizin hydrolase (LPH), a β-glucosidase present in the
intestinal brush border microvilli, to release the free aglycone.
Absorbed agylcones mainly undergo hepatic phase II metabolism
to form methyl, sulfate, and glucuronide conjugates (Marin
et al., 2015). Other glycosides such as rhamnosides, arabinosides,
and galactosides as well as some glucosides including cyanidin-
3-glucoisde and the isoflavonoid daidzein-7-glucoside are not
efficiently hydrolyzed by this enzyme and are moved to the colon
where they are hydrolyzed and degraded by the colon microbiota
(Marin et al., 2015).

Studies have reported that only 5–10% of dietary polyphenols
can be absorbed from the small intestine. The remaining
non absorbed (90–95%) polyphenols reach the colon at high
concentrations (up to the mM range) where they undergo,

together with the conjugates secreted in bile, deconjugation,
and degradation by microbial enzymes to smaller phenolic
compounds before being absorbed (Stevens and Maier, 2016).
Oligomeric flavonoids are first degraded in the stomach to
monomers and dimers while larger polymeric compounds such
as ellagitannins are taken to the colon to be degraded by resident
bacteria to their monomers (Kumar and Pandey, 2013).

Phenolic acids existing in free form, or conjugated to sugars,
quinic, or shikimic acids, are absorbed from the small intestine
after the hydrolysis of the conjugated forms. Importantly, the
most abundant phenolic acids caffeic acid and ferulic acids are
found generally bound to cell wall components such as lignins
and polysaccharides and are therefore subject to colon microbial
metabolism (Russell et al., 2009).

Gut microbes are not only capable of cleaving polyphenols
glycosides and glucuronides, but they can also cleave the carbon-
carbon bonds of heterocyclic and aromatic rings as well as
decarboxylate, dehydoxylate, and hydrogenate alkene side chains
(Stevens and Maier, 2016). The site of C-C cleavage seems to
depend on the flavonoid subclass: in anthocyanidins, flavonols,
flavones, and flavanones, the cleavage occurs in ring-C, while in
flavanols, it also takes place in ring-A (Figure 3).

Phenolic acids are the major metabolites of flavonoids
detected in circulation and urine (Stevens and Maier,
2016). Ring-C cleavage of anthocyanins produces many
phenolic acids such protocatechuic (PCA), gallic, 3-O-
methyl-gallic, syringic, p-coumaric, and vanillic acids, as
well as 2,4,6-trihydroxybenzaldehyde (Duda-Chodak et al.,
2015). Interestingly, many biological activities have been
attributed to PCA such as antioxidant, anti-inflammatory,
antihyperglycemic, antiatherogenic, hypocholeserolemic,
anticancer, and neuroprotective actions (Duda-Chodak et al.,
2015). In addition, anthocyanin metabolites, namely gallic
acid, 3-O-methyl-gallic acid, and 2,4,6-trihydroxybenzaldehyde,
were more effective as cytotoxic compounds than the parent
anthocyanin (Forester and Waterhouse, 2010). Similarly,
flavonols such as quercetin are metabolized to PCA and 2-(2,4,6-
trihyrdoxyphenyl)-acetic acid, which can be further converted
to their o-methyl conjugates. Flavanols such as catechin,
epicatechin, and ECGC undergo both A-ring and C-ring cleavage
to form 3-hydroxyphenylacetic acid, 3-hydroxyphenylpropionic
acid, 3,4-dihydroxyphenylacetic acid, and 3-hydroxyphenyl-
γ-valerolactone. Demethylation and ring-C fission of the
isoflavonoid diadezein generates the major metabolite O-
demethyl-langlensin (Stevens and Maier, 2016). Ellagitannins
are degraded to ellagic acid, which is further metabolized by the
colon microflora to the phenolic metabolites called urolithins.
Phenolic acids such as caffeic acid and its ester chlorogenic
acid are metabolized by the microflora to phenylpropionic,
benzoic and, hippuric acids (Gonthier et al., 2003). Caffeic acid
can also undergo decarboxylation and transformation by gut
microbiota into 4-ethyl catechol (Ozdal et al., 2016). Lignans
such as pinoresinol and syringaresinol are biotransformed to
enterolactone and enterodiol, two phtoestrogens responsible
for estrogenic agonistic/antagonistic activities of lignans (Ozdal
et al., 2016). Finally, microbial communities also possess
glucuronidases and sulphatases, thus transforming phase II
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metabolites into the free form and enabling their absorption into
the general circulation (Cardona et al., 2013).

The biological activities of the microbial metabolites of
polyphenols are still under investigation. However, because they
are efficiently absorbed by the GI tract, they are believed to be
responsible for the health promoting activities of polyphenols
(Cardona et al., 2013). In a recent study, the two metabolites
3-hydroxyhippuric acid and 3-hydroxyphenyl acetic acid were
found to reach and accumulate in the brain of rats treated with
grape seed phenol extract in a dose dependent manner (Wang D.
et al., 2015).

Modulation of Microbiota by Polyphenols
Because of their distinctive structures, polyphenols have shown a
great potential as antimicrobial agents against human pathogens
in experimental and clinical studies (Coppo andMarchese, 2014).
Their activities against gastrointestinal tract pathogens (Selma
et al., 2009) are of particular interest to this review. Commensal
and probiotic microorganisms such as strains of Lactobacillus,
Streptoccoccus, Bifidobacteria, and the yeast Saccharomyces
boulardii are known to preserve epithelial integrity, protect
against enteric pathogen, and serve other important function
such as modulating sugar and lipid metabolism. The gut can
also be inhabited by pathogenic bacteria that cause GI illness
such as inflammatory bowel disease caused by Clostridium
difficile infection (Bien et al., 2013). Dysbiosis is the term that
describes the imbalance between the beneficial and pathogenic
bacteria. It has been associated with many chronic diseases
including metabolic disorders such as obesity and type 2
diabetes (Carding et al., 2015). Since Firmicutes possess fewer
enzymes than Bacteriodetes capable of degrading glycans,
products of polyphenol glycoside hydrolysis, it was suggested
that the intake of polyphenols could influence the composition
of gut microbiota in favor of beneficial bacteria with health
promoting functions (Cardona et al., 2013). Thus, it is deemed
necessary to investigate the effect of polyphenols on human gut
bacterial growth.

The modulation of gut microbiota by polyphenols was
firstly studied in vitro. One study examined the effect of some
flavonoids aglycones and their glycosides on representative
species of human gut microbial communities (Bacteroides
galacturonicus, Lactobacillus sp., Enterococcus coccae,
Bifidobacterium catenulatum, Ruminococcus gauvreauii, E. coli).
The aglycones quercetin, naringenin and hesperetin but not
their glycosides rutin, naringin and hesperidin inhibited the
growth of certain tested bacteria (Duda-Chodak et al., 2015). In
the same study, catechin had no impact on the growth of the
aforementioned bacteria (Duda-Chodak et al., 2015). In another
in vitro study, the flavonol galangin but not quercetin or fisetin
inhibited the growth of B. adolescens (Kawabata et al., 2013).
Similarly, the effects of the common dietary polyphenols on the
growth and adhesion of commensal and pathogenic bacteria to
enterocytes were studied in the Caco2 cell line (Parkar et al.,
2008). At their physiological concentration, all polyphenols,
except rutin, affected the viability of representative gut flora.
However, one of the major limitations of in vitro studies is
that 80% of the bacteria in the human gut are uncultured.

Interestingly, incubation of anthocyanins with fecal bacteria in
stirred, batch-culture fermentation vessels simulating human
colon conditions resulted in an increase of the beneficial
Bifidobacterium spp. and Lactobacillus-Enterococcus spp. levels
(Hidalgo et al., 2012).

More interesting results have emerged from in vivo and
clinical studies. Ellagitannin-rich pomegranate extract (POME)
and ellagitannins main metabolite urolithin-A were reported
to significantly enhance the growth of Bifidobacterium and
Lactobacillus spp. in a rat model of colitis. Interestingly,
urolithin-A has shown more powerful anti-inflammatory
properties than the parent ellagitannin-rich extract (Larrosa
et al., 2010). In a clinical study, the consumption of 1,000mg of
POME by 20 healthy volunteers for 4 weeks resulted in beneficial
changes in the gut microbiota of participants who were able to
metabolize ellagitannins to urolithin-A. These changes include
reduction in Firmicutes levels and the induction of the growth
of Enterobacter, Lactobacillus, E. coli, and Verrucomicrobia
(A. muciphila). The latter two bacterial strains were reported
to preserve the intestinal mucus and the glycocalyx layer and
to reduce the intestinal permeability frequently associated with
development of inflammation and metabolic diseases (Zhang
and Zhang, 2013).

Of note, administration of both quercetin and resveratrol
(Etxeberria et al., 2015), or resveratrol alone (Qiao et al., 2014),
to obese rat fed high fat/high sucrose (HFHS) or high fat diets
was reported to reduce F/B ratio (Qiao et al., 2014; Etxeberria
et al., 2015). Moreover, it decreased the abundance of bacteria
associated with diet-induced obesity, such as Bacillus spp.,
Eubacterium cylindroide, and Erysipelotrichaceae (Etxeberria
et al., 2015) and increased the growth of Bifidobacterium and
Lactobacillus (Qiao et al., 2014; Etxeberria et al., 2015).

The highly polymeric apple procyanidins administered for 20
weeks to C57BL/6J mice fed a HFHS diet attenuated weight gain
and caused a reduction in inflammation and gut permeability,
as well as modulation of lipid metabolizing genes (Masumoto
et al., 2016). Similarly, apple peal polyphenols upregulated
antioxidant enzymes and attenuated experimental inflammatory
bowel disease (Denis et al., 2016). Furthermore, F/B proportion
was markedly decreased and Akkermansia levels were increased
eight-fold by the end of the treatment (Masumoto et al., 2016).
Grape/red wine polyphenols (Roopchand et al., 2015) and
procyanidin-rich cranberry extract (Anhe et al., 2015a) showed
similar effects on obesity, metabolic syndrome parameters and
levels of Akkermansia in mice fed a high-fat diet (Anhe et al.,
2015a; Roopchand et al., 2015).

Collectively, these studies reveal that polyphenols act
as prebiotic supplements that can positively modulate gut
microbiota composition mainly through the enrichment of
beneficial bacteria and the inhibition of pathogenic bacterial
growth (Anhe et al., 2015b; Le Barz et al., 2015; Fändriks, 2017).

Polysaccharides
Carbohydrates are classified based on the number of linked
carbohydrate units into mono-, oligo-, and poly-saccharides
(Cummings and Stephen, 2007). For instance, glucose, fructose,
and galactose are monosaccharides whereas lactose, sucrose, and
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maltose are disaccharides. Common oligosaccharides include
fructo-oligosaccharides (FOS), galacto-oligosaccharides (GOS),
and mannan oligosaccharides (MOS). Arabinoxylans, cellulose,
chitin, and pectins are examples of polysaccharides having linear
or branched structures (Cummings and Stephen, 2007).

Another classification is based on whether carbohydrates
are digestible and non-digestible. Starch, dextrin, glycogen are
some of the digestible polysaccharides, while non-digestible
carbohydrates (NDCs) (Paeschke and Aimutis, 2010) are listed
in Table 7 (Kaushik et al., 1989).

Gut Microbiota and Dietary Intake
Some of the gut’s microbial species are infulenced by the
composition of the diet (Kok et al., 1996; Wu et al., 2011;
Pyra et al., 2012). Firmicutes and Proteobacteria (Prevotella
enterotype) thrive under diets that are rich in carbohydrates and
simple sugars (such as glucose and fructose), while Bacteroidetes
and Actinobacteria (Bacteroides enterotype) are favored by diets
rich in saturated fat and animal protein. Fat and protein decrease
the microbial diversity of the intestine, whereas carbohydrates
increase it (Wu et al., 2011). Oligo- and poly-saccharides enhance
the concentration of the species belonging to Actinobacteria
and Firmicutes phyla except for Staphylococcus (Staphylococcus
aureus), Clostridium (C. difficile,Clostridium leptum,Clostridium
perfringens). Proteobacteria phyla show the opposite trend,
whereas Bacteroidetes and Verrucomicrobia show a mixed trend
(Wu et al., 2011).

Actions of Oligo- and Poly-saccharides
Oligo- and poly-saccharides exert a significant influence on
the gut microbiota. In general, oligo- and poly-saccharides
increase short-chain fatty acids (SCFA), GLP-1, and PYY, while
decreasing triglycerides, VLDL, and LDL, with a mixed trend
being observed for HDL (Morrison and Preston, 2016), as shown
in Table 8. These changes and their metabolic consequences will
be summarized below.

Firstly, the fermentation of non-digestible carbohydrates
takes place in the gut and produces SCFAs, with acetate,
propionate, and butyrate (Morrison and Preston, 2016) present
in a ratio of 3:1:1 (Hoverstad et al., 1984). More specifically, A.
municiphilla produce propionates (Derrien et al., 2004) while
Ruminococcus bromii (Ze et al., 2012) F. prausnitzii, Eubacterium

rectale, Eubacterium hallii, and Ruminococcus bromii, produce
butyrate (Louis et al., 2010). Propionates and butyrates lower
lipogenesis and serum cholesterol level while activating intestinal
gluconeogenesis (IGN) which contributes to glucose homeostasis
(Hosseini et al., 2011).

SCFA are ligands of the free fatty acid receptor (FFAR)
2 and 3, also known as G-protein coupled receptor (GPR)
43 and 41, respectively. FFAR2 is activated by acetate and
propionate, while FFAR3 is activated by propionate and butyrate
(Kaji et al., 2014). Propionate is involved in gluconeogenic
activity while acetate and butyrate contribute to lipogenic activity
(den Besten et al., 2013a). These three gut bacterial products
(acetate, propionate, and butyrate) thus regulate gluconeogenesis
and lipogenesis, thereby modulating hepatic lipid and glucose
homeostasis, notably through PPAR-γ (den Besten et al., 2015).
SCFAs produced from dietary fibers can also increase LPS (Blaut
and Klaus, 2012), the main component of gram-negative bacteria
(Delzenne and Cani, 2011). Plasma LPS participates in the
development of insulin resistance, as discussed by Carvalho et al.
(2012). In contrast to SCFAs, high concentrations of omega-3
fatty acids reduce LPS (Kaliannan et al., 2015), as do Gram-
positive bacteria (Bifidobacterium and Lactobacillus) (Zhang
et al., 2010).

On the other hand, the activity of gut microbiota influences

triglycerides, which represent stored glycerol-linked fatty acids

(den Besten et al., 2013b). Different concentrations of cholesterol,

lipoproteins, and triglycerides determine the classification

of circulating lipids into chylomicrons, very low-density

lipoproteins (VLDL), intermediate-density lipoproteins (IDL),

low-density lipoproteins (LDL), and high-density lipoproteins

(HDL) (Cox and Garcia-Palmieri, 1990). It is well-established
that diets rich in fructose can increase triglycerides (Schaefer
et al., 2009). High triglyceride levels, in turn, bring out
undesirable effects on lipid metabolism (Reiser, 1985) and,
as detailed above, are one of the hallmarks of the metabolic
syndrome. In contrast, decreased triglyceride levels reduce
fatty acid synthase activity (Morand et al., 1994) and provide
beneficial health effects. Several polysaccharides such as inulin,
FOS, GOS, OFS, ITF, fructans, β-glucans, arabinoxylans, xylo-
oligosaccharides, polydextrose, resistant starch, and guar gum
decrease triglyceride levels (de Deckere et al., 1993).

TABLE 7 | Examples of NDCs.

Class Example

Fructans Inulin, FOS, oligofructose (OFS), levan

Galactans (Galactooligosaccharides) GOS, trans-galactooligosaccharides (TOS)

Grains, fruits, vegetables-oligo and polysaccharides Pectin, β-glucan, cellulose, hemicellulose, arabinoxylan, arabinoxylooligosaccharides (AXOS)

Synthetic NDCs Polydextrose, resistant maltodextrin

Resistant starches (Type 1 to 4)

Galactomannan polysaccharides Gums of guar, hydrolyzed guar, locust bean, genugreek, tara

Microbial polysaccharides Xanthan and gellan gum

Seaweed polysaccharides Alginate

Glucomannan polysaccharides Konjac

Tree exudate polysaccharides Gum arabic, gum acacia, karaya, tragacanth and ghatti gums
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Dietary carbohydrates also modulate important incretin
hormones, namely glucose-dependent insulinotropic peptide
(GIP) and glucagon-like peptide-1 (GLP-1) (Edholm et al., 2010).
Endocrine K-cells secrete GIP in response to carbohydrates
and fat ingestion, (Andersen et al., 1978) whereas, GLP-
1 is secreted by L cells (Kieffer and Habener, 1999) in
response to luminal sugars, amino acids and fatty acids
(Holst, 2007). GLP-1 stimulates the release of insulin,
suppresses the release of glucagon (Nadkarni et al., 2014),
lowers the blood glucose (Nauck et al., 1993), and plays a
major role in glucose homeostasis (Kieffer and Habener,
1999; Deacon, 2004). GIP exerts similar effects (Yabe and
Seino, 2011). Oligo- and poly-saccharides such as fructo-
oligosaccharides (FOS), Glucooligosaccharides (GOS),
oligofructoses (OFS), inulin-type fructans (ITF), fructans,
Arabinoxylooligosaccharides (AXOS), resistant maltodextrin,
resistant starch, and guar gum increase GLP-1 (Wang X. et al.,
2015).

Another important peptide hormone modulated by dietary
carbohydrates is peptide YY (PYY), which is secreted by α-cells
of the pancreatic islets in response to the food that is ingested
(Shi et al., 2015). External administration of SCFAs releases PYY
and GLP-1 into plasma (Freeland and Wolever, 2010), while
generated SCFAs can increase PYY concentration only (Cherbut
et al., 1998). When PYY concentration increases, serum insulin
level also increases, which improves glucose tolerance (Shi et al.,
2015) leading to GH regulation (Boey et al., 2007). Therefore, the
higher level of GLP-1, GIP, and PYY is desirable.

Gut microbiota modulates the brown adipose tissues (BATs)
(Mestdagh et al., 2012). When stimulated, FFA are used-up to
clear the TGs (Bartelt et al., 2011) in turn regulating glucose
homeostasis (Stanford et al., 2013) (Peirce and Vidal-Puig, 2013).

Sodium-glucose transport protein-1 (SGLT-1) and glucose
transporter-2 (GLUT-2) also participate in maintaining GH
(Kellett and Helliwell, 2000).

SUMMARY

The healthy human gut represents a complex and highly variable
ecological system consisting of several microbes belonging to
bacteria, fungi and virus domains, in addition to host epithelial
cells. Firmicutes, Bacteroidetes, Proteobacteria, Actinobacteria,
and Fusobacteria are the major phyla colonizing the stomach
and intestine of healthy adults. The exact role of gut microbiota
is not fully elucidated but many studies implicate microbiota to
perform tasks that are known to be useful for the human host
such as modulating intermediate metabolism and the immune
system. Diet-induced changes in the composition/diversity of gut
microbes are thus believed to participate in the pathogenesis of
certain diseases through modifying different metabolic processes
in the host.

Less diverse intestinal microbiota have been reported in
metabolic disorders. While the association between increased
Firmicutes/Bacteroidetes ratio and metabolic diseases is still
controversial, more recent studies associated Akkermansia

and Lactobacillus species with central obesity and fasting
hyperglycemia.

Polyphenols, oligo-, and poly-saccharides can influence the
composition of gut microbiota by favoring beneficial bacteria and
inhibiting growth and activity of pathogenic species and thus
constitute a promising avenue for the prevention and treatment
of metabolic disorders.

FUTURE CHALLENGES AND
OPPORTUNITIES

Given all the above considerations, the perspectives for targeting
the gut microbiome in the context of metabolic diseases keeps
being highly relevant and timely. First and foremost, there
remains a need to refine research on specific microbes that may
be more specifically involved in metabolic diseases rather than
considering broader categories, such as phyla. Among challenges
that should be met, more studies should focus on the roles and
potential mechanisms of action of non-bacterial gut microbes,
since these remain poorly understood. Continued research efforts
should also result in the better understanding of the modes of
action of pre- and pro-biotics in metabolic diseases, notably in
terms of metabolic and inflammatory mediators.

There also remains a lot to be done to further elucidate
the intricate interactions between prebiotics (polyphenols and
fibers) on the one hand, and probiotics (gut microbes), on the
other, notably in what pertains to the metabolism of prebiotics
by the latter and the influence this has on the bioactivity of
the former. In this context, experimental approaches and tools
have now evolved that can meet this challenge. For instance,
one could think of combining bacterial metagenomics with plant
metabolomics and hence study relationships through the use of
powerful bioinformatics.

Overall, and in a very pragmatic sense, academics and
industrial partners will need to work together to develop safe
and reliable products that can help prevent and mitigate the ill
effects of metabolic syndrome and related obesity and diabetes.
In this context, a promising approach may be to further explore
symbiotic products that can combine pre- and pro-biotics in
novel and efficient ways.
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