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Abstract

This thesis treats Poisson's equation and its approximate solution using the �nite

element method. For this purpose, a general theory of the �nite element method

and its strategy are explained brie�y. Then, Poisson's equation, its derivation and

applications are explained in details. The �nite element method is then applied to

approximate the solution of Poisson's equation in one and two dimensional spaces.

In this essence, error analysis is studied for the Poisson's equation in both categories,

a posteriori and a priori error estimates.

In addition, the thesis discusses the numerical solution for the Poisson's equation

throughout examples in one and two dimensions using the MATLAB software.
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Chapter 1

Di�erential equations

and the FEM

The Finite Element Method, FEM, is a numerical technique used to approximate

solutions of di�erential equations. It was originated from the need of solving complex

elasticity and structural analysis problems in Civil and Mechanical engineering and

mathematical physics [1, 22]. Typical problem areas of interest include structural

analysis heat transfer, �uid �ow, mass transports and electromagnetic potential.

The formulation of a problem using FEM produce a system of algebraic equation,

in which the unknown function over the domain is divided into smaller parts called

�nite elements. The equations that model these �nite elements are then assembled

into a large system of equations that models the problem over the entire domain.

Based on calculus of variation, the FEM uses variational method to approximate a

solution by minimizing an associated error function [18, 7, 21].

1.1 History of the analysis of the �nite element

Ritz [1, 9, 11] was the �rst who proposed the FEM in 1909, later he developed

an e�cient method for approximate problems [22]. His idea involved approximating

the power function through known functions with unknown parameters.

The study of the �nite element can be traced back to the works of Alexander Hren-

niko� 1941 who created a frame method in which a �at, �exible medium is inter-
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Chapter 1. Di�erential equations and the FEM 3

preted as a set of rails and girders. These pioneers share one important characteristic:

the division of a continuous domain into a number of distinct subdomains, typically

called elements.

Richard Currant In 1943, German mathematician, increased the probabilities of the

Ritz method by introducing special linear functions de�ned via multiple-de�nition

linear approximation in subareas [12] and using the �nite element model of the

procedure to reduce the potential energy of the torsion strain function using values

Grid point as unknown parameters.

Using digital computers, 1950, solving a large number of equations simultaneously

became possible, and the �rst published paper using the word 'Finite Element

Method' was in 1960. Ray W. Clough. Zienkiewicz and Chung wrote their �rst book

on 'Operation Unique Elements' in 1967. Therefor FEM was applied to a variety of

engineering issues using FEM software packages (ABAQUS, NASTRAN, ANSYS,

etc.).

In 1980 an algorithm was developed for electromagnetic, �uid �ow, and thermal

analysis applications using the FEM. Then engineers can analyzed methods to man-

age vibration and extend the use of diversity and to accelerate space structures using

a �nite and other methods. Trends to overcome additive solution to �uid �ow are

closely related to structural reactions and biomechanical problems, where a higher

degree of accuracy was observed [13].

1.2 Advantages and disadvantages of the FEM

An important advantage of the FEM is the easily managing of the complex ge-

ometry, so, it can give a good approximations of a variety of engineering problems in

the �eld of solid mechanics, �uid, dynamics, electrostatic problems, and heat prob-

lems. In addition, the FEM can manage dynamic constraints where an undetermined

structure can be resolved.

However, the FEM has disadvantages, for example it just obtain a 'approximate' so-

lution. As well as, a general closed-form solution that would allow a system response

to a change in di�erent parameters to be examined is not generated [10].

3



Chapter 1. Di�erential equations and the FEM 4

1.3 Preliminarily

De�nition 1.1. [9] Lp−spaces, For p ∈ [1,∞),

Lp(Ω) := {v : Ω → R;
∫
Ω

|v(x)|pdx <∞}. (1.1)

||v||lp(Ω) :=

(∫
Ω

|v(x)|pdx
) 1

p

. (1.2)

For p = ∞,

L∞(Ω) := {v : Ω → R; |v(x)| <∞ a.e.}.

||v||L∞(Ω) := inf{k > 0, |v(x)| ≤ k a.e.}.

The integral (2.2) is called Lebesgue integral and 'a.e.' means 'almost every where'

[16], i.e. ∀x ∈ Ω\N, for null sets N.

Important properties

1. The space (Lp(Ω), ||.||Lp) is Banach space for p ∈ N.

2. The space (L2(Ω), ⟨.⟩L2(Ω)) is a Hilbert space [2], where the inner product in

L2 is de�ned as

⟨φ, ψ⟩L2(Ω) =

∫
Ω

φ(x)ψ(x)dx.

Notation 1.2. [9] The space C∞
c denoted the in�nitely di�erentiable space functions

ψ : Ω → R with compact support in Ω.

De�nition 1.3. [9] Assume a function u ∈ C1(Ω). If ψ ∈ C∞
c we give the formula

of integration by parts ∫
Ω

uψxi
dx = −

∫
Ω

uxi
ψdx, (1.3)

there is no boundary term since ψ is with compact support in Ω. If k is a positive

integer, u ∈ Ck(Ω), and α = (α1, α2, · · · , αd) is a multi-index of order |α| = α1 +

α2 + · · ·+ αd = k, then∫
Ω

uDαψdx = (−1)|α|
∫
Ω

Dαψdx, ∀ψ ∈ Ck
c (Ω),

where

Dαψ =

(
∂α1

∂xα1
1

· · · ∂
αn

∂xαn
n

)
(ψ).

Remark 1.4. Given a domain Ω, a set of locally integrable functions is de�ned by

[4]

L1
loc(Ω) := {g : g ∈ L1(E),∀ compact (E) ⊂ interior(Ω)}.

4



Chapter 1. Di�erential equations and the FEM 5

1.3.1 Weak derivative

Suppose f, g ∈ L1
loc(Ω) and α is a multi-index, we say that g is the αth- weak

partial derivative of f, written g = Dαf, if [9, 4]∫
Ω

fDαψdx = (−1)|α|
∫
Ω

gψdx, ∀ψ ∈ C∞
c (Ω),

or equivalently

⟨f,Dαψ⟩L2(Ω) = (−1)|α|⟨g, ψ⟩L2(Ω), ∀ψ ∈ C∞
c (Ω).

De�nition 1.5. Given a function g ∈ L1
loc(Ω) we say that h ∈ L1

loc(Ω) has a weak

derivative Dαh if∫
Ω

h(x)Dαψ(x)dx = (−1)|α|
∫
Ω

Dαh(x)ψ(x)dx, ∀ψ ∈ C∞
c (Ω).

Remark 1.6. � If a locally integrable function has a weak derivative, then it is

unique, i.e., if v = Dαu ∈ L1
loc(Ω) and υ̃ = Dαu ∈ L1

loc(Ω) both are weak partial

derivatives of u, then υ = υ̃ a.e., [20].

� Consistency in the de�nition: If u ∈ C1(Ω) ∩ C(Ω̄), then the weak derivative

matches the classical derivative, [2].

De�nition 1.7. [14] Let k be a non-negative integer, and let ψ ∈ L1
loc be assumed

to have a weak derivative Dα(ψ) for all |α| ≤ k, .De�ne the sobolev space W k
p

W k
p := {ψ ∈ L1

loc : ||ψ||Wk
p
<∞},

where for 1 ≤ p <∞,

||ψ||Wk
p (Ω) := (

∑
|α|≤k

||Dαψ||pLp(Ω))
1
p ,

and for p = ∞,

||ψ||Wk
∞(Ω) := max

|α|≤k
||Dαψ||L∞(Ω).

Remark 1.8. � If p = 2 we usually write

W k
2 (Ω) = Hk(Ω) = {ψ ∈ L2(Ω) :

∑
|α|≤k

Dαψ ∈ L2(Ω)}, k = 0, 1, · · ·

We use the letter H and Hk(Ω) to denote for Hilbert space with inner product

⟨u, v⟩Wk
2
=
∑
|α|≤k

⟨Dαu,Dαv⟩.

5



Chapter 1. Di�erential equations and the FEM 6

� The special case when k = 1 and p = 2 the space is

H1 = {ψ ∈ L2 :
∂ψ

∂xi
∈ L2, i = 1, 2, · · · , n}. (1.4)

Note that

||ψ||H1(Ω) = (||ψ||2L2(Ω) + ||Dψ||2L2(Ω))
1
2 .

De�nition 1.9. [2] The Sobolev space Hk
0 is the completion of the C∞

c with respect

to the norm || · ||Hk , i.e.,

u ∈ Hk
0 (Ω) ⇐⇒ ∃υ ∈ C∞

c (Ω)such that lim
n→∞

||u− υ||Hk(Ω) = 0.

Note that Hk
0 (Ω) is a closed subspace of Hk. If the boundary Γ is C1, then it is

assumed that υ ∈ C(Ω̄) ∩ Hk
0 (Ω) implies that υ(x) = 0 for all x ∈ Γ. Finally, the

special Sobolev space H1
0 is de�ned as the closure of C∞

0 in H1(Ω), so

H1
0 = {u ∈ H1(Ω) : u | Γ = 0}.

De�nition 1.10. [13] Let (V, (·, )) be an inner product space, if the associated

normed linear space (V, ||.||) is complete,then (V, (, )) is called a Hilbert space.

Notation 1.11. [13] H1
0 is a Hilbert space have the same norm and same inner

product as of H1.

Theorem 1.12. [14] The Sobolev space Hk
p ≡ W k

p with regard to the norm ||.||Hk
p

is a Banach space.

Notation 1.13. [14] With the Hilbert space V, the dual space V ′ can be de�ned

as the space of all linear functional L(υ). The linear functional L(υ) is bounded if

L(υ) ≤ C||υ||V ,∀υ ∈ V.

Lemma 1.14. [15](Poincaré − Frederic′s inequality). Let Ω be a bounded set of

Rn for any n, then a constant CΩ exists such that

||u||L2(Ω) ≤ CΩ||u||H1(Ω), ∀u ∈ H1
0 (Ω).

1.4 Classi�cation of the PDE

Three distinct families of partial di�erential equations are known: elliptical,

parabolic and hyperbolic equations, where are classi�cation is based on suitable

6



Chapter 1. Di�erential equations and the FEM 7

unique computational methods. The general form of the linear second-order PDE is

[15, 17],

A(x, y)Uxx +B(x, y)Uxy +C(x, y)Uyy +D(x, y)Ux +E(x, y)Uy +F (x, y)U = G(x, y)

(1.5)

The classi�cation depends on the sign of the discriminant, △ = B2 − 4AC. In

particular, equation (2.4) is called :

1. Elliptic equation, if △ < 0.

As a standard example the Poisson equation

∇2U = h(x, y) or Uxx + Uyy = h.

If h = 0 it is called Laplace equation.

∇2U = 0 or Uxx + Uyy = 0.

2. Parabolic equation, if △ = 0. As an example the Heat equation

Ut = α2Uxx.

3. Hyperbolic equation, if △ > 0. The Wave equation is an example of such

equation

Utt − α2Uxx = 0.

Remark 1.15. [23] Important elliptic two dimension partial di�erential equations:

uxx + uyy = 0 (Laplace Equation)

−(uxx + uyy) = h(x, y) (Poission Equation)

−(uxx + uyy) + au = h (General Helmholtz Equation)

uxxxx + 2uxxyy + uyyyy = 0 (Bi-harmonic Equation)

Remark 1.16. The usual three type of boundary conditions:

� Dirichlet boundary condition: The solution is known at the boundary of the

domain.

� Neumann boundary condition: The derivative of the solution is known at the

boundary of the domain.

7



Chapter 1. Di�erential equations and the FEM 8

� Robin boundary condition: A mixed of 1 and 2.

Next, we shall discus the numerical technique of the �nite element method for solving

partial di�erential equations. Two major steps of the FEM that are the variational

formulation and the discretization.

1.5 Finite Element Method

1.5.1 Notations and de�nitions

Below are basic notations that will be used later in the �nite element technique

explanation [3].

� Element domain: A bounded closed set k ⊆ IRn where the PDE is associated.

� V L is the space of continuous piecewise linear polynomial

� V L
h is a �nite subspace of V L on the partition kh : a = x0 < x1 < · · · < xn <

xn+1 = b.

� {φi}n+1
i=0 = {φ0, φ1, · · · , φn+1} is used for the set of nodal variables, where

{φ}n+1
i=0 are basis for V L

h satisfying

φi(xj) =

{
1, if i = j,

0, if i ̸= j,

where i, j = 0, 1, · · · , n+ 1.

Basis function φi are continuous, piecewise linear and take the unite value at the

node xi, and zero at all other nodes. Note that φi are known as the hat functions,

because of their shape, see �gure 1. The explicit expression for the hat functions are

given by

φi(x) =


x−xi−1

hi
, xi−1 ≤ x < xi,

xi+1−x
hi+1

, xi ≤ x ≤ xi+1,

0, elsewhere,

where hi = xi − xi−1.

Now Any function u ∈ V L
h can be written as a linear combination of the hat

function {φi}n+1
i=0 and corresponding coe�cient {ξi}n+1

i=0

u(x) =
n+1∑
i=0

ξiφi(x)

8



Chapter 1. Di�erential equations and the FEM 9

where ξi = u(xi), i = 0, · · · , n+ 1, are the value of the unknown at the nodal value

xi to be determined. Finally, the notation (kh, V
L
h , φ) is known as the �nite element

triple.

Remark 1.17. � V L
h is a subspace of V L consisting of linear functions spanned

by {φi}n+1
i=0 .

� The interval [xi−1, xi+1] is called the support of the function φi, i = 1, · · · , n.

� The exception of φ0 and φn+1 at the left-end node x0 and the right-end node

xn+1 with support only on one subinterval,i.e.,

φ0(x) =

{
x1−x
h1

, x0 ≤ x < x1,

0, elsewhere,

φn+1(x) =

{
x−xn

hn+1
, xn ≤ x < xn+1,

0, elsewhere.

1.5.2 How the FEM works

We illustrate the basic steps of the �nite element method below:

1. Discretization:

The solution area is to be divided into �nite elements. Description of mesh consists

from several main matrices, including nodal coordinates and element conductivities.

2. Interpolation:

Domain variables on the element are interpolated using interpolation functions. The

choice of polynomials as interpolation functions is often used. However, the number

of nodes assigned to the element decides the degree of the polynomial.

3. Variational formulation:

The matrix equation for the �nite element should be established which associates the

nodal values of the unknown function with other parameters. For this aim, di�erent

approaches can be used, the most suitable is: the variational formulation.

4. Element equations:

To �nd the global equation system for the whole solution area we must assemble

all the equations of the elements. In other words, we must sum the local element

equation for all elements used for discretization. Element connections are used for

assembly process. Before solving, the boundary conditions (which are not computed

in the element equations) must be imposed.

9
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5. System of global equations:

The global equations for the �nite element typically sparse, metric and positive

de�nite. Both direct and iterative methods can be used to solve the resulted system.

The nodal values of the sought function are produced as a result of the solution.

1.5.3 Sti�ness and Mass matrices

To ensure an approximate solution of the resulting di�erential equation, matrices

like sti�ness and mass matrices that represent a system of linear equations must be

solved.

Sti�ness matrix

Consider the matrix A = [aij], where aij =
∫
Ω
φ

′
iφ

′
j dx and where φi and φj are the

linear basis functions de�ned before. If |j − i| > 1, then φ
′
iφ

′
j = 0 and so aij = 0. If

|j − i| ≤ 1, then one of the following cases holds:

� j − i = −1 ⇒ j = i− 1,

� j − i = 0 ⇒ j = i,

� j − i = 1 ⇒ j = i+ 1.

The case j = i− 1

ai,i−1 =

∫
Ω

φ
′

i−1φ
′

i dx =

∫ xi

xi−1

− 1

hi

1

hi
dx = − 1

hi

while j = i

ai,i =

∫
Ω

φ
′

iφ
′

i dx =

∫ xi

xi−1

1

hi

1

hi
dx+

∫ xi+1

xi

(
− 1

hi+1

)(
− 1

hi+1

)
dx =

1

hi
+

1

hi+1

and j = i+ 1

ai,i+1 =

∫
Ω

φ
′

i+1φ
′

i dx =

∫ xi+1

xi

(
1

hi+1

)(
− 1

hi+1

)
dx = − 1

hi+1

.

10



Chapter 1. Di�erential equations and the FEM 11

Thus, the sti�ness matrix for non-uniform mesh is given by

A =



1
h1

− 1
h2

0 0 0

− 1
h2

1
h1

+ 1
h2

− 1
h3

0 · · · 0

0 − 1
h3

1
h2

+ 1
h3

− 1
h4

...

0 − 1
h4

. . .
...

. . . . . . 0

0 1
hn−1

+ 1
hn

− 1
hn+1

0 · · · 0 − 1
hn+1

1
hn+1


.

If h1 = h2 = · · · = hn+1 uniform mesh, then A becomes

A =
1

h



1 −1 0 0

−1 2 −1 0 · · · 0

0 −1 2 −1
...

...
. . . . . . 0

...
. . . −1

0 · · · 0 −1 1


.

Mass matrix

Consider the matrix M = [mij], where mij =
∫
Ω
φiφj dx and where φi and φj are

the linear basis functions de�ned before.

Now, mij = 0 except for j = i − 1, i, i + 1. accordingly we have the following three

cases:

� j=i-1,

mi,i−1 =

∫
Ω

φi−1φi dx =

∫ xi

xi−1

φi−1φi dx =
hi
6
.

� j=i,

mi,i =

∫
Ω

φiφi dx =

∫ xi

xi−1

φiφi dx+

∫ xi+1

xi

φiφi dx =
hi + hi+1

6
.

� j=i+1,

mi,i+1 =

∫
Ω

φi+1φi dx =

∫ xi+1

xi

φi+1φi dx =
hi+1

6
.

11
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Hence, the mass matrix for non-uniform mesh is given by:

M =



h1

3
h2

6
0 0

h2

6
h1+h2

6
h2

6
0 · · · 0

0 h2

6

. . . . . . 0

0 · · · ...
... hn−1+hn

6
hn+1

6

0 · · · 0 hn+1

6
hn+1

3


.

With uniform mesh the mass matrix M is:

A =
h

6



2 1 0 · · · 0

1 4 1 0

0 1 4
...

...
. . . 1

0 · · · 0 1 2


.

1.5.4 Examples

Example 1.18. Consider the following boundary value problem

−u′′
= f, x ∈ (0, 1), (1.6)

u(0) = u(1) = 0.

For general f, the exact solution of this problem depends on the choice of the function

f. For example,with f = 1 one can �nd that u = x(1−x)
2

. However, it may be di�cult

to �nd u with analytical techniques for some other choices of f. We will consider

this BVP as a good model for studying the numerical techniques introduced by the

FEM.

Variational formulation Multiply (1.6) by a test function v, integrate over Ω =

(0, 1), and use that v(0) = v(1) = 0 to get∫ 1

0

fv dx = −
∫ 1

0

u
′′
v dx

=

∫ 1

0

u
′
v

′
dx− u

′
(1)v(1) + u

′
(0)v(0)

=

∫ 1

0

u
′
v

′
dx.

12



Chapter 1. Di�erential equations and the FEM 13

The statement of the variational formulation of (1.6) will be:

Find u ∈ H1
0 ([0, 1]) = {w : ||w′|| <∞, ||w|| <∞, and w(0) = w(1) = 0} such that∫ 1

0

u
′
v

′
dx =

∫ 1

0

fv dx, ∀v ∈ H1
0 ([0, 1]). (1.7)

The FEM discretization. Introducing the vector space, V L
h , of continuous,

piecewise linear functions on the partition 0 = x0 < x1 < · · · < xn < xn+1 = 1, of

[0, 1]. We state the cG(1) (see the remark below) method as the following discrete

counterpart of (1.7) : Find U(x) ∈ V L
h , such that∫ 1

0

U
′
v

′
dx =

∫
01fv dx∀x ∈ V L

h . (1.8)

Remark 1.19. In cG(1) expressing the fact that this FEM is based on continuous,

piecewise linear approximation. The letter c stands for continuous and G stands for

Galerkin , and the number 1 stands for linear. Boris Grigorievich Galerkin (1871−
1945) was a Russian mathematician who made pioneering contributions to the �eld

of numerical solution of di�erential equations. The Galerkin method is the method

of rewriting the di�erential equation in variational form and discretizing it. A FEM,

is a Galerkin method that utilises piecewise polynomials as approximating functions.

We now seek a solution, U(x), to (1.8) expressed of the hat function {φi}n+1
i=0 ⊂

V L
h .

In other words we propose

U(x) =
n+1∑
j=0

ξjφj(x) (1.9)

and search for the coe�cients vector

ξ =


ξ0

ξ1
...

ξn+1

 =


U(x0)

U(x1)
...

U(xn+1)


of the nodal values U(x) in such a way that (1.8) is satis�ed. Using the fact that

ξ0 = U(x0) = U(0) = 0 and ξn+1 = U(xn+1) = U(1) = 0, then U can be written as

U(x) =
n∑

j=1

ξjφj(x).

13



Chapter 1. Di�erential equations and the FEM 14

To derive the linear system of equations, we substitute (1.9) into (1.8),∫ 1

0

n+1∑
j=0

ξjφ
′

j(x)v
′
dx =

∫ 1

0

fv dx, ∀v ∈ V L
h . (1.10)

Since {φi}n+1
i=0 ⊂ V L

h is a basis of V L
h then we take v = φi, so, (1.10) is equivalent to∫ 1

0

n∑
j=1

ξjφ
′

j(x)φ
′

i(x) dx =

∫ 1

0

fφi dx, i = 1, · · · , n

∫ 1

0

ξj

n∑
j=1

φ
′

j(x)φ
′

i(x) dx =

∫ 1

0

fφi dx, i = 1, · · · , n. (1.11)

This is a quadratic system of n linear equation and n unknowns. Introducing the

notations

ai,j =

∫ 1

0

aφ′
jφ

′
idx,

bi =

∫ 1

0

fφidx,

Then, in matrix form, the system (1.11) is read as Aξ = b, where

A =

 a11 · · · a1n
...

. . .
...

an,1 · · · ann


is the sti�ness matrix and

b =

 b1
...

bN


is the load vector.

Example 1.20. Consider the following boundary value problem with n = 3

−u′′ = 1, x ∈ (0, 1),

u(0) = u(1) = 0.

14



Chapter 1. Di�erential equations and the FEM 15

Solution:

(a) The exact solution is u(x) = −x2

2
+ x

2
.

(b) the numerical solution:

Let v ∈ H1
0 be a test function, multiply the equation with v then integrating by parts

over [0, 1] ∫ 1

0

−u′′v dx =

∫ 1

0

v dx

−u′v′|10 +
∫ 1

0

u′v′ dx =

∫ 1

0

v dx

Then,

−u(1)v(1) + u(0)v(0) +

∫ 1

0

u′v′ dx =

∫ 1

0

v dx∫ 1

0

u′v′ dx =

∫ 1

0

v dx

Now, let U ∈ V L
h with U =

∑3
j=0 ξjφj and v = φi, then∫ 1

0

3∑
j=0

ξjφ
′
jφ

′
i dx =

∫ 1

0

φi dx

3∑
j=0

ξj

∫ 1

0

φ′
jφ

′
i dx =

∫ 1

0

φi dx (1.12)

we have h = 1−0
3

= 1
3
and we know that U(xj) = ξj, j = 0, 1, 2, 3. Hence U(0) =

U(x0) = ξ0 = 0, U(1) = U(x3) = ξ3 = 0, so, (1.12) can be written as

2∑
j=1

ξj

∫ 1

0

φ′
jφ

′
i dx =

∫ 1

0

φi dx, i = 1, 2. (1.13)

Note that,

φ1 =


x−0
1
3

, 0 ≤ x < 1
3
,

2
3
−x
1
3

, 1
3
≤ x < 2

3
,

0, elsewhere.

φ2 =


x− 1

3
1
3

, 1
3
≤ x < 2

3
,

1−x
1
3

, 2
3
≤ x < 1,

0, elsewhere.

After computation the elements integral in (1.13) we end up with

6ξ1 − 3ξ2 =
1

3
, −3ξ1 + 6ξ2 =

1

3
.

15



Chapter 1. Di�erential equations and the FEM 16

Hence, ξ1 = ξ2 =
1
9
.

This implies, 
ξ0

ξ1

ξ2

ξ3

 =


0
1
9
1
9

0

 .

Therefore, U(x) = 1
9
φ1(x) +

1
9
φ2(x) is the approximation solution using the FEM

with n = 3.

16



Chapter 2

Poisson equation

2.1 Poisson Applications

Poisson equation is the property of the class of elliptic equations and has numer-

ous applications in physics and mechanics. These include,[8]

Electrostatics.

Let E(x) be the electric �eld in a volume Ω containing charges of density ρ(x)

and enclosed by a perfectly conducting surface Γ. According to Maxwell equations

describing electromagnetic problem:

∇ · E = ρ in Ω,

where E(x) is a conservative �eld. From Faraday's law,

∇× E = 0,

it follows that there exist a scalar electric potential φ, such that

E = ∇φ.

This leads to the Poisson equation

∇ · ∇φ = △φ = ρ

with a Dirichlet boundary condition φ = c on Γ, where c is a constant.

Fluid mechanics.

The rotation-free �uid �ow is a conservative �eld and satis�es

∇× u = 0,

17



Chapter 2. Poisson equation 18

where u is the velocity �eld. It follows that there exist a scalar velocity potential φ

such that

u = ∇ψ.

For incompressible �uid we have ∇ · u = 0, and we obtain the Laplace equation for

the potential of rotation-free incompressible �ow

∇ · ∇φ = △φ = 0.

At a solid boundary, the normal velocity is zero, which translates to a homogeneous

Neumann boundary condition for the potential.

Statistical physics.

In this application, we consider the random motion of particles inside a container

Ω. The particles move until they hit the boundary where they stop. We assume that

the boundary Γ of Ω is partitioned into two parts, see Fig

Γ = Γ1 ∪ Γ2,Γ1 ∩ Γ2 = ϕ.

Let u(x) be the probability that a particle starting at x ∈ Ω winds up stopping at

some point on Γ1, so that u(x) = 0 means it never happens, and u(x) = 1 means

that it is certain to happen. It turns out that u follows Laplace equation

△u = 0 in Ω,

with boundary conditions

u|Γ1 = 1 and u|Γ2 = 0.

The solution of this boundary value problem, as expected, is not continuous on the

boundary.

2.2 One dimensional Poisson equation

2.2.1 Modeling and Variational Formulation

Consider the stationary reaction-di�usion process involving a single substance,

which has the following mathematical model

−(au′)′ = f, α < x < β,

a(α)u′(α) = b(α)(u(α)− gD(α)) + gN(α), (2.1)

−a(β)u′(β) = b(β)(u(β)− gD(β)) + gN(β),

18



Chapter 2. Poisson equation 19

where the unknown u(x) stands the concentration of the substance, and the other

functions:

a(x) : di�usion coe�cient a(x) > 0,

f(x) : source function

b(α), b(β) : permeability at the end points b ≥ 0,

gD(α), gD(β) : ambient concentration

gN(α), gN(β) : externally induced �ux through the boundary

First, turning to the Boundary conditions in (2.1), we will consider the cases for

which a mixed boundary conditions are representing a mathematical model of the

physical fact that the outward �ux is proportional to the concentration di�erence be-

tween the domain boundary and the surrounding environment, i.e, gN(α) = gN(β) =

0.

The following three special cases will be considered:

� Dirichlet boundary conditions:

This boundary condition physically corresponds to the case of a vary high

permeability, i.e, b → ∞, implying that the concentration at the boundary

adapts to the ambient concentration u = gD.

� Homogeneous Neunmman boundary condition:

This boundary condition physically corresponds to the case of an impermeable

boundary, i.e, one for which b = 0 and gN(α) = gN(β) = 0, implying zero �ux

through the boundary, that is u′(α) = u′(β) = 0.

� Inhomogeneous Neunmman boundary condition:

We can also imagine a case where we externally control the �ux through the

boundary. This case can be modelled by choosing b = 0 and gN ̸= 0.

This boundary condition prescribes the �ux through the boundary

a(α)u′(α) = gN(α), −a(β)u′(β) = gN(β).

The derivation of variational formulation of (2.1) is explained in the following steps,

but �rst we de�ne the space

H1([α, β]) := {υ(x) :
∫ β

α

υ2(x) dx <∞,

∫ β

α

(υ′)2(x) dx <∞},

that will be used later.
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Chapter 2. Poisson equation 20

� We multiply the di�erential equation (2.1) by test function υ(x) ∈ H1([α, β]).

� Integrate both sides over [α, β]

−
∫ β

α

(au′)′υ dx =

∫ β

α

fυ dx,

then we use integration by parts,

[−(au′)υ]βα +

∫ β

α

au′υ′ dx =

∫ β

α

fυ dx,

� Make use the boundary conditions in (2.1)

a(α)u′(α) = b(α)(u(α)− gD(α)) + gN(α),

−a(β)u′(β) = b(β)(u(β)− gD(β)) + gN(β),

to obtain:

b(β)u(β)υ(β) + b(α)u(α)υ(α) +

∫ β

α

au′υ′ dx = (b(β)gD(β)− gN(β))υ(β)

+(b(α)gD(α)− gN(α))υ(α) +

∫ β

α

fυ dx.

� Finally, the statement of the variational formulation of (2.1) becomes:

Find u(x) ∈ H1([α, β]), such that

b(β)u(β)υ(β) + b(α)u(α)υ(α) +

∫ β

α

au′υ′dx = (b(β)gD(β)− gN(β))υ(β)(2.2)

+(b(α)gD(α)− gN(α))υ(α) +

∫ β

α

fυdx, ∀υ ∈ H1([α, β])

2.2.2 Discretizaion

Let V L
h be the vector space of continuous, piecewise linear functions on the

partition of [α, β], α = x1 < x2 < · · · < xN−1 < xN = β. We now state the cG(1)

method as the following discrete counterpart of (2.2) :

Find U(x) ∈ V L
h , such that

b(xN)U(xN)υ(xN) + b(x1)U(x1)υ(x1) +

∫ xN

x1

aU ′υ′dx = (b(xN)gD(xN) (2.3)

−gN(xN))υ(xN) + (b(x1)gD(x1)− gN(x1))υ(x1) +

∫ xN

x1

fυdx, ∀υ ∈ V L
h .
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Chapter 2. Poisson equation 21

Assumption

We express the solution U(x), of (2.3) in terms of the basis {φi}Ni=1 ⊂ V L
h as de�ned

before.

As a result, we seek a solution of the form

U(x) =
N∑
j=1

ξjϕj(x) (2.4)

and follow the computations below to determine the coe�cient vector,

ξ =


ξ1

ξ2
...

ξN

 =


U(x1)

U(x2)
...

U(xN)


of nodal values of U(x), in such a way that (2.3) is satis�ed.

Now, substitute (2.4) into (2.3),

b(xN)ξ(xN)υ(xN) + b(x1)ξ(x1)υ(x1) +
N∑
j=1

ξj

∫ xN

x1

aϕ′
jυ

′dx = (b(xN)gD(xN) (2.5)

−gN(xN))υ(xN) + (b(x1)gD(x1)− gN(x1))υ(x1) +

∫ xN

x1

fυdx, ∀υ ∈ V L
h .

Since {φi}Ni=1 ⊂ V L
h is a basis of V L

h , then we can set υ = φi, i = 1, · · · ,N, thus
equation (2.5) becomes

b(xN)ξ(xN)φi(xN) + b(x1)ξ(x1)φi(x1) +
N∑
j=1

ξj

∫ xN

x1

aφ′
jφ

′
i dx = (b(xN)gD(xN)(2.6)

−gN(xN))φi(xN) + (b(x1)gD(x1)− gN(x1))φi(x1) +

∫ xN

x1

fφi dx, i = 1, 2, · · · , N,

which is a system of N linear equations and N unknowns. Using the notation

ai,j =

∫ xN

x1

aφ′
jϕ

′
i dx,

bi =

∫ xN

x1

fφi dx,

and noting that

φi(x1) =

1, if i = 1,

0, if i ̸= 1,
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Chapter 2. Poisson equation 22

and

φi(xN) =

1, if i = N,

0, if i ̸= N,

we can write the system of equations (2.6) as a discrete system of linear equations

as:

(b(x1) + a1,1)ξ1 + · · ·+ a1,NξN = b1 + b(x1)gD(x1)− gN(x1),

a2,1ξ1 + · · ·+ a2,NξN = b2,
... =

... (2.7)

aN−1,1ξ1 + · · ·+ aN−1,NξN = bN−1,

aN,1ξ1 + · · ·+ (aN,N + b(xN))ξN = bN + b(xN)gD(xN)− gN(xN).

In matrix form, this reads,

(A+R)ξ = b̃+ rυ,

where

A =

 a1,1 · · · a1,N
...

. . .
...

aN,1 · · · aN,N

 ,
R is the boundary contributions to the system matrix given by

R =


b(x1) 0 · · · 0 0

0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0

0 0 · · · 0 b(xN)

 ,

b̃ is the load vector

b̃ =

 b1
...

bN

 ,
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Chapter 2. Poisson equation 23

and

rυ =


b(x1)gD(x1)− gN(x1)

0
...

0

b(xN)gD(xN)− gN(xN)


contains the boundary contributions to the right side of (2.7).

2.3 Two Dimensional Poisson equation

2.3.1 Modeling and Variational Formulation

Consider the stationary reaction-di�usion process involving a single substance,

which the following mathematical model

−∇ · (a∇u) = f, x = (x1, x2) ∈ Ω ⊂ R2 (2.8)

−n · (a∇u) = b(u− gD) + gN , x = (x1, x2) ∈ Γ = ∂Ω,

where the unknown function u = u(x1, x2) denotes the concentration of the sub-

stance. Below we list the meaning of the functions appeared in the problem:

a(x1, x2) : Ω → R di�usion coe�cient, a(x1, x2) > 0

f(x1, x2) : Ω → R, source function

b(x1, x2) : ∂Ω → R permeability of the boundary, b(x1, x2) ≥ 0

gD(x1, x2) : ∂Ω → R ambient concentration

gN(x1, x2) : ∂Ω → R externally induced �ux through the boundary

We �rst consider the case gN = 0 for all x = (x1, x2) ∈ ∂Ω, for which Robin

boundary conditions are a mathematical model of the physical fact, that is the �ux

through the boundary, −n · (a∇u) = −a∂u
∂n

where n(x) = (n1(x1, x2), n2(x1, x2)) de-

notes the outward unit normal on ∂Ω, is proportional to the concentration di�erence

between the domain boundary and its surroundings. Note that, since n is taken to

be the outward unit normal, a positive sign corresponds to an outward �ux. We have

the following cases:
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� Dirichlet boundary condition:

This boundary condition physically corresponds to the case of very high per-

meability, i.e., b → +∞, implying that the concentration at the boundary

adapts to the ambient concentration. u = gD. (The special case u = 0, is

referred to as a homogeneous Dirichlet boundary condition.)

� Homogeneous Neumann boundary condition:

This boundary condition physically corresponds to the case of an impermeable

boundary, i.e., one where b = 0 and gN = 0, implying zero �ux through the

boundary: −n · (a∇u) = 0.

� Inhomogeneous Neumann boundary condition:

This boundary condition prescribes the �ux through the boundary, which can

be obtained by assuming b = 0, thus we get −n · (a∇u) = gN .

The derivation of variational formulation of (2.8) is explained in the following steps:

� Multiply the di�erential equation by a test function υ = υ(x1, x2).

� Integrate both sides over Ω

−
∫ ∫

Ω

∇ · (a∇u)υ dx1 dx2 =
∫ ∫

Ω

fυ dx1 dx2,

that is

−
∫ ∫

Ω

(
∂

∂x1
(a
∂u

∂x1
) +

∂

∂x2
(a
∂u

∂x2
))υ dx1 dx2 =

∫ ∫
Ω

fυ dx1 dx2.

Now, using integration by parts to obtain

−
∫
∂Ω

(a
∂u

∂x1
n1 + a

∂u

∂x2
n2)υ ds+

∫ ∫
Ω

(a
∂u

∂x1

∂υ

∂x1
+ a

∂u

∂x2

∂υ

∂x2
) dx1 dx2 =∫ ∫
Ω

fυdx1dx2.

In vector notations it takes the form:

−
∫
∂Ω

(n.(a∇u))υ ds+
∫ ∫

Ω

a∇u.∇υ dx1 dx2 =
∫ ∫

Ω

fυ dx1 dx2.

� Use the boundary condition in (2.8)

−n · (a∇u) = b(u− gD) + gN , x = (x1, x2) ∈ ∂Ω,

to obtain∫
∂Ω

buυ ds+

∫ ∫
Ω

a∇u.∇υ dx1 dx2 =
∫
∂Ω

(bgD − gN)υ ds+

∫ ∫
Ω

fυ dx1 dx2.
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� Finally, the variational formulation of (2.8) has the following statement:

Find u ∈ V, such that∫
∂Ω

buυ ds+

∫ ∫
Ω

a∇u.∇υ dx1 dx2 =
∫
∂Ω

(bgD − gN)υ ds+

∫ ∫
Ω

fυ dx1 dx2,

(2.9)

for all υ ∈ V where V denotes the vector space of functions υ = υ(x1, x2) that

are su�ciently regular for the integrals in (2.9) to exist.

2.3.2 Discretizaion

Introduce the vector space, Vh, of continuous piecewise linear functions on a

triangulation Th = {Ki}ntrii=1 , where ntri denotes the number of triangles: the mesh,

of Ω (which is assumed to have a polygonal boundary), with the corresponding

set of nodes, Nh = {Ni}nnodesi=1 , where nnode denotes the number of nodes in the

triangulation. We now state the cG(1) method as the following discrete counterpart

of (2.9) :

Find U ∈ Vh, such that∫
∂Ω

bUυ ds+

∫ ∫
Ω

a∇U.∇υ dx1 dx2 =
∫
∂Ω

(bgD−gN)υ ds+
∫ ∫

Ω

fυ dx1 dx2, (2.10)

for all υ ∈ Vh.

Ansatz

We now set a solution, U(x1, x2), to (2.10), expressed in terms of the basis (tent

functions) {φi}nnodesi=1 ⊂ Vh where φi(Nj) = δij, i, j = 1, · · · , nnodes, and where δij
denotes the Kronecker delta function de�ned by

δij =

1, if i = j,

0, if i ̸= j.

In other words, we set

U(x1, x2) =
nnodes∑
j=1

ξjφj(x1, x2) (2.11)

and seek to determine the coe�cient vector,

ξ =


ξ1

ξ2
...

ξnnodes

 =


U(N1)

U(N2)
...

U(Nnnodes)
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of nodal values of U(x1, x2), in such a way that (2.10) is satis�ed.

Construction of discrete system of linear equations

We substitute (2.11) into (2.10),

nnodes∑
j=1

ξj{
∫
∂Ω

bφjυds+

∫ ∫
Ω

a∇φj · ∇υdx1dx2} =

∫
∂Ω

(bgD − gN)υds (2.12)

+

∫ ∫
Ω

fυdx1dx2, for all υ ∈ Vh.

Since {φi}nnodesi=1 ⊂ Vh is a basis of Vh, then we can assume υ = φi, i = 1, · · · , nnodes,
thus (2.12) is equivalent to

nnodes∑
j=1

ξj{
∫
∂Ω

bφjφids+

∫ ∫
Ω

a∇φj · ∇φidx1dx2} =

∫
∂Ω

(gD − gN)φi ds (2.13)

+

∫ ∫
Ω

fφidx1dx2, i = 1, · · · , nnodes,

which is system of nnodes linear equations and nnodes unknowns. Introducing the

notation

ri,j =

∫
∂Ω

bφjφids,

ai,j =

∫ ∫
Ω

a∇φj.∇φidx1dx2,

rυi =

∫
∂Ω

(bgD − gN)φids,

bi =

∫ ∫
Ω

fφidx1dx2,

we can write the system of equations, (2.13) as (we denote nnodes by nn):

(r1,1 + a1,1)ξ1 + · · ·+ (r1,nn + a1,nn)ξnn = rυ1 + b1,

(r2,1 + a2,1)ξ1 + · · ·+ (r2,nn + a2,nn)ξnn = rυ2 + b2,
... =

...

(rnn,1 + ann,1)ξ1 + · · ·+ (rnn,nn + ann,nn)ξnn = rυnn + bnn.

In matrix form, this reads,

(R + A)ξ = rυ + b̃,
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where

R =

 r1,1 · · · r1,nn
...

. . .
...

rnn,1 · · · rnn,nn


contains the boundary contributions to the system matrix,

A =

 a1,1 · · · a1,nn
...

. . .
...

ann,1 · · · ann,nn


is the sti�ness matrix,

rυ =

 rυ1
...

rυnn


contains the boundary contributions to the right-hand side, and

b̃ =

 b1
...

bnn


is the load vector.
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Chapter 3

Error Estimation

3.1 Introduction

Error Estimation is considered as an important issue in numerical analysis in the

sense that it can help us in evaluating approximate the solution or the model itself.

Many kinds of errors are presented in the literature, including rounding o� error,

truncation error, error in data, and uncertainty in the model.

The mathematical theory of estimating discretization error is one of the main and

important factor in computational numerical analysis. In fact it can help in assessing

the reliability of the result of the computations of the numerical process. The use of

measures of error to control time steps in the numerical solution of ordinary di�er-

ential equations probably represents the �rst use of a posteriori estimates to control

discretization error. The purpose of error estimation is to avoid inaccuracy in the

numerical solution, including the errors that come from inaccurate discretization of

the solution domain and discretization errors. Also it aims to bound the discretiza-

tion error e = u − U in a Sobolev space or Lebesgue norm, where u is the exact

solution to the variational problem.

a(u, υ) = f(υ), ∀υ ∈ V, (3.1)

and U is the approximation solution to the variational problem

a(U, υh) = f(υh),∀υh ∈ Vh.

The error estimate is the di�erence between approximate solution U and the exact

solution u, and our task is to test the convergence of the approximate solution to the
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exact solution as the discretization parameter goes to zero. Normally, the dimensions

of the estimating error are similar to that of the solution variable. Also, the kinds of

the approximation solution depends on both the discretization parameters and the

choice of the exact element space.

Error estimate typically proceeds in two steps, see [31]:

(i) Presenting U as a good approximation in the sense that the error u−U satis�es

||u− U || = min
υ∈Vh

||u− υ|| (3.2)

in an appropriate norm, and

(ii) Finding an upper bound for the right-hand side of (3.2). The appropriate norm

to use with (3.2) for the model problem (3.1) is the strain energy norm

||υ||E =
√
a(υ, υ).

The �nite element solution might not satisfy (3.2) with other norms. For example,

�nite element solutions are not optimal in any norm for non-self-adjoint problems,

[31]. In these cases, (3.2) is replaced by the weaker statement

||u− U || ≤ C min
υ∈Vh

||u− υ||, where C > 1.

Thus, the solution is closed to the best solution but it only di�ers by a constant

from the best possible solution in the space.

Based on �nite element approximation, error estimators are usually referred to as

explicit error estimators which involve a direct computation of the interior element

residuals and the jumps at the element boundaries to �nd an estimate for the error

in the energy norm. In contrast, implicit error estimators require the solution of

auxiliary local boundary value problems and involve the solution of the auxiliary

boundary value problems whose solution yields an approximation to the actual error,

[32]. Hence, explicit error estimators in general require less computational e�ort

than implicit schemes. A third class of error estimators is the recovery-based error

estimators which make use of the fact that the gradient of the �nite element solution

is in general discontinuous across the interelement boundaries.
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3.2 Error estimation of FEM for Poisson Equation

Consider the problem

−∆u = f, in Ω, (3.3)

u = 0, on ∂Ω,

where Ω ⊂ Rd, d = 1, 2, 3. Using Green's theorem,∫
Ω

∇u · ∇υ dx =

∫
Ω

fυ dx, ∀υ ∈ Vh. (3.4)

The variational formulation is : Find U ∈ Vh such that∫
Ω

∇U · ∇υ dx =

∫
Ω

fυ dx, ∀υ ∈ Vh. (3.5)

For the error e = u− U, we have

∇e = ∇u−∇U = ∇(u− U).

Subtraction of (3.5) from the (3.4) yields the Galarkin Orthogonality∫
Ω

(∇u−∇U) · ∇υ dx =

∫
Ω

∇e · ∇υ dx = 0, ∀υ ∈ Vh. (3.6)

On the other hand, we may write

||∇e||2 =
∫
Ω

∇e · ∇e dx =

∫
Ω

∇e · ∇u dx−
∫
Ω

∇e · ∇U dx.

Now, using the Galarkin Orthogonality (3.6), and since U ∈ Vh, we have∫
Ω

∇e · ∇U dx = 0.
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Employing
∫
Ω
∇e · ∇υ dx = 0, ∀υ ∈ Vh, to get

||∇e||2 =

∫
Ω

∇e · ∇e dx

=

∫
Ω

∇e · ∇(u− U) dx

=

∫
Ω

∇e · (∇u−∇U) dx

=

∫
Ω

∇e · ∇u dx−
∫
Ω

∇e · ∇U dx

=

∫
Ω

∇e · ∇u dx

=

∫
Ω

∇e · ∇u dx−
∫
Ω

∇e · ∇υ dx

=

∫
Ω

∇e · ∇(u− υ) dx

≤ ||∇e|| ||∇(u− υ)||.

Hence,

||∇(u− U)|| ≤ ||∇(u− υ)||, ∀υ ∈ Vh. (3.7)

This means that the �nite element solution U ∈ Vh is the best approximation of

the solution u among functions in Vh, i.e., U is closer to u than any other υ ∈
Vh. In this chapter, we shall focus on two types of error estimates for the �nite

element method, a priori and a posteriori estimates. A priori error estimates are

error bounds that use information about the unknown solution u to estimate the

error before we compute the approximate solution U. They tell us about the order

of convergence of a given �nite element method, that is, they tell us that the �nite

element error ||u − U || in some norm || · || is O(hα), where h is the maximum

mesh size and α is a positive integer. Additionally, the a priori error estimates

supply information on convergence rates but are di�cult to use for quantitative

error information. A posteriori error estimates, which use the computed solution,

provide more practical accuracy appraisal, [31]. In contrast, a posteriori estimates

use the computed solution U in order to give us an estimate of the form ||u−U || ≤ ϵ,

where ϵ is a small number.

The main di�erence between a priori and a posteriori estimates is that a priori

error is error bounds given by known information on the solution of the variational

problem and the �nite element function space. It gives us a reasonable measure
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of the e�ciency of a given method by telling us how fast the error decreases as

we decrease the mesh size. But a posteriori estimates are error bounds given by

information on the numerical solution obtained on the �nite element function space.

The a posteriori estimate provides a much better idea of the actual error in a given

�nite element computation than a priori estimates and it can be used to perform

adaptive mesh re�nement.

3.3 Error estimation in one dimension

3.3.1 Dirichlet problem

Assume that a horizontal elastic bar which occupies the interval I := [0, 1], is

�xed at the end-points. Let u(x) denote the displacement of the bar at a point

x ∈ I, a(x) be the modulus of elasticity, and f(x) a given load function, then one

can show that u satis�es the following boundary value problem

−(a(x)u′(x))′ = f(x), 0 < x < 1,

u(0) = u(1) = 0. (3.8)

Equation (3.8) is of Poisson's type modelling also of the stationary heat �ux type.

We shall assume that a(x) is piecewise continuous in (0, 1), bounded for 0 ≤ x ≤ 1

and a(x) > 0 for 0 ≤ x ≤ 1.

Let υ(x) and its derivative υ′(x), x ∈ I, be square integrable functions, that is

υ, υ′ ∈ L2(0, 1). De�ne the L2-based Sobolev space:

H1
0 (0, 1) = {υ(x) :

∫ 1

0

(υ(x)2 + υ′(x)2) dx <∞, υ(0) = υ(1) = 0}

The variational formulation (VF) of (3.8) can be obtained by multiplying the equa-

tion by a so called test function υ(x) ∈ H1
0 (0, 1) and integrate over (0, 1) to obtain

−
∫ 1

0

(a(x)u′(x))′υ(x)dx =

∫ 1

0

f(x)υ(x) dx. (3.9)

By integration by parts we get

−[(a(x)u′(x))′υ(x)]10 +

∫ 1

0

a(x)u′(x)υ′(x)dx =

∫ 1

0

f(x)υ(x) dx.
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Now, since υ(0) = υ(1) = 0, the variational formulation for problem (3.8) is as

follows: �nd u(x) ∈ H1
0 such that∫ 1

0

a(x)u′(x)υ′(x)dx =

∫ 1

0

f(x)υ(x) dx, ∀υ(x) ∈ H1
0 . (3.10)

Continuous Galerkin of degree 1, (cG(1)) : A �nite element formulation for our

Dirichlet boundary value problem (3.8) is given by: �nd U ∈ V 0
h such that the

following discrete variational formulation holds true∫ 1

0

a(x)U ′(x)′υ(x)dx =

∫ 1

0

f(x)υ(x) dx, ∀υ ∈ V 0
h . (3.11)

The FEM is a �nite dimensional version of the variational formulation, where the

test (also trial) functions are in a �nite dimensional subspace V 0
h , of H

1
0 , spanned

by the hat-functions, φj(x), j = 1, · · · ,M. Thus, if in (3.10) we restrict υ to V 0
h

(rather than H1
0 ) and subtract the �nite element from (3.11), we get the Galerkin

orthogonality: ∫ 1

0

a(x)(u′(x)− U ′(x))υ(x)dx = 0, ∀υ ∈ V 0
h . (3.12)

3.3.2 A mixed Boundary Value Problem

Obviously changing the boundary conditions would require changes in the vari-

ational formulation. This can be seen, e.g., in deriving the variational formulation

corresponding to the following mixed boundary value problem: �nd u such that

−(a(x)u′(x))′ = f(x), 0 < x < 1,

u(0) = 0, (3.13)

a(1)u′(1) = g1.

As usual, we multiply the equation by a suitable test function υ(x), and integrate

over the interval (0, 1). Note that, here, the test function should satisfy only one

boundary condition: υ(0) = 0. This is due to the fact that now u(1) is not given,

and to get an approximate value of u at x = 1, we need to supply a test function (a

half-hat-function) at x = 1. Therefore, the proper choice for a function space is now

H̃1
0 = {υ(x);

∫ 1

0

(υ(x)2 + υ′(x)2) dx <∞, such that υ(0) = 0}.
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Let u ∈ H̃1
0 multiplying the equation by a test function υ, such that υ(1) ̸= 0, and

integrating over I = (0, 1) yield.

−
∫ 1

0

(a(x)u′(x))′υ(x) dx =

∫ 1

0

f(x)υ(x) dx, ∀υ ∈ H̃1
0 .

Integrating by parts gives

−[a(x)u′(x)υ(x)]10 +

∫ 1

0

a(x)u′(x)υ′(x)dx =

∫ 1

0

f(x)υ(x) dx,

and using the boundary data a(1)u′(1) = g1 and υ(0) = 0 provide

−
∫ 1

0

a(x)u′(x)υ′(x) dx =

∫ 1

0

f(x)υ(x) dx+ g1υ(1), ∀υ ∈ H̃1
0 , (3.14)

which is the variational formulation of the equation (3.13)

Error estimates in the energy norm

We shall study two types of error estimates:

i) An a priori error estimate; where a certain norm of the error is estimated by some

norm of the exact solution u. Here, the error analysis gives information about the

size of the error, depending on the (unknown) exact solution u, before any compu-

tational steps.

ii) An a posteriori error estimate; where a certain norm of the error is estimated by

some norm of the residual of the approximate solution. The residual is the di�er-

ence between the left and right hand side of the equation when the exact solution

u(x) is replaced by its approximation U(x). Hence, a posteriori error estimates give

quantitative information about the size of the error after the approximate solution

U(x) has been computed.

Below, we shall prove a qualitative result which shows that the �nite element solution

is the best approximate solution to the Dirichlet problem in the energy norm.

Theorem 3.1. [30] Let u(x) be the solution to the Dirichlet boundary value problem

(3.8) and U(x) its �nite element approximation given by (3.11), then

||u− U ||E ≤ ||u− υ||E, ∀υ ∈ V 0
h .

This means that the �nite element solution U ∈ V 0
h is the best approximation of

the solution u, in the energy norm, by functions in V 0
h
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Proof. We take an arbitrary υ ∈ V 0
h , then using the energy norm

||u− U ||2E =

∫ 1

0

a(x)(u′(x)− U ′(x))2 dx

=

∫ 1

0

a(x)(u′(x)− U ′(x))(u′(x)− υ′(x) + υ′(x)− U ′(x)) dx

=

∫ 1

0

a(x)(u′(x)− U ′(x))(u′(x)− υ′(x)) dx

+

∫ 1

0

a(x)(u′(x)− U ′(x))(υ′(x)− U ′(x)) dx

Since υ − U ∈ V 0
h ⊂ H1

0 , by Galerkin orthogonality the last integral is zero. Thus,

||u− U ||2E =

∫ 1

0

a(x)(u′(x)− U ′(x))(u′(x)− υ′(x)) dx

=

∫ 1

0

a
1
2 (x)(u′(x)− U ′(x))a

1
2 (x)(u′(x)− υ′(x)) dx

≤
(∫ 1

0

a(x)(u′(x)− U ′(x))2 dx

) 1
2
(∫ 1

0

a(x)(u′(x)− υ′(x))2 dx

) 1
2

= ||u− U ||E · ||u− υ||E (3.15)

where, in the last estimate, we used Cauchy-Schwarz inequality. Thus

||u− U ||E ≤ ||u− υ||E, ∀υ ∈ V 0
h ,

and the proof is complete.

The next step is to show that there exists a function υ ∈ V 0
h such that ||u− υ||E

is not too large. The function that we have in mind is ϕhu(x) : the piecewise linear

interpolant of u(x).

Theorem 3.2. [30] [An a priori error estimate]

Let u and U be the solutions of the Dirichlet problem (3.8) and the �nite element

problem, respectively. Then there exists an interpolation constant Ci, depending only

on a(x), such that

||u− υ||E ≤ Ci||hu′′||a.
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Proof. Since ϕhu(x) ∈ V 0
h , we may take υ = ϕhu(x) in (3.1 and use, e.g., the second

estimate in the interpolation

||u− U ||E ≤ ||u− υ|| = ||u− ϕhu||E = ||u′ − (ϕhu)
′||a

=

(∫ 1

0

a(x)(u′(x)− (ϕhu)
′(x))2 dx

) 1
2

≤
(
max
x∈[0,1]

a(x)
1
2

)
· ||u′ − (ϕhu)

′||L2

≤ ci

(
max
x∈[0,1]

a(x)
1
2

)
||hu′′||L2

= ci

(
max
x∈[0,1]

a(x)
1
2

)(∫ 1

0

h(x)2u′′(x)2 dx

) 1
2

||u− U ||E ≤ ci
(maxx∈[0,1] a(x)

1
2 )

(minx∈[0,1] a(x)
1
2 )

(∫ 1

0

a(x)h(x)2u′′(x)2 dx

) 1
2

thus

Ci = ci
(maxx∈[0,1] a(x)

1
2 )

(minx∈[0,1] a(x)
1
2 )

where ci is the interpolation constant in the second estimate

Remark 3.3. If the objective is to divide (0, 1) into a �nite number of subintervals,

then one can use the result of Theorem (3.2): to obtain an optimal partition of

(0, 1), where whenever a(x)u
′′
(x)2 gets large we compensate by making h(x) smaller.

This, however, 'requires that the exact solution u(x) is known'. Now we shall study

a posteriori error analysis, which instead of the unknown solution u(x), uses the

residual of the computed solution U(x).

Theorem 3.4. [30] (Posteriori error estimate) There is an interpolation constant

ci depending only on a(x) such that the error in the �nite element approximation of

the Driichlet boundary value problem (3.1), satis�es

||e(x)||E ≤
(
ci

∫ 1

0

1

a(x)
h2(x)R2(U(x)) dx

)1/2

where the residue

R(U(x)) := f + (a(x)U ′(x))′

and

e(x) := u(x)− U(x) ∈ H1
0 .
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Proof. By the de�nition of the energy norm we have

||e(x)||2E =

∫ 1

0

a(x)(e′(x))2 dx =

∫ 1

0

a(x)(u′(x)− U ′(x))e′(x) dx

=

∫ 1

0

a(x)u′(x)e′(x) dx−
∫ 1

0

a(x)U ′(x)e′(x) dx. (3.16)

Since e ∈ H1
0 , The variational formulation (V F )1 gives that∫ 1

0

a(x)u′(x)e′(x) dx =

∫ 1

0

f(x)e(x) dx.

Hence, we can write

||e(x)||2E =

∫ 1

0

f(x)e(x) dx−
∫ 1

0

a(x)U ′(x)e′(x) dx

Adding and Subtracting the interpolant πhe(x) and its derivative (πhe)′(x) to e and

e′ in the integrands above yields

||e(x)||2E =

∫ 1

0

f(x)(e(x)− πhe(x)) dx+

∫ 1

0

f(x)πhe(x) dx︸ ︷︷ ︸
(i)

−
∫ 1

0

a(x)U ′(x)(e′(x)− (πhe)
′(x)) dx−

∫ 1

0

a(x)U ′(x)(πhe)
′(x) dx︸ ︷︷ ︸

(ii)

Since U(x) is the solution of FEM given by (3.11), and πhe(x) inVh we have that

−(ii) + (i) = 0. Hence

||e(x)||2E =

∫ 1

0

f(x)(e(x)− πhe(x)) dx−
∫ 1

0

a(x)U ′(x)(e′(x)− (πhe)
′(x)) dx

=

∫ 1

0

f(x)(e(x)− πhe(x)) dx−
M+1∑
k=1

∫ xk

xk−1

a(x)U ′(x)(e′(x)− (πhe)
′(x)) dx

To continue we integrate by parts in the integrals in the summation above

−
∫ xk

xk−1

a(x)U ′(x)(e′(x)− (πhe)
′(x)) dx =

[a(x)U ′(x)(e(x)− πhe(x))]
xk

xk−1
+

∫ xk

xk−1

(a(x)U ′(x))′(e(x)− πhe(x)) dx.
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Now, using e(xk) = πhe(xk), k = 0, 1, · · · ,M+1, where the xks are the interpolation

nodes, the boundary terms vanish and thus we end up with

−
∫ xk

xk−1

a(x)U ′(x)(e′(x)− (πhe)
′(x)) dx =

∫ xk

xk−1

(a(x)U ′(x))′(e(x)− πhe(x)) dx.

Thus, summing over k, we have

−
∫ 1

0

a(x)U ′(x)(e′(x)− (πhe)
′(x)) dx =

∫ 1

x0

(a(x)U ′(x))′(e(x)− πhe(x)) dx.

where (a(x)U ′(x))′ should be interpreted locally on each subinterval [xk−1, xk]. There-

fore

||e(x)||2E =

∫ 1

0

f(x)(e(x)− πhe(x)) dx+

∫ 1

0

(a(x)U ′(x))′(e(x)− πhe(x)) dx

=

∫ 1

0

(f(x) + (a(x)U ′(x))′)(e(x)− πhe(x)) dx

Now, let

R(U(x)) := f + (a(x)U ′(x))′,

i.e. R(U(x)) is the residual error, which is a well-de�ned except in the set {xk}, k =

0, 1, · · · ,M ; where (a(xk)U
′(xk))

′ is not de�ned. Then, using Cauchy-Schwarz in-

equality we get the following estimate

||e(x)||2E =

∫ 1

0

R(U(x))(e(x)− πhe(x)) dx

=

∫ 1

0

1√
a(x)

h(x)R(U(x))
√
a(x)

(
e(x)− πhe(x)

h(x)

)
dx

=

(∫ 1

0

1

a(x)
h2(x)R2(U(x)) dx

)1/2
(∫ 1

0

a(x)

(
e(x)− πhe(x)

h(x)

)2

dx

)1/2

Further by de�nition of the weighted L2−norm we have∣∣∣∣∣∣∣∣e(x)− πhe(x)

h(x)

∣∣∣∣∣∣∣∣2
a

=

∫ 1

0

a(x)

(
e(x)− πhe(x)

h(x)

)2

dx (3.17)

to estimate (3.17) we can use ||Πhυ − υ||Lp(a,b) ≤ ci||hυ′||Lp(a,b) for e(x) in each

subinterval and get∣∣∣∣∣∣∣∣e(x)− πhe(x)

h(x)

∣∣∣∣∣∣∣∣
a

≤ Ci∥e′(x)∥a = Ci∥e(x)∥E,

38



Chapter 3. Error Estimation 39

where Ci as before depends on a(x). Thus

||e(x)||2E ≤
(∫ 1

0

1

a(x)
h2(x)R2(U(x)) dx

)1/2

Ci∥e(x)∥E,

and the proof is complete.

3.4 Error estimation in two dimensions

A priori error estimate for poisson equation

Consider the problem

−∆u = f, in Ω,

u = 0, on ∂Ω. (3.18)

Theorem 3.5. The �nite element approximation U satis�es (3.18). In particular,

there is a constant Ci such that

||u− U ||E ≤ ||∇(u− U)||E ≤ Ci||hD2
u|| (3.19)

where Ci is an interpolation constant, and

D2u = (u2xx + u2xy + u2yy)
1
2

Now, we will �nd a priori error estimate for the solution. For a general mesh we

have the following a priori error estimate for the solution of the Poisson equation

(3.18).

Theorem 3.6.

||e|| ≤ C2C2
Ωh

2||f ||. (3.20)

Proof. Let ϕ be the solution of the dual problem

−∆ϕ = e, in Ω,

ϕ = 0, on ∂Ω.
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Then,

||e||2 =

∫
Ω

e · e dx

=

∫
Ω

e(−∆ϕ) dx

=

∫
Ω

∇e · ∇ϕ dx, by Green's formula

=

∫
Ω

∇e · ∇ϕ dx−
∫
Ω

∇e · ∇υ dx, by Galarkin Orthogonality

=

∫
Ω

∇e · ∇(ϕ− υ) dx.

So,

||e||2 ≤ ||∇e|| ||∇(ϕ− υ)||, ∀υ ∈ Vh.

Let υ be an interpolation of ϕ such that

||∇(ϕ− υ)|| ≤ C||hD2ϕ||,

Hence,

||e||2 ≤ ||∇e||C||hD2ϕ||
≤ ||∇e||C(max

Ω
h)||D2ϕ||. (3.21)

To complete the proof, we need the following lemma, see [30, 33].

Lemma 3.7. (Regularity Lemma) Assume that Ω has no re-intrents. We have for

u ∈ H2(Ω) with u = 0 or ∂u
∂n

= 0 on ∂Ω that,

||D2u|| ≤ CΩ||∆u||.

Proof. see ([30])

Now, applying this lemma to ϕ,

||D2ϕ|| ≤ CΩ · ||∆ϕ|| = CΩ||e||.

Then, (3.21) implies

||e||2 ≤ ||∇(u− U)||C(max
Ω

h)CΩ||e||.
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Thus, using

||e|| ≤ C2CΩ(max
Ω

h)||hD2u||.

Which, using the lemma above, for a uniform (constant) h, can be written as

||e|| ≤ C2C2
Ωh

2||f ||.

3.4.1 Dirichlet problem

A posteriori estimates present a necessary tool in the adaptive procedures used

in computer simulation and are known to be essential for reliable scienti�c comput-

ing. They are used to control discretization error in numerical solutions of initial or

boundary value problems.

A short history

The term a posteriori error estimator, was �rstly used by Ostrowski [34] in 1940. To

the authors knowledge, the �rst use of error estimates for adaptive meshing strate-

gies in signi�cant engineering problems was given in the work of Guerra [35] in

1977. The paper of Babuska and Rheinboldt [36] published in 1978 is often cited as

the �rst work aimed at developing rigorous global error bounds for �nite element

approximations of linear elliptic two-point boundary value problems. In the period

spanning over two decades since these works, signi�cant advances have been made.

A brief history of the subject is given in the book of Ainsworth and Oden [40],

see also the books and survey articles of Verfurth [37], Babuska and Strouboulis

[39], Oden and Demkowicz [38] . It can be argued that until quite recently, the vast

majority of the published work on a posteriori error estimation dealt with global

estimates of errors in �nite element approximations of linear elliptic problems, these

estimates generally being in energy-type norms.

The aims of a posteriori error estimation is developing quantitative methods in which

the error e = u − U is estimated in post-processing procedures using the solution

U as data for the error estimates. A posteriori error estimator is a quantity which

bounds or approximates the error and can be computed from the knowledge of nu-

merical solution and input data. The advantage of any a posteriori error estimator

is to supply an estimate and ideally bounds for the solution error in a speci�ed norm

if the problem data and the �nite element solution are available.
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A posteriori error estimate for Poisson equation

To study a posteriori error analysis, where instead of the unknown value of u(x), we

use the known value of the approximate solution to estimate the error, [41].

Theorem 3.8. Let u be the solution of the Poisson equation (3.18) and U is the

continuous piecewise linear �nite element approximation. Then there is constant C,

independent of u and h, such that

||u− U || ≤ C||h2r||, (3.22)

where r = f +∆U is the residual.

Proof. Consider the following dual problem

−∆ϕ(x) = e(x), x ∈ Ω,

ϕ(x) = 0, x ∈ ∂Ω. (3.23)

where it is clear that

e(x) = 0, ∀x ∈ ∂Ω.

Using the Green's formula, the L2 norm of the error can be written as

||e||2 =
∫
Ω

e2 dx = −
∫
Ω

e(∆ϕ) dx =

∫
Ω

∇e · ∇ϕ dx.

Thus, by the Galerkin orthogonality and using the boundary condition, we get

||e||2 =

∫
Ω

∇e · ∇ϕ dx−
∫
Ω

∇e · ∇υ dx

=

∫
Ω

∇e · ∇(ϕ− υ) dx.

=

∫
Ω

(−∆e)(ϕ− υ) dx.

But

−∆e = −∆u+∆U = f +∆U = r

where r is the residual and υ is an interpolant of ϕ, so

||e||2 ≤ ||h2r|| ||h−2(ϕ− υ)||.

Using the inequality

||(ϕ− υ)|| ≤ C||h2D2ϕ|| ≤ CCΩ||∆ϕ||,
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where C and CΩ are constants, we get

||e||2 ≤ CCΩ||h2r|| ||∆ϕ||
≤ CCΩ||h2r|| ||e||.

Thus, for this problem, the �nal a posteriori error estimate is

||u− U || ≤ c||h2r||.

3.4.2 A mixed boundary condition

Let Ω be a bounded domain with Lipschitz continuous boundary Γ. Suppose

that Γ consists of two measurable parts ΓD and ΓN such that Γ = ΓD ∪ ΓD where

ΓD and ΓN are the Dirichlet and Neumann boundaries, respectively. Consider the

mixed boundary value problem: Find a function u such that

−∆u = f, in Ω,

u = 0, on ΓD, (3.24)

n · ∇u = g, on ΓN ,

where n is the outward normal to Γ. We assume that f ∈ L2(Ω) and g ∈ L2(ΓN). A

variational formulation of this problem is: Find u ∈ V such that∫
Ω

∇u · ∇υ dx =

∫
Ω

fυ dx+

∫
ΓN

gυ ds ∀υ ∈ V,

where the test functions space V is de�ned as

V = υ ∈ H1(Ω) : υ = 0 on ΓD.

This solution can be characterized equivalently as the minimizer of the following

variational formulation: Find u ∈ V such that J(u) = infυ∈V J(υ), where

J(υ) =
1

2

∫
Ω

|∇υ|2 dx−
∫
Ω

fυ dx−
∫
ΓN

gυ ds.

To derive the dual variational formulation we employ the relation, [[27, 28]],

J(u) = inf
υ∈V

sup
y∗∈L2(Ω,Rn)

∫
Ω

(∇υ · y ∗ −1

2
|y ∗ |2 − fυ) dx−

∫
ΓN

gυ ds.
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De�ne Q∗f,g = q∗ ∈ L2(Ω,Rn);∫
Ω

∇ · q ∗ w dx =

∫
Ω

−fw dx,

∫
ΓN

(q ∗ ·n)w ds =

∫
ΓN

gw ds, ∀w ∈ V,

to �nd p∗ ∈ Qf,g∗ such that I ∗ (p∗) = supq∗∈Qf,g∗ I ∗ (q∗), where

I ∗ (q∗) =
∫
Ω

(∇u · q ∗ −1

2
|q ∗ |2 − fu) dx−

∫
ΓN

gu ds,

is the dual variational functional.

Let

J(u) = I ∗ (p∗),
∇u = p∗,

then we have the following theorem, [27].

Theorem 3.9. For all υ ∈ V and q∗ ∈ Q∗f,g, we have

||∇(υ − u)||2 ≤ ||∇υ − q ∗ ||2, ∀υ ∈ V, ∀q∗ ∈ Q ∗f,g .

Proof. We will begin as

J(υ)− J(u) = J(υ)− I ∗ (p∗)
= J(υ)− I ∗ (∇u)

=

∫
Ω

(
1

2
|∇υ|2 − fυ) dx−

∫
ΓN

gυ ds− (

∫
Ω

(∇u · ∇u− 1

2
|∇u|2 − fu) dx−

∫
ΓN

gu ds)

=

∫
Ω

(
1

2
|∇(υ − u)|2 +∇u · ∇υ − fυ −∇u · ∇u+ fu) dx−

∫
ΓN

(gυ − gu) ds,

but since ∫
Ω

(∇u · ∇υ dx =

∫
Ω

fυ dx+

∫
ΓN

gυ ds∫
Ω

(∇u · ∇u dx =

∫
Ω

fu dx+

∫
ΓN

gu ds

then we have,

J(υ)− J(u) =
1

2
||∇(υ − u)||2, ∀υ ∈ V.
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Hence, one can derive

1

2
||∇(υ − u)||2 = J(υ)− J(u)

= J(υ)− I ∗ (p∗)
= J(υ)− sup

q∗∈Q∗f,g
I ∗ (q∗)

= J(υ) + inf
q∗∈Q∗f,g

−I ∗ (q∗)

= inf
q∗∈Q∗f,g

J(υ)− I ∗ (q∗).

For the term J(υ)− I ∗ (q∗) we have

J(υ)− I ∗ (q∗) =
∫
Ω

(
1

2
|∇υ|2 − fυ) dx−

∫
ΓN

gυ ds

−(

∫
Ω

(∇u · ∇u− 1

2
|∇u|2 − fu) dx−

∫
ΓN

gu ds)

=

∫
Ω

(
1

2
|∇(υ − q∗)|2 +∇q ∗ ·∇υ − fυ −∇q ∗ ·∇u+ fu) dx

+

∫
ΓN

(gu− gυ) ds,

but ∫
Ω

q ∗ ·∇υ dx = −
∫
Ω

∇ · q ∗ υ dx+
∫
ΓN

(q ∗ ·n)υ ds

=

∫
Ω

fυ dx+

∫
ΓN

gυ ds.

Similarly ∫
Ω

q ∗ ·∇υ dx =

∫
Ω

fu dx+

∫
ΓN

gu ds.

So, we get that

J(υ)− I ∗ (q∗) = 1

2
||∇υ − q ∗ ||2, ∀υ ∈ V, q∗ ∈ Q∗f,g,

and that,

||∇(υ − u)||2 = inf
q∗∈Q∗f,g

||∇υ − q ∗ ||2.

We immediately deduce the estimate

||∇(υ − u)||2 ≤ ||∇υ − q ∗ ||2, ∀υ ∈ V, q∗ ∈ Q ∗f,g . (3.25)
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Now we will present a much simpli�ed way of deriving functional type a posteriori

estimates using a variant of the Helmholtz decomposition [25, 26] for the space

L2(Ω,Rn). The Helmholtz decomposition of a vector �eld is the decomposition of

the vector �eld into two vector �elds, one a divergence-free and a curl-free �elds.

The spaceL2(Ω,Rn) is used for vector-valued functions with components in L2(Ω).

Here, we will use the trace theorem, [24], that is

||u||0,Γ ≤ CΓ||u||1,Ω, ∀υ ∈ H1(Ω) (3.26)

where CΓ is positive constants depending only on Γ, and ||.||1,Ω stands for the stan-

dard norm in H1(Ω), and the symbol ||.||0,Γ means the norm is L2(Γ), see, e.g.,

[29].

Theorem 3.10. Let u ∈ V be the solution to the problem (3.24) and υ be any

function from V. Then, see [27, 28],

||∇(υ − u)||2 ≤ (1 + β)||∇υ − y ∗ ||2 + (1 +
1

β
) + (3.27)

+ (1 +
1

γ
)C2

ΓN
(1 + C2

Ω||y ∗ ·n− g||2L2(ΓN ))

+ (1 +
1

β
)(1 + γ)C2

Ω||div y ∗+f ||2,

where β is an arbitrary positive number, y∗ is any function from H̃(Ω, div) =

y∗ ∈ L2(Ω,Rn) : divy∗ ∈ L2(Ω), y ∗ ·n ∈ L2(ΓN), [28],CΩ is the constant from Poni-

care inequality, and CΓN
is the constant in the trace inequality for the domain Ω.

Proof. Consider

−∆u = f, in Ω,

u = 0, on ΓD,

n · ∇u = g, on ΓN ,

by (3.25) we have

||∇(υ − u)||2 ≤ ||∇υ − q ∗ ||2, ∀υ ∈ V, ∀q∗ ∈ Q ∗f,g .

To estimate the right-hand side for any υ ∈ V, we take an arbitrary function y∗ ∈
H̃(Ω, div). De�ne the auxiliary function w as the solution to the problem

∆w = divy ∗+f, in Ω,

w = 0, on ΓD,

n · ∇w = y ∗ ·n+ g, on ΓN .
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As y∗ ∈ L2(Ω,Rn), we have for yffi†the Holmholtz decomposition y∗ = q ∗ +∇w,
where q∗ ∈ Q∗f,g and w ∈ V .

Then, using Young's inequality, we obtain

||∇υ − q ∗ ||2 ≤ (1 + β)||∇υ − y ∗ ||2 + (1 +
1

β
)||∇w||2, ∀β > 0. (3.28)

Since w ∈ V and ∆w ∈ L2(Ω), then by Poincare inequality we get

||∇w||2 =

∫
ΓN

∂w

∂n
w ds−

∫
Ω

(∆w)w dx

≤ ||∂w
∂n

||L2(ΓN )CΓN
(1 + C2

Ω)
1
2 ||∇w||+ CΩ||∆w|| ||∇w||,

that is,

||∇w|| ≤ CΓN
(1 + C2

Ω)
1
2 ||∂w
∂n

||L2(ΓN ) + CΩ||∆w||, (3.29)

where CΩ is the constant of Poincare inequality, and CΓN
is the constant of the trace

inequality. Now by (3.25) we have

||∇(υ − u)||2 ≤ ||∇υ − q ∗ ||2, ∀υ ∈ V, ∀q∗ ∈ Q∗f,g

Using (??) and Young's inequality to get

||∇(υ − u)||2 ≤ (1 + β)||∇υ − y ∗ ||2 + (1 +
1

β
) (3.30)

+ (1 +
1

γ
)C2

ΓN
(1 + C2

Ω||y ∗ ·n− g||2L2(ΓN ))

+ (1 +
1

β
)(1 + γ)C2

Ω||div y ∗+f ||2, ∀υ ∈ V, ∀y∗ ∈ H̃(Ω, div),

where β and γ are arbitrary positive numbers come from Young's inequality

Since u is the exact solution of (3.24), υ is any function from V, and y∗ is any

function from H̃(Ω, div) the estimate (3.30) is an a posteriori error estimate valid

for any approximation of the problem (3.24).
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Computations

In this chapter we will test the technique of the FEM to approximate the solutions

of di�erential equations in one and two dimensions

4.1 One dimensional examples

Example 4.1. Consider the homogeneous drichlet boundary value problem

−u′′ = 12x2, x ∈ [1, 2],

u(1) = u(2) = 0,

we will test the FEM solution and compare it with the exact solution.

Solution: To get the exact solution, we integrate both sides of the di�erential equa-

tion

−u′ = 4x3 + C1.

Integrate one more both sides to get

−u = x4 + C1x+ C2, C1, C2 ∈ R,

So,

u(x) = −x4 + C1x+ C2.

Now substitution the boundary conditions,

u(1) = −1 + C1 + C2 = 0 ⇒ C1 + C2 = 1,

u(2) = −16 + 2C1 + C2 = 0 ⇒ 2C1 + C2 = 16.
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The solutions of these two equations provides C1 = 15 and C2 = −14.

Thus, the exact solution is u(x) = −x4 + 15x− 14.

Figure (4.1) shows the plot of the exact and approximate solutions at the nodal

points. It is clear that re�ning the mesh provides more accurate result, that is,

increasing the number of nodal points decreases the error.

Example 4.2. Consider the one dimensional di�usion-reaction problem

−u′′ + u = x3 − x2 − 6x+ 2, x ∈ [0, 1],

u′(0) = 0,

u′(1) = 1,

compare the �nite element solution to the exact solution

Solution: To get the exact solution, let uc = erx ⇒ −r2 + 1 = 0 ⇒ r = −1, 1

uc = C1e
x + C2e

−x, C1, C2 ∈ R.

Now, the particular solution is

up = Ax3 +Bx2 + Cx+D ⇒ u′′p = 6Ax+ 2B.

Substitute up and u′′p in the di�erential equation to get

−6Ax− 2B + Ax3 +Bx2 + Cx+D = x3 − x2 − 6x+ 2,

thus A = 1, B = −1,

−6A+ C = −6 ⇒ C = 0 and D − 2B = 2 ⇒ D = 0. Hence, up = x3 − x2, and the

general solution is

u(x) = C1e
x + C2e

−x+ x3 − x2.

Substitute the boundary conditions,

u′(0) = C1 − C2 = 0 ⇒ C1 = C2

u′(1) = C1e− C2e
−1 + 3− 2 = 1 ⇒ C1 = 0 which implies C2 = 0

Therefore, the exact solution is u(x) = x3 − x2
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Figure 4.1: Number of subintervals= 4, 8, 12 and 20 respectively.
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Figure 4.2: Number of subintervals= 4, 8, 12 and 20 respectively.
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Figure (4.2) shows the plot of the exact and approximate solutions at the nodal

points. The approximate solution is taken for di�erent values of n. It is clear that

with higher values of subintervals n the solution is more accurate.

This table explains the absolute error in the approximate solution using 4, 8, 12

and 20 subintervals.

x n=4 n=8 n=12 n=20

0 0.004079 0.0010095 0.0004478 0.0001610

0.25 0.004421 0.0011007 0.0004888 0.0001759

0.5 0.005208 0.0013020 0.0005787 0.0002083

0.75 0.005994 0.0015034 0.0006685 0.000240

1 0.006337 0.0015946 0.0007095 0.000255

4.2 Two dimensional example

Consider the problem

−△u = f, in Ω = (0, 1)× (0, 1),

u = 0 on ∂Ω.

With right-hand side f(x) = 5π2 sin(πx1) sin(2πx2). where exact solution u(x) =

sin(πx1) sin(2πx2)

The error is plotted in Figure (4.3), where the maximum norm it is equal to

0.0216. In Figure (4.4) are re�ne the mesh and obtain the approximate solution.

One can note that the maximum norm of the error is 0.0055. It is clear from Figures

(4.3) and (4.4) that re�ning the mesh gives better approximation. This is reasonable

because the more mesh there are, the less error. Note that the error is decreased by

the factor 4 = 22 when we decrease the mesh size with a factor 2.
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Figure 4.3: Exact solution, approximate solution, and error.
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